East Asian Math. J.
Vol. 31 (2015), No. 5, pp. 737-742
YNMS
http://dx.doi.org/10.7858/eamj.2015.054

ON OPTIMALITY AND DUALITY FOR GENERALIZED FRACTIONAL ROBUST OPTIMIZATION PROBLEMS

Moon Hee Kim and Gwi Soo Kim

Abstract

In this paper, we consider a generalized fractional robust optimization problem (FP). Establishing a nonfractional optimization problem (NFP) equivalent to (FP), we establish necessary optimality conditions and duality results.

1. Introduction

In this paper, we consider the following generalized fractional robust optimization problem (FP):

$$
\begin{array}{ll}
\text { Minimize } & \frac{\max _{u \in U} f(x, u)}{\min _{u \in U} g(x, u)} \tag{FP}\\
\text { subject to } & h_{i}\left(x, v_{i}\right) \leq 0, \forall v_{i} \in V_{i}, i=1, \cdots, m,
\end{array}
$$

where u, v_{i} are uncertain parameters and $u \in U, v_{i} \in V_{i}, i=1, \cdots, m$ for some convex compact sets $U \in \mathbb{R}^{p}, V_{i} \subset \mathbb{R}^{q}, i=1, \cdots, m$, respectively and $f: \mathbb{R}^{n} \times \mathbb{R}^{p} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$ and $h_{i}: \mathbb{R}^{n} \times \mathbb{R}^{q} \rightarrow \mathbb{R}, i=1, \cdots, m$ are continuously differentiable functions. Assume that $f(x, u) \geq 0$ and $g(x, u)>0$ for any $u \in U$.

Let $F:=\left\{x \in \mathbb{R}^{n}: h_{i}\left(x, v_{i}\right) \leq 0, \forall v_{i} \in V_{i}, i=1, \cdots, m\right\}$ be the robust feasible set of (FP). Then we say that x^{*} is a robust solution of (FP) if $x^{*} \in F$ and $\frac{\max _{u \in U}^{\min } f(x, u)}{u \in U} \geqq \geqq \frac{\max _{u \in U} \min f\left(x^{*}, u\right)}{\substack{\min \\ u \in U}\left(x^{*}, u\right)}$ for any $x \in F$. We denote $\nabla_{1} g$ the derivative of g with respect to the first variable.

Consider the following nonfractional robust optimization problem:
(NFP)

$$
\begin{array}{cl}
\text { Minimize } & p \\
\text { subject to } & f(x, u)-p g(x, u) \leq 0, \quad \forall u \in U, \\
& h_{i}\left(x, v_{i}\right) \leq 0, \quad \forall v_{i} \in V_{i}, \quad i=1, \cdots, m .
\end{array}
$$

[^0]Following the approaches in [10], we can establish an equivalent relationship between (FP) and (NFP) as follows:

Proposition 1.1. Let $\bar{x} \in F$.
(1) If \bar{x} is a robust solution of (FP), then (\bar{x}, \bar{p}) is a robust solution of (NFP), where $\bar{p}=\frac{\max _{u \in U}^{u \operatorname{un}} \underset{u \in U}{\min } g(\bar{x}, u)}{}$.
(2) If (\bar{x}, \bar{p}) is a robust solution of (NFP) where $\bar{p}=\frac{\max ^{u \in U} f(\bar{x}, u)}{\min g(\bar{x}, u)}$, then \bar{x} is a robust solution of (FP).

Proof. (1) Suppose that (\bar{x}, \bar{p}) is not a robust solution of (NFP). Then there exists ($\widetilde{x}, \widetilde{p}$) such that

$$
\begin{aligned}
& \widetilde{p}<\bar{p} \\
& f(\widetilde{x}, u)-\widetilde{p} g(\widetilde{x}, u) \leqq 0 \quad \forall u \in U \quad \text { and } \\
& h_{i}\left(\widetilde{x}, v_{i}\right) \leqq 0 \quad \forall v_{i} \in V_{i}, i=1, \cdots, m
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& \max _{u \in U} f(\widetilde{x}, u) \\
& \min _{u \in U} g(\widetilde{x}, u) \\
& \\
& h_{i}\left(\widetilde{x}, v_{i}\right) \leqq 0 \quad \forall v_{i} \in V_{i}, \quad i=1, \cdots, m \\
& \max _{u \in U} f(\bar{x}, u)
\end{aligned} \text { and }
$$

So, $\bar{x} \in F$, but \bar{x} is not a robust solution of (FP).
(2) Suppose that \bar{x} is not a robust solution of (FP). Then there exists $\widehat{x} \in F$ such that

$$
\frac{\max _{u \in U} f(\widehat{x}, u)}{\min _{u \in U} g(\widehat{x}, u)}<\frac{\max _{u \in U} f(\bar{x}, u)}{\min _{u \in U} g(\bar{x}, u)}=\bar{p}
$$

Let $\widehat{p}=\frac{\max ^{u \in U} f(\widehat{x}, u)}{\min } \underset{u \in U}{ } g(\widehat{x}, u)$. Then $f(\widehat{x}, u)-\widehat{p} g(\widehat{x}, u) \leqq 0 \quad \forall u \in U$. So, (\bar{x}, \bar{p}) is not a robust solution of (NFP).

Many authors have introduced robust optimization problems and have obtained their optimality theorems and duality theorems ([1] - [9]).

Recently, Kim [7] considered the following fractional robust optimization problem (P):

$$
\text { (P) } \quad \inf _{x \in \mathbb{R}^{n}}\left\{\frac{f(x)}{g(x)}: h_{j}\left(x, v_{j}\right) \leq 0, \forall v_{j} \in V_{j}, i=1, \cdots, m\right\}
$$

where v_{j} are uncertain parameters and $v_{j} \in V_{j}, i=1, \cdots, m$ for some convex compact sets $V_{j} \subset \mathbb{R}^{q}, j=1, \cdots, m$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $h_{j}: \mathbb{R}^{n} \times \mathbb{R}^{q} \rightarrow \mathbb{R}, j=1, \cdots, m$ are continuously differentiable functions.

In this paper, we extend the generalized fractional robust optimization problem (FP) and prove necessary optimality theorems for (FP). Establishing a
nonfractional optimization problem (NFP) equivalent to (FP), we formulate a Mond-Weir type dual problem for (FP) and obtain duality theorems for (FP).

2. Optimality theorems and duality theorems

In this section, we give necessary optimality conditions for the fractional robust optimization problem (FP).

Let $\bar{x} \in F$ and $\bar{p}=\frac{\max _{\substack{u \in U}}^{\min } f(\bar{x}, u)}{u \in U(\bar{x}, u)}$ and let us decompose $J:=\{1, \cdots, m\}$ into two index sets $J=J_{1}(\bar{x}) \cup J_{2}(\bar{x})$ where $J_{1}(\bar{x})=\left\{j \in J \mid \exists v_{i} \in V_{i}\right.$ s.t. $\left.h_{i}\left(\bar{x}, v_{i}\right)=0\right\}$ and $J_{2}(\bar{x})=J \backslash J_{1}(\bar{x})$. Let $U^{0}=\{u \in U \mid f(\bar{x}, u)-\bar{p} g(\bar{x}, u)=0\}$ and $V_{i}^{0}=\left\{v_{i} \in V_{i} \mid h_{i}\left(\bar{x}, v_{i}\right)=0\right\}$ for $i \in J_{1}(\bar{x})$.

Now we say that an Extended Mangasarian-Fromovitz constraint qualification (EMFCQ) holds at (\bar{x}, \bar{p}) for (NFP) if there exists $d \in \mathbb{R}^{n}$ such that for any $i \in J_{1}(\bar{x})$ and any $u^{0} \in U^{0}$ and $v_{i}^{0} \in V_{i}^{0}$,

$$
\begin{aligned}
& {\left[\nabla_{1} f\left(\bar{x}, u^{0}\right)-\bar{p} \nabla_{1} g\left(\bar{x}, u^{0}\right)\right]^{T} d<0 \quad \text { and }} \\
& \nabla_{1} h_{i}\left(\bar{x}, v_{i}^{0}\right)^{T} d<0
\end{aligned}
$$

Now we present a necessary optimality theorem for a solution of (FP). For the proof of the following theorem, we follow the approaches for Theorem 3.1 in [5].

Theorem 2.1. Let $\bar{x} \in F$ be a robust solution of (FP). Suppose that $f(\bar{x}, \cdot),-g(\bar{x}, \cdot)$ are concave on U and $h_{i}(\bar{x}, \cdot)$ is concave on $V_{i}, i=1, \cdots, m$. Suppose that the Extended Mangasarian-Fromovitz constraint qualification (EMFCQ) holds at (\bar{x}, \bar{p}) for (NFP). Then there exist $\bar{\mu}_{i} \geq 0, i=1, \cdots, m, \bar{u} \in U, \bar{v}_{i} \in V_{i}, j=$ $1, \cdots, m$ such that

$$
\begin{aligned}
& \nabla_{1} f(\bar{x}, \bar{u})-\bar{p} \nabla_{1} g(\bar{x}, \bar{u})+\sum_{i=1}^{m} \bar{\mu}_{i} \nabla_{1} h_{i}\left(\bar{x}, \bar{v}_{i}\right)=0, \\
& f(\bar{x}, \bar{u})-\bar{p} g(\bar{x}, \bar{u})=0 \\
& \bar{\mu}_{i} h_{i}\left(\bar{x}, \bar{v}_{i}\right)=0, \quad i=1, \cdots, m
\end{aligned}
$$

Proof. Suppose that \bar{x} is a robust solution of (FP). By Proposition 1.1, (\bar{x}, \bar{p}) is a robust solution of (NFP), where $\bar{p}=\frac{\max _{u \in U} f(\bar{x}, u)}{\substack{\operatorname{in} \\ u \in U}}(\bar{x}, u)$. By Theorem 3.1 in [5], there exist $\lambda \geqq 0, \mu_{i} \geqq 0, i=1, \cdots, m, \bar{u} \in U$ and $\bar{v}_{i} \in V_{i}, i=1, \cdots, m$,

$$
\begin{aligned}
& \binom{0}{1}+\lambda\binom{\nabla_{1} f(\bar{x}, \bar{u})-\bar{p} \nabla_{1} g(\bar{x}, \bar{u})}{-g(\bar{x}, \bar{u})}+\sum_{i=1}^{m} \mu_{i}\binom{\nabla_{1} h_{i}\left(\bar{x}, \bar{v}_{i}\right)}{0}=\binom{0}{0} \\
& \lambda[f(\bar{x}, \bar{u})-\bar{p} g(\bar{x}, \bar{u})]=0 \text { and } \\
& \mu_{i} h_{i}\left(\bar{x}, \bar{v}_{i}\right)=0, i=1, \cdots, m .
\end{aligned}
$$

Hence $\lambda>0$ and so, letting $\bar{\mu}_{i}=\frac{\mu_{i}}{\lambda}, i=1, \cdots, m$, we get the conclusion.

Using the equivalent relationship in Proposition 1.1, we formulate a MondWeir type robust dual problem (FD) for (FP).
(FD) Maximize p

$$
\begin{array}{ll}
\text { subject to } & \nabla_{1} f(x, u)-p \nabla_{1} g(x, u)+\sum_{i=1}^{m} \mu_{i} \nabla_{1} h_{i}\left(x, v_{i}\right)=0, \\
& f(x, u)-p g(x, u) \geqq 0 \\
& \sum_{i=1}^{m} \mu_{i} h_{i}\left(x, v_{i}\right) \geqq 0 \\
& u \in U, v_{i} \in V_{i}, \mu_{i} \geqq 0, i=1, \cdots, m
\end{array}
$$

Let $V=V_{1} \times \cdots \times V_{m}$.
Theorem 2.2. (Weak Duality) Let $x \in F$ be feasible for (FP) and $(\bar{x}, \bar{u}, \bar{v}, \bar{\mu}, \bar{p}) \in$ $\mathbb{R}^{n} \times U \times V \times \mathbb{R}^{m} \times \mathbb{R}$ be feasible for (FD). Suppose that $f(\cdot, \bar{u})-\bar{p} g(\cdot, \bar{u})$ is convex at \bar{x} and $h_{i}\left(\cdot, \bar{v}_{i}\right), i=1, \cdots, m$ are convex at \bar{x}, then

$$
\frac{\max _{u \in U} f(x, u)}{\min _{u \in U} g(x, u)} \geqq \bar{p}
$$

Proof. Let $x \in F$ be feasible for (FP) and $(\bar{x}, \bar{u}, \bar{v}, \bar{\mu}, \bar{p}) \in \mathbb{R}^{n} \times U \times V \times \mathbb{R}^{m} \times \mathbb{R}$ be feasible for (FD). Now suppose, contrary to the result. Then we have

$$
\frac{\max _{u \in U} f(x, u)}{\min _{u \in U} g(x, u)}<\bar{p}, \text { that is, } \max _{u \in U} f(x, u)-\bar{p} \min _{u \in U} g(x, u)<0 .
$$

Since $f(\bar{x}, \bar{u})-\bar{p} g(\bar{x}, \bar{u}) \geq 0, \max _{u \in U} f(\bar{x}, u)-\bar{p} \min _{u \in U} g(\bar{x}, u)=0$, we have

$$
\begin{aligned}
f(x, \bar{u})-\bar{p} g(x, \bar{u}) & \leqq \max _{u \in U} f(x, u)-\bar{p} \min _{u \in U} g(x, u) \\
& <\max _{u \in U} f(\bar{x}, u)-\bar{p} \min _{u \in U} g(\bar{x}, u) \\
& \leq f(\bar{x}, \bar{u})-\bar{p} \min _{u \in U} g(\bar{x}, \bar{u}) .
\end{aligned}
$$

By the convexity of $f(\cdot, \bar{u})-\bar{p} g(\cdot, \bar{u})$ at \bar{x},

$$
\begin{equation*}
\left[\nabla_{1} f(\bar{x}, \bar{u})-\bar{p} \nabla_{1} g(\bar{x}, \bar{u})\right]^{T}(x-\bar{x})<0 \tag{2}
\end{equation*}
$$

Since $\sum_{j=1}^{m} \bar{\mu}_{j} h_{j}\left(\bar{x}, \bar{v}_{j}\right) \geqq \sum_{j=1}^{m} \bar{\mu}_{j} h_{j}\left(x, \bar{v}_{j}\right)$, by the convexity $h_{i}\left(\cdot, \bar{v}_{i}\right)$ at \bar{x},

$$
\begin{equation*}
\left[\sum_{j=1}^{m} \bar{\mu}_{i} \nabla_{1} h_{i}\left(\bar{x}, \bar{v}_{i}\right)\right]^{T}(x-\bar{x}) \leqq 0 \tag{3}
\end{equation*}
$$

From (2) and (3),

$$
\left[\nabla_{1} f(\bar{x}, \bar{u})-\bar{p} \nabla_{1} g(\bar{x}, \bar{u})+\sum_{j=1}^{m} \bar{\mu}_{j} \nabla_{1} h_{i}\left(\bar{x}, \bar{v}_{i}\right)\right]^{T} \quad(x-\bar{x})<0,
$$

which contradicts (1).

Theorem 2.3. (Strong Duality) Let \bar{x} be a robust solution of (FP). Assume that the Extended Mangasarian-Fromovitz constraint qualification holds at \bar{x}. Then, there exist $(\bar{u}, \bar{v}, \bar{\mu})$ such that $(\bar{x}, \bar{u}, \bar{v}, \bar{\mu}, \bar{p})$ is feasible for (FD) and the objective values of (FP) and (FD) are equal. If $f(\cdot, \bar{u})-\bar{p} g(\cdot, \bar{u})$ is convex at \bar{x}, $h_{i}\left(\cdot, \bar{v}_{i}\right), i=1, \cdots, m$ are convex at \bar{x}, then $(\bar{x}, \bar{u}, \bar{v}, \bar{\mu}, \bar{p})$ is a solution of (FD).

Proof. By Theorem 2.1, there exist $\bar{\mu}_{j} \geq 0, j=1, \cdots, m, \bar{v}_{j} \in V_{j}, j=1, \cdots, m$ such that

$$
\begin{aligned}
& \nabla_{1} f(\bar{x}, \bar{u})-\bar{p} \nabla_{1} g(\bar{x}, u)+\sum_{i=1}^{m} \mu_{i} \nabla_{1} h_{i}\left(\bar{x}, \bar{v}_{i}\right)=0 \\
& f(\bar{x}, \bar{u})-\bar{p} g(\bar{x}, \bar{u})=0 \\
& \bar{\mu}_{i} h_{i}\left(\bar{x}, \bar{v}_{i}\right)=0, i=1, \cdots, m
\end{aligned}
$$

 any feasible solution $(\widetilde{x}, \widetilde{u}, \widetilde{v}, \widetilde{\mu}, \widetilde{p})$ for (FD). Let $\frac{\max _{\substack{u \in V \\ \min \\ u \in U}} f(\bar{x}, u)}{\bar{x}, u)}=\bar{p}, \bar{p} \geq \widetilde{p}$. Hence $(\bar{x}, \bar{u}, \bar{v}, \bar{\mu}, \bar{p})$ is a solution of (FD).

References

[1] D. Bertsimas, D. Brown, Constructing uncertainty sets for robust linear optimization, Opera. Res. 57(2009), 1483-1495.
[2] A. Ben-Tal, A. Nemirovski, Robust-optimization-methodology and applications, Math. Program., Ser B 92(2002), 453-480.
[3] A. Ben-Tal, A. Nemirovski, A selected topics in robust convex optimization, Math. Program., Ser B 112(2008), 125-158.
[4] D. Bertsimas, D. Pachamanova, M. Sim, Robust linear optimization under general norms, Oper. Res. Lett. 32 (2004), 510-516.
[5] V. Jeyakumar, G. Li, G. M. Lee, Robust duality for generalized convex programming problems under data uncertainty, Nonlinear Anal. 75(2012), 1362-1373.
[6] M. H. Kim, Robust duality for generalized invex programming problems, Commun. Korean Math. Soc. 28(2013), 419-423.
[7] M. H. Kim and Gwi Soo Kim, Optimality Conditions and Duality in Fractional Robust Optimization Problems, East Asian Math. J. 31(2015), 345-349.
[8] D. Kuroiwa and G. M. Lee, On robust multiobjective optimization, Vietnam J. Math. 40(2012), 305-317.
[9] G. M. Lee and M. H. Kim, On duality theorems for robust optimization problems, J. Chungcheong Math. Soc. 26(2013), 723-734.
[10] G. M. Lee and D. S. Kim, Duality theorems for fractional multiobjective minimization problems, Proceedings of the 1st Workshop in Applied Mathematics 1 (1993), 245-256.

Moon Hee Kim
Department of Refrigeration Engineering, Tongmyong University, Busan 608711, Korea

E-mail address: mooni@tu.ac.kr
Gwi Soo Kim
Department of Applied Mathematics, Pukyung National University, Pusan 608737, Korea.

E-mail address: gwisoo1103@hanmail.net

[^0]: Received April 27, 2015; Accepted September 25, 2015.
 2010 Mathematics Subject Classification. 90C29, 90C46.
 Key words and phrases. robust optimization problems, Mond-Weir type dual problem, duality theorems.

