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ON OPTIMALITY AND DUALITY FOR GENERALIZED

FRACTIONAL ROBUST OPTIMIZATION PROBLEMS

Moon Hee Kim and Gwi Soo Kim

Abstract. In this paper, we consider a generalized fractional robust opti-

mization problem (FP). Establishing a nonfractional optimization problem

(NFP) equivalent to (FP), we establish necessary optimality conditions
and duality results.

1. Introduction

In this paper, we consider the following generalized fractional robust opti-
mization problem (FP):

(FP) Minimize
max
u∈U

f(x, u)

min
u∈U

g(x, u)

subject to hi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, · · · ,m,

where u, vi are uncertain parameters and u ∈ U, vi ∈ Vi, i = 1, · · · ,m for
some convex compact sets U ∈ Rp, Vi ⊂ Rq, i = 1, · · · ,m, respectively and
f : Rn × Rp → R, g : Rn × Rp → R and hi : Rn × Rq → R, i = 1, · · · ,m are
continuously differentiable functions. Assume that f(x, u) ≥ 0 and g(x, u) > 0
for any u ∈ U .

Let F := {x ∈ Rn : hi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, · · · ,m} be the robust
feasible set of (FP). Then we say that x∗ is a robust solution of (FP) if x∗ ∈ F

and
max
u∈U

f(x,u)

min
u∈U

g(x,u) =
max
u∈U

f(x∗,u)

min
u∈U

g(x∗,u) for any x ∈ F . We denote ∇1g the derivative of g

with respect to the first variable.
Consider the following nonfractional robust optimization problem:

(NFP) Minimize p

subject to f(x, u)− pg(x, u) ≤ 0, ∀u ∈ U,
hi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, · · · ,m.
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Following the approaches in [10], we can establish an equivalent relationship
between (FP) and (NFP) as follows:

Proposition 1.1. Let x̄ ∈ F .
(1) If x̄ is a robust solution of (FP), then (x̄, p̄) is a robust solution of (NFP),

where p̄ =
max
u∈U

f(x̄,u)

min
u∈U

g(x̄,u) .

(2) If (x̄, p̄) is a robust solution of (NFP) where p̄ =
max
u∈U

f(x̄,u)

min
u∈U

g(x̄,u) , then x̄ is a

robust solution of (FP).

Proof. (1) Suppose that (x̄, p̄) is not a robust solution of (NFP). Then there
exists (x̃, p̃) such that

p̃ < p̄

f(x̃, u)− p̃g(x̃, u) 5 0 ∀u ∈ U and

hi(x̃, vi) 5 0 ∀vi ∈ Vi, i = 1, · · · ,m.

Thus we have

max
u∈U

f(x̃, u)

min
u∈U

g(x̃, u)
5 p̃ < p̄ =

max
u∈U

f(x̄, u)

min
u∈U

g(x̄, u)
and

hi(x̃, vi) 5 0 ∀vi ∈ Vi, i = 1, · · · ,m.

So, x̄ ∈ F , but x̄ is not a robust solution of (FP).
(2) Suppose that x̄ is not a robust solution of (FP). Then there exists x̂ ∈ F

such that
max
u∈U

f(x̂, u)

min
u∈U

g(x̂, u)
<

max
u∈U

f(x̄, u)

min
u∈U

g(x̄, u)
= p̄.

Let p̂ =
max
u∈U

f(x̂,u)

min
u∈U

g(x̂,u) . Then f(x̂, u) − p̂g(x̂, u) 5 0 ∀u ∈ U . So, (x̄, p̄) is not a

robust solution of (NFP). �

Many authors have introduced robust optimization problems and have ob-
tained their optimality theorems and duality theorems ([1] – [9]).

Recently, Kim [7] considered the following fractional robust optimization
problem (P):

(P) inf
x∈Rn

{
f(x)

g(x)
: hj(x, vj) ≤ 0, ∀vj ∈ Vj , i = 1, · · · ,m

}
,

where vj are uncertain parameters and vj ∈ Vj , i = 1, · · · ,m for some convex
compact sets Vj ⊂ Rq, j = 1, · · · ,m and f : Rn → R, g : Rn → R and
hj : Rn × Rq → R, j = 1, · · · ,m are continuously differentiable functions.

In this paper, we extend the generalized fractional robust optimization prob-
lem (FP) and prove necessary optimality theorems for (FP). Establishing a
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nonfractional optimization problem (NFP) equivalent to (FP), we formulate a
Mond-Weir type dual problem for (FP) and obtain duality theorems for (FP).

2. Optimality theorems and duality theorems

In this section, we give necessary optimality conditions for the fractional
robust optimization problem (FP).

Let x̄ ∈ F and p̄ =
max
u∈U

f(x̄,u)

min
u∈U

g(x̄,u) and let us decompose J := {1, · · · ,m} into two

index sets J = J1(x̄) ∪ J2(x̄) where J1(x̄) = {j ∈ J | ∃vi ∈ Vi s.t. hi(x̄, vi) = 0}
and J2(x̄) = J \ J1(x̄). Let U0 = {u ∈ U | f(x̄, u) − p̄g(x̄, u) = 0} and
V 0
i = {vi ∈ Vi | hi(x̄, vi) = 0} for i ∈ J1(x̄).

Now we say that an Extended Mangasarian-Fromovitz constraint qualifica-
tion (EMFCQ) holds at (x̄, p̄) for (NFP) if there exists d ∈ Rn such that for
any i ∈ J1(x̄) and any u0 ∈ U0 and v0

i ∈ V 0
i ,[

∇1f(x̄, u0)− p̄∇1g(x̄, u0)
]T
d < 0 and

∇1hi(x̄, v
0
i )T d < 0.

Now we present a necessary optimality theorem for a solution of (FP). For
the proof of the following theorem, we follow the approaches for Theorem 3.1
in [5].

Theorem 2.1. Let x̄ ∈ F be a robust solution of (FP). Suppose that f(x̄, ·),−g(x̄, ·)
are concave on U and hi(x̄, ·) is concave on Vi, i = 1, · · · ,m. Suppose that
the Extended Mangasarian-Fromovitz constraint qualification (EMFCQ) holds
at (x̄, p̄) for (NFP). Then there exist µ̄i ≥ 0, i = 1, · · · ,m, ū ∈ U, v̄i ∈ Vi, j =
1, · · · ,m such that

∇1f(x̄, ū)− p̄∇1g(x̄, ū) +

m∑
i=1

µ̄i∇1hi(x̄, v̄i) = 0,

f(x̄, ū)− p̄g(x̄, ū) = 0,

µ̄ihi(x̄, v̄i) = 0, i = 1, · · · ,m.

Proof. Suppose that x̄ is a robust solution of (FP). By Proposition 1.1, (x̄, p̄) is

a robust solution of (NFP), where p̄ =
max
u∈U

f(x̄,u)

min
u∈U

g(x̄,u) . By Theorem 3.1 in [5], there

exist λ = 0, µi = 0, i = 1, · · · ,m, ū ∈ U and v̄i ∈ Vi, i = 1, · · · ,m,(
0
1

)
+ λ

(
∇1f(x̄, ū)− p̄∇1g(x̄, ū)

−g(x̄, ū)

)
+

m∑
i=1

µi

(
∇1hi(x̄, v̄i)

0

)
=

(
0
0

)
λ
[
f(x̄, ū)− p̄g(x̄, ū)

]
= 0 and

µihi(x̄, v̄i) = 0, i = 1, · · · ,m.

Hence λ > 0 and so, letting µ̄i = µi

λ , i = 1, · · · ,m, we get the conclusion. �
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Using the equivalent relationship in Proposition 1.1, we formulate a Mond-
Weir type robust dual problem (FD) for (FP).

(FD) Maximize p

subject to ∇1f(x, u)− p∇1g(x, u) +

m∑
i=1

µi∇1hi(x, vi) = 0, (1)

f(x, u)− pg(x, u) = 0,
m∑
i=1

µihi(x, vi) = 0,

u ∈ U, vi ∈ Vi, µi = 0, i = 1, · · · ,m.
Let V = V1 × · · · × Vm.

Theorem 2.2. (Weak Duality) Let x ∈ F be feasible for (FP) and (x̄, ū, v̄, µ̄, p̄) ∈
Rn × U × V × Rm × R be feasible for (FD). Suppose that f(·, ū) − p̄g(·, ū) is
convex at x̄ and hi(·, v̄i), i = 1, · · · ,m are convex at x̄, then

max
u∈U

f(x, u)

min
u∈U

g(x, u)
= p̄.

Proof. Let x ∈ F be feasible for (FP) and (x̄, ū, v̄, µ̄, p̄) ∈ Rn×U ×V ×Rm×R
be feasible for (FD). Now suppose, contrary to the result. Then we have

max
u∈U

f(x, u)

min
u∈U

g(x, u)
< p̄, that is, max

u∈U
f(x, u)− p̄min

u∈U
g(x, u) < 0.

Since f(x̄, ū)− p̄g(x̄, ū) ≥ 0, max
u∈U

f(x̄, u)− p̄min
u∈U

g(x̄, u) = 0, we have

f(x, ū)− p̄g(x, ū) 5 max
u∈U

f(x, u)− p̄min
u∈U

g(x, u)

< max
u∈U

f(x̄, u)− p̄min
u∈U

g(x̄, u)

≤ f(x̄, ū)− p̄min
u∈U

g(x̄, ū).

By the convexity of f(·, ū)− p̄g(·, ū) at x̄,

[∇1f(x̄, ū)− p̄∇1g(x̄, ū)]
T

(x− x̄) < 0. (2)

Since
∑m
j=1 µ̄jhj(x̄, v̄j) =

∑m
j=1 µ̄jhj(x, v̄j), by the convexity hi(·, v̄i) at x̄, m∑

j=1

µ̄i∇1hi(x̄, v̄i)

T (x− x̄) 5 0. (3)

From (2) and (3),∇1f(x̄, ū)− p̄∇1g(x̄, ū) +

m∑
j=1

µ̄j∇1hi(x̄, v̄i)

T (x− x̄) < 0,
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which contradicts (1). �

Theorem 2.3. (Strong Duality) Let x̄ be a robust solution of (FP). Assume
that the Extended Mangasarian-Fromovitz constraint qualification holds at x̄.
Then, there exist (ū, v̄, µ̄) such that (x̄, ū, v̄, µ̄, p̄) is feasible for (FD) and the
objective values of (FP) and (FD) are equal. If f(·, ū)− p̄g(·, ū) is convex at x̄,
hi(·, v̄i), i = 1, · · · ,m are convex at x̄, then (x̄, ū, v̄, µ̄, p̄) is a solution of (FD).

Proof. By Theorem 2.1, there exist µ̄j ≥ 0, j = 1, · · · ,m, v̄j ∈ Vj , j = 1, · · · ,m
such that

∇1f(x̄, ū)− p̄∇1g(x̄, u) +

m∑
i=1

µi∇1hi(x̄, v̄i) = 0,

f(x̄, ū)− p̄g(x̄, ū) = 0,

µ̄ihi(x̄, v̄i) = 0, i = 1, · · · ,m.

Thus (x̄, ū, v̄, µ̄, p̄) is a feasible for (FD). By Theorem 2.2,
max
u∈U

f(x̄,u)

min
u∈U

g(x̄,u) ≥ p̃, for

any feasible solution (x̃, ũ, ṽ, µ̃, p̃) for (FD). Let
max
u∈U

f(x̄,u)

min
u∈U

g(x̄,u) = p̄, p̄ ≥ p̃. Hence

(x̄, ū, v̄, µ̄, p̄) is a solution of (FD). �
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