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Abstract. We characterize the solution set for a second-order cone linear fractional opti-

mization problem (P). We present sequential Lagrange multiplier characterizations of the

solution set for the problem (P) in terms of sequential Lagrange multipliers of a known

solution of (P).

1. Introduction and Preliminaries

Jeyakumar et al. [4] proved the sequential Lagrange multiplier optimality
conditions for convex optimization problem, which held without any constraint
qualification and which were expressed by sequences. Such optimality condi-
tions have been studied for many kinds of convex optimization problems. In
particular, Kim et al. [2] investigated sequential Lagrange multiplier optimal-
ity conditions for a semidefinite linear fractional optimization problem, which
hold without any constraint qualification. Kim et al. [3] also obtained sequen-
tial Lagrange multiplier optimality conditions for a second-order cone linear
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fractional optimization problem, which hold without any constraint qualifica-
tion.

Optimization problems often have multiple solutions. Mangasarian [13]
presented simple and elegant characterizations of the solution set for a convex
optimization problem over a convex set when one solution is known. These
characterizations have been extended to various classes of optimization prob-
lems [5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17]. In particular, Jeyakumar et
al. [5] gave Lagrange multiplier characterizations of the solution set of a con-
vex optimization problem involving convex inequality constraints in terms of
Lagrange multipliers of a known solution.

In this paper, we present sequential Lagrange multiplier characterizations of
the solution set of a second-order cone linear fractional optimization problem
in terms of sequential Lagrange multipliers of a known solution.

Recently, second-order cone optimization problems have been intensively
studied [1].

In this paper, we consider the following second-order cone optimization
problem:

(P) Minimize
cTx+ α

dTx+ β

subject to x ∈ K, aTi x = bi, i = 1, · · · ,m,
where c, d ∈ Rn, α, β are given real numbers, ai ∈ Rn, i = 1, · · · ,m and
bi, i = 1, · · · ,m are given real numbers, K = {x = (x1, x2, · · · , xn) | x1 =√
x2

2 + x2
3 + · · ·+ x2

n}.
Let F = {x ∈ K | aTi x = bi, i = 1, · · · ,m}.

2. Optimality theorems

The authors [3] established the following sequential Lagrange multiplier
optimality theorem for (P), which holds without any constraint qualification;

Theorem 2.1. ([3]) Let x̄ ∈ F . Then x̄ is an optimal solution of (P) if and
only if there exist λli ∈ R, i = 1, · · · ,m and vl ∈ K such that

c− q(x̄)d+ lim
l→∞

[ m∑
i=1

λliai − vl
]

= 0

and
lim
l→∞

vTl x̄ = 0,

where q(x̄) = cT x̄+α
dT x̄+β

.
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The closedness of the set
⋃
λi∈R

∑m
i=1 λ

l
i(ai, bi) + (−K) × R+ can be used as

a constraint qualification for the optimal solution of (P) as in the following
theorem [3];

Theorem 2.2. ([3]) Let x̄ ∈ F . Suppose that
⋃
λi∈R

∑m
i=1 λi(ai, bi)+(−K)×R+

is closed in Rn × R. Then the following are equivalent:

(i) x̄ is an optimal solution of (P);
(ii) there exist yi ∈ R, i = 1, · · · ,m such that

m∑
i=1

yiai −
cT x̄+ α

dT x̄+ β
d+ c ∈ K

and

− c
T x̄+ α

dT x̄+ β
β − bT y = −α;

(iii) there exist yi ∈ R, i = 1, · · · ,m such that

m∑
i=1

yiai −
cT x̄+ α

dT x̄+ β
d+ c ∈ K

and ( m∑
i=1

yiai −
cT x̄+ α

dT x̄+ β
d+ c

)T
x̄ = 0.

3. Characterizations of solution sets

Let S̄ be the set of solutions of (P). Let x̄ ∈ S̄. Then by Theorem 2.1, there
exist a sequence {yli} in R, i = 1, · · · ,m and a sequence {vl} in K such that

c− q(x̄)d+ lim
l→∞

[ m∑
i=1

yliai − vl
]

= 0

and

lim
l→∞

vTl x̄ = 0,

where q(x̄) = cT x̄+α
dT x̄+β

.

By using the above sequences {yli} and {vl}, we can characterize the solution
set S̄ as follows:
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Theorem 3.1. The set S̄ of solutions of (P) is as follows:

S̄ = {x̃ ∈ F | c− q(x̃)d+ lim
l→∞

[ m∑
i=1

yliai − vl
]

= 0, lim
l→∞

vTl x̃ = 0},

where q(x̃) = cT x̃+α
dT x̃+β

.

Proof. Let x̃ ∈ S̄ be any fixed. Then q(x̄) = q(x̃) and so (c − q(x̄)d)T x̄ =

(c− q(x̃)d)T x̃. Since c− q(x̄)d+ lim
l→∞

[∑m
i=1 y

l
iai − vl

]
= 0,

(c− q(x̄)d)T x̄+ lim
l→∞

[ m∑
i=1

yli(a
T
i x̄)− vTl x̄

]
= 0

and

(c− q(x̃)d)T x̃+ lim
l→∞

[ m∑
i=1

yli(a
T
i x̃)− vTl x̃

]
= 0.

Hence, we have lim
l→∞

[∑m
i=1 y

l
i(a

T
i x̄)− vTl x̄

]
= lim

l→∞

[∑m
i=1 y

l
i(a

T
i x̃)− vTl x̃

]
.

Since lim
l→∞

vTl x̄ = 0,

lim
l→∞

m∑
i=1

yli(a
T
i x̄) = lim

l→∞

[ m∑
i=1

yli(a
T
i x̃)− vTl x̃

]
.

Since x̄ ∈ S̄ and x̃ ∈ S̄,

lim
l→∞

m∑
i=1

ylibi = lim
l→∞

[ m∑
i=1

ylibi − vTl x̃
]
.

Thus lim
l→∞

vTl x̃ = 0. Hence, we have

S̄ ⊂ {x̃ ∈ F | c− q(x̃)d+ lim
l→∞

[ m∑
i=1

yliai − vl
]

= 0, lim
l→∞

vTl x̃ = 0}.

The converse is true by Theorem 2.1. Consequently,

S̄ = {x̃ ∈ F | c− q(x̃)d+ lim
l→∞

[ m∑
i=1

yliai − vl
]

= 0, lim
l→∞

vTl x̃ = 0}.

�

When d = 0, α = 0, β = 1, (P) becomes the following second-order cone
program (SOCP):

(SOCP) Minimize cTx

subject to x ∈ K, aTi x = bi, i = 1, · · · ,m.
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Let
˜̃
S be the set of solutions of (SOCP) and let x̄ ∈ ˜̃S. Then, by Theorem

2.1 there exist a sequence {yli} in R, i = 1, · · · ,m and a sequence {vl} in K
such that

c+ lim
l→∞

[ m∑
i=1

yliai − vl
]

= 0

and

lim
l→∞

vTl x̄ = 0.

By using the above sequences {yli} and {vl}, we have the following theorem
from Theorem 3.1:

Theorem 3.2. The set
˜̃
S of soluttions of (SOCP) is as follows:

˜̃
S = {x̃ ∈ F | lim

l→∞
vTl x̃ = 0}.

Suppose that
⋃
λi∈R

∑m
i=1 λi(ai, bi) + (−K) × R+ is closed in Rn × R. Let S̄

be the set of solutions of (P) and let x̄ ∈ S̄. Then by Theorem 2.2, there exist
yi ∈ R, i = 1, · · · ,m and v ∈ K such that

m∑
i=1

yiai −
cT x̄+ α

dT x̄+ β
d+ c− v = 0 and (3.1)

vT x̄ = 0. (3.2)

By using the above yi and v, we can characterize the solution set S̄ as
follows;

Theorem 3.3. We have the solution set S̄:

S̄ = {x̃ ∈ F | c− q(x̃)d+

m∑
i=1

yiai − v = 0, vT x̃ = 0},

where q(x̃) = cT x̃+α
dT x̃+β

.
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