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WITH GENERALIZED INVEXITY'
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ABSTRACT. Sufficient optimality conditions for a class of generalized non-

differentiable fractional optimization programming problems are established.
Moreover, we prove the weak and strong duality theorems under (V,p)-

invexity assumption.
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1. Introduction

In this paper, we consider the following generalized nondifferentiable frac-
tional optimization problem (GFP):

o filz) +s(z|Cy) .
(GFP) Minimize max {gz(m)—s(aﬂDz) li=1,-- 7p}

subject to hj(z) <0, j=1,---,m,
where f = (f1,---,fp) : R* > RP, g := (g1,--- ,9p) : R” — R? and h :=
(h1, -+, hm) : R™ — R™ are continuously differentiable. We assume that g;(x)—
s(z|D;) >0, i=1,---,p. Foreachi=1,---,p, C; and D; are compact convex
set of R™ and we define a support function with respect to C; as follows:
s(z|C;) = max{(z,y;) | yi € Ci}.
Further let, J(z) = {j : h;j(x) = 0}, for any = € R™ and let
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Then, k; is a convex function and we can prove that
Ok;(x) = {w; € C; | (wy,x) = s(x|C;)},
where 0k; is the subdifferential of ;.

Many authors have introduced various concepts of generalized convexity and
have obtained optimality and duality results for a fractional programming prob-
lem ([2]-[9], [11]).

Recently, Kim and Kim [4] consider the following generalized nondifferentiable
fractional optimization problem.

(FP) Minimize max {JWW |i=1,--- ,p}
9i()
subject to hi(z) <0, j=1,---,m,

where f = (f1,---,fp) : R* > RP, g := (g1,--- ,9p) : R” — RP and h :=

(h1,+ yhm) @ R® — R™ are continuously differentiable. We assume that
gi(z) > 0, i = 1,---,p. For each i = 1,---,p, C; are compact convex set
of R™.

In this paper, we apply the approach of Kim and Kim [4] to the general-
ized nondifferentiable fractional optimization problem (GFP), we establish the
necessary and sufficient optimality conditions for a class of generalized nondiffer-
entiable fractional optimization problem (GFP). Moreover, we prove the weak
and strong duality theorems under (V, p)-invexity assumptions.

We introduce the following definition due to Kuk et al. [5].

Definition 1. A vector function f : R™ — RP is said to be (V, p)-invex at
u € R™ with respect to the functions n and 6; : R™ x R” — R" if there exists
a; : R" xR" - Ry \ {0} and p; € R,i=1,---,p such that for any x € R™ and
foralli=1,---,p,

ai(w,u)[fi(z) = fi(w)] = V fi(wn(z,u) + pil|0: (2, u)|*.

Definition 2. A vector function f : R” — RP is said to be n-invex at u € R"
such that for any x € R™ and for alli=1,--- ,p,

fi(x) = fi(w) = V fi(u)n(z, u).
We give the following theorem due to Kim et al. [2].

Theorem 1. Assume that f and g are vector-valued differentiable functions
defined on Xy and f(z) + (w,z) > 0, g(z) — (w,z) > 0 for all x € X,. If
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f() + (w,-) and —g(-) + (w, ) are (V, p)-invex at xg € Xp, then f(()jiéi"; is

(V, p)-invex at xg, where

that is, for all 7,

Ck'(l’ T )[fl(x) + <U}“£C> o fl(zo
. 9i(x) — (Wi, ) gizo
gi(z0) — (Wi, x0) filzo) +
@ — (@) 1 oz

>

1
+oill (e
il <9i($0) - <wi,$o>)
Proof. Let ki(z) = s(#|C;) and k;(z) = s(z|D;), i = 1,...,p. Choose
w; € Oki(xo) and w; € Oki(zo). Let x,z9g € Xo. By the (V, p)-invexity of
f() + <U}, > and —g + <il77 '>a

a;(x, ) [

= ai(xva)

{fz($)+< x) — fi(zo) — (wi, zo)
0:@) — (@, 2)
(s we. ey Ji(®) = (Wi, ) = gi(2o) + (Wi, zo)
(tan) + i) = e
o (Vi) w (e 0) + o)
fi(zo) + (wi, zo) {(
(0:(@) — (@5,2)) (gi(wo) — (@ 70))

>

+ —Vgi(wo) + wi)ni(z, z0) + pill0s(x, z0)||?|-

Since g(z) — (w,z) > 0 for all x € Xy, we see that

0. 20) fi(@) + (wi,x) _ filwo) + <wi,x0>}
o 1() <w>$> gz(fo) <117¢,x0>
gi(xo) — (Wi, x0) [ Vfi(zo) +w; (oo . 1 1 e
2 ) o)~ o5 Gy = y) i o
(

fi(zo) + (wi, z0)

_ OB CE fi(xo) + (wi, zo) >§9i($’ l‘o)HQ}.

(9i(z0) — (Wi, z0))?

Vgi(o) ~ )i (w, wo)+pill
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Thus, we have

ooz (L 8) _ S+ (v

gi(z) — (w;, T) - gi(zo) — (Wi, wo)
> gi(fﬂo) - <@i,$o>

gi(z) — (w;, )

[(Vfi(xo) + wi)(gi(x0) — (Wi, 20)) — (fi(zo) + (Wi, w0))(Vgi(x0)

)

(9i(zo) — <@i,$0>)2
1

+le( (w0) — (Wi, zo) (gi(wo) —

TR
=S (G o)1

(. i ) filzo) + (wi, o)
(& 0)[91'() (wi, ) gz(wo)—@uxod
9i(0) — (Wi, o) [ ( filwo) + (wi, o) _
25— a) L Cartao) G ron) 2024 (G
Therefore, the function < (j))jégz; is (V, p)-invex, where
mi(z,xg) = S = Bom)
al( ) O) gi(xO)_<ai7xO> 1( ) 0)7

1

(gi(xo) — {(w;, x0>>

1
2

éi(l‘,xo) = Hi(a:,xo).

2. Optimality Conditions

)Eﬁi($7$o)||2 + mll( it +<<£z-,;o>>)

N|=

ni(x’ 'rO)

) ol

ei(x,xo)H?].

Now, we establish the Kuhn-Tucker necessary and sufficient conditions for a

solution of (GFP).

Theorem 2. (Kuhn-Tucker Necessary Optimality Theorem) If z( is a
solution of (GFP), and assume that 0 & co{Vh;(zo) | j € J(x0)}, then there exist
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. . i (z s(xo|Ci
Ai >0, i€ I(xg) = {i| max{% li=1,- 7p}}, Dicl(zo) N =

1, wj >0, j=1,--- ,mand w; € C;, w; € D;, i € I(xg) such that

S Av(ﬂéwzzxo) Zujwl (o) = 0,

i€l(xo)

(wi, wo) = s(x0|Cy), (Wi, z0) = 8($0|Dz’)7
Z“J’hﬂ (z0) =

j=1

Proof. Let ¢;(z) = % i=1,---,p. Let zp be a solution of (GFP)
and let I(xo) = {i | max{p;(zo) | i=1,---,p}}. Then by Proposition 2.3.12 in

[1] and Corollary 5.1.8 in [10], there exists u; >0, j=1,--- ,m,

0 € co{@pi(xo) | i € I(mo)} + > _ 11;0°h;(x0)
j=1
and p;h;i(zo) = 0.

Thus there exists A; > 0, i € I(xg), >, ) Ai = 1 such that

i€l(xo

0e Y Ndi(zo) + Y p1;Vhj(xo) (2.1)
iEI(wo) Jj=1
and p;hi(zo) = 0.
By Proposition 2.3.14 in [1],
1

O ila) = (o oy ((0) = (20l Do) (Vi) + 95| )
~(filwo) + s(0|C:))(Vgs(wo) = Ds(wol D)) ).
Since
1 .
Opilan) = { e () — (@) (Vi) + )

)
—(fi(wo) + (wi, 20))(Vgi(xo) — @))I w; € Cj, (wi, wo) = s(w0|Cy),

»’50) - <’wi,9€o>

)
= {V(W)Iwi € Ci, w; € Dy, (wi,x0) = s(20|C),
> = S($0|D1)7Z S I({,Eo)}
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and hence from (2.1), there exist A; > 0, @ € I(20), Xjerg X = 1, Ky =
0, 7=1,--- ,m and w; € Cy, i € I(xg) such that

S V(J%) +Z,uJVh (20) = 0,

i€l(xo)

(wi, o) = s(20|Ci), (Wi, wo) = 8($0|Di)7
> nihi(ao) =

J=1

Theorem 3. (Kuhn-Tucker Sufficient Optimality Theorem) Let z be
a feasible solution of (GFP). Suppose that there exist A\; > 0, i € I(xg),
Zie[(zo)/\i =1, iy >0, 75=1---m and w; € Cj, w; € D;, i€ I(xo)
such that

DOEPY V(%) +Zujwl (z0) = 0, (2.2)
1€1(xo) v
(wi, xo) = s(x0|Cy), (Wi, x0) = S($0|Di),
Zﬂjhj(xo =
j=1

If f(*)+(w,-) and —g(-)+ (w, -) are (V, p)-invex at xq, and h is n-invex at xo with
respect to the same 7, and ZZGI(IO) Xipill0i(z,20)||2 > 0, then z( is a solution
of (GFP).

Proof. Suppose that xq is not a solution of (GFP). Then there exist a feasible
solution = of (GFP) such that

may @) @G filwo) + s(w0lCi)
1<i<p gi(z) — s(z|D;) ~ 1<i<p gi(wo) — s(zo|Ds)

Then

filx) +5(x[Cs) _ filwo) + s(x0|Ci) _
gi(x) — s(z|D;) < (o) — s(zo|Ds)’ for all 7 € I(xo).
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Since (w;, xo) = s(xo|C;), w; € C;, and (wW;, xo) = s(xo|D;), w; € D;, we have
for all i € I(xo),

fi(z) + (wi, ) fi(z ;

gi(z) — (w;, z)

IA

and hence a;(z,z¢) > 0,

filx) + (wi,x)  fi(zo) + <wi,$o>} <0
gi(x) — (wi, ) gi(wo) — (Wi, o) '

By the (V, p)-invexity of f(-) + (w,-) and —g(-) + (@, ) at g, and by Theorem
1, we have

ai(z, o) {

V(fi(xo) + (wy, 0)

9i(wo) — (Wi, o )n(x,xo) + pillfi(z, 20)|* < 0.

Hence, we have

Z /\iV(W>n($,xo)+ Z Aipill0(z, o) ||* < 0.

iy 9il@0) = (@0 o)
Since 3 ;e 1z Xipill6i (z, 20)[|* > 0,

Z )\Z-V<W)n(x,xo) <0

0
i€l(xo) O) N <wi,x0>

and so, it follows from (2.2) that
> 1 Vhy(zo)n(x, ) > 0.
j=1
Then, by the n-invexity of h, we have
> wshi(@) =Y pihy(xo) > 0.
j=1 j=1

Since 337" pjhj(wo) = 0, we have Y27, pjhj(x) > 0, which is a contradiction
since p1; >0, j=1,--- ,m and z is a feasible solution of (GFP). Consequently,
xo is a solution of (GFP). O

3. Duality Theorems
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Now, we propose the following Mond-Weir type dual problem (DGFP):

(DGFP)
Ximize max fi(u) + 5(ulCi) i=1.--
M Ve pg =1 )
subject to 2(:) )\zV(;CZEZ; i 2;:5;) + Zuthj (u) =0, (3.1)
i€l (u j=1

> nihi(u) =0,
j=1

Xi>0,i€T(w), Y N=1,p;>0 j=1,-,m
i€l(u)

Now we show that the following weak duality theorem holds between (GFP)
and (DGFP).

Theorem 4. (Weak Duality) Let x be a feasible for (GFP) and let (u, A, p, w)

be feasible for (DGFP). Assume that f(-) + (w,-) and —g(:) + (w,-) are (V, p)-

invex at u, and let h is 7-invex at u with respect to the same 1, and } -, ;) Aipi 116 (z,u)|? >
0. Then the following holds:

max M i=1,--- max M i=1....
{gi(@—s(wIDi)' b ,p}z {gi(u)—s(u|Di)| b ’p}'

Proof. Let a be any feasible for (GFP) and let (u, A, 1, w) be any feasible for
(DGFP). Then we have

3 Aiv(W)n(m) > 0. (3.2)

Now suppose that

maX{MIi:1,~-,p}<max{M|¢:1,...,p}.
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Then
fi(z) +s(z|Ci)  filw) + s(u|C;)

(
gi(x) = s(x|Di) ~ gi(u) — s(ul D)’
Since (w;, u) = s(u|C;) and (w;,u) = s(u|D;), we have for all i € I(u),
fi(x) + (wi,x) _ fi(u) + (wi, u)
0:(@) — (@1, 2) ~ gilw) — (@p)’
By the (V, p)-invexity of f(-) + (w,-) and —g(-) + (@, ) at g, and by Theorem
1, we have,

for all i € I(u).

a;(z,u i(x) + (wi,x)  fi(u) + (wi, u)
0 > a )[ () — (@, ) gz(u) — (w;, u>}
V(L e 4 e 0

By using A\; >0, i € I(u), we have

3 AiV<W) + 3 Npillfilz,w))? <

i€l (u) i€l (u)

Since 37, ¢ iy Aipillfi(z, w)||* > 0, we have

Z )\V(fz (Wi, u >>n(x,u)<0,

i€l(u) <w“ U>
which contradicts (3.2). Hence the result holds. O

Now we give a strong duality theorem which holds between (GFP) and (DGFP).

Theorem 5. (Strong Duality) If Z be a solution of (GFP) and suppose that

0 & co{Vh;(Z) | j € J(z)}. Then there exist A € R?, i € R™ and w € C such
that (z, \, i, @ @) is feasible for (DGFP). Moreover if the weak duality holds,
then (7, \, fi, w, w) is a solution of (DGFP).

Proof. By Theorem 2, there exist A € R?, i € R™ and w; € C;, w € D;, i €
I(z), such that

]
&
<

e
@
_|_
1=
Bl

N—
_|_

NE
:;\
<
=
g

I
=
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Thus (Z, A, i, @, w) is a feasible for (DGFP). On the other hand, by weak duality
(Theorem 4),

{gi(x)_s(ﬂ?Di)| b ,p}z {gi(u)_S(UDi)| b ’p}

for any (DGFP) feasible solution (u, A, i, w, w). Hence (Z, A, i, w, w) is a solution
of (DGFP). O
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