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NONLINEAR FRACTIONAL PROGRAMMING PROBLEM

WITH INEXACT PARAMETER

A. K. BHURJEE AND G. PANDA∗

Abstract. In this paper a methodology is developed to solve a nonlinear

fractional programming problem, whose objective function and constraints
are interval valued functions. Interval valued convex fractional program-
ming problem is studied. This model is transformed to a general convex
programming problem and relation between the original problem and the

transformed problem is established. These theoretical developments are
illustrated through a numerical example.
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1. Introduction

In most of the real-life optimization models, the parameters in the objective
function and the constraints are not exactly known due to the presence of im-
proper information in the data set. If these parameters vary in closed intervals
then the corresponding optimization model is an interval optimization model.
Nonlinear interval optimization problems are studied by many researchers in
several directions during last few decades (see [1, 2, 5, 6, 8, 9, 10, 11, 14, 15]).
Most of these models are quadratic programming problems with interval pa-
rameters. These methodologies usually convert the model to a pair of two level
mathematical programming problems yielding two individual optimal solutions,
corresponding to the optimal value range. An interval optimization problem,
where the objective function appears as a ratio of two interval valued functions,
is an interval fractional programming problem (IFP ). Such type of situation
appears when the decision maker needs to decide the expenditure cost per unit
time, the ratio of profit and expenditure cost, the ratio of the amount of the
components in a mixture etc., subject to the condition that, these costs vary
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and other parameters within some lower and upper bounds. Here we explain
two real life situations where the objective function is the ratio of two interval
valued functions.

Example 1 (Linear (IFP )). Suppose, a homogeneous product is to be trans-
ported from m number of sources to n number of destinations. The ith source
can provide ai units of a certain product and the jth destination has a demand
for bj units of same product. From the historical data, it is observed that due
to traffic jam, climate change, shortage of vehicles etc., the transportation cost
and deterioration cost for the transportation of one unit of the product from ith

source to jth destination varies in the bounds cLij, c
R
ij and dLij, d

R
ij respectively.

The objective is to minimize the ratio of transportation cost to deterioration cost.
If xij is the number of units transported from source i to destination j, then the
mathematical model of the conventional transportation problem becomes

min

∑m
i=1

∑n
j=1[c

L
ij , c

R
ij ]xij∑m

i=1

∑n
j=1[d

L
ij , d

R
ij ]xij

subject to
n∑

j=1

xij ≤ ai, i = 1, 2, . . . ,m,

m∑
i=1

xij = bj , j = 1, 2, . . . , n,

xij ≥ 0, ∀ i, j.

Example 2 (Nonlinear (IFP )). Consider a portfolio management problem which
has n number of risky assets and one risk-less asset. The Sharpe ratio of n num-
ber of risky assets portfolio is the excess return per unit deviation. Due to the
uncertainty in the market, the returns of the assets cannot be predicted exactly.
From the historical data, one can estimate the upper and lower bound of the
parameters of the return in a fixed time period. Hence the Sharpe ratio can be
described in terms of interval parameters for a fixed time period. Let xj be the
proportion of the total funds invested on jth asset and the expected return of jth

asset lies between rLj and rRj . The expected return of risk-less asset lies between

rLf and rRf . Since the standard deviation and the expected return of all risky
assets are lying in intervals, so the correlation between any two of them will also
lie in an interval. The interval matrix, QM = (Qij)n×n be a n × n symmetric
covariance interval matrix, where Qij = [qLij , q

R
ij ]. In this circumstance, the ex-

pected return and the variance of the resulting portfolio x = (x1, x2, . . . , xn)
T are∑n

i=1[r
L
i , r

R
i ]xi and

∑
i,j [q

L
ij , q

R
ij ]xixj, respectively. Since the variance is always

non-negative, so we assume that
∑

i,j [q
L
ij , q

R
ij ]xixj > 0.

In order to maximize the Sharpe ratio of the portfolio (x1, x2, . . . , xn)
T , it is
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necessary to solve the interval fractional programming problem

max

∑n
i=1[r

L
i , r

R
i ]xi ⊖ [rLf , r

R
f ]

(
∑

i,j [q
L
ij , q

R
ij ]xixj)

1
2

subject to

n∑
i=1

xi = 1, xi ≥ 0.

Hladik [4] considered a generalized linear fractional programming problem
with interval data and studied sensitivity analysis of the model. However non-
linear interval fractional programming problem has not been addressed so far. In
this paper we concentrate on nonlinear interval fractional programming problem
and studied the existence of it’s solution. The basic difference between Hladik’s
approach and our approach is that, Hladik’s methodology computes the range
of optimal values when all the parameters vary in intervals and conversely for
given bounds of the optimal values, tolerance intervals for the coefficients are
calculated, whereas our proposed methodology provides efficient solution of in-
terval fractional programming problem.
In this paper, we propose a methodology to derive the solution of a nonlinear in-
terval fractional programming problem and justified the existence of an efficient
solution in place of two individual solutions corresponding to the optimal range.
The proposed model includes both linear and nonlinear interval valued functions.
Since any interval valued function is a set valued mapping, so interval fractional
programming problem is treated as a multi-objective programming problem and
converted to a general optimization problem which is free from uncertainty. Sec-
tion 2 provides some notations and preliminaries on interval analysis. In Section
3 existence of solution of (IFP ) is established. Further the original problem
is transformed to a convex programming problem and relationship between the
solution of the original problem and the transformed problem is studied. The
methodology is verified through a numerical example.

2. Interval Analysis in Parametric Form

Throughout the paper, the following notations are used. Bold capital letters
denote closed intervals.
I(R)= The set of all closed intervals in R.
(I(R))k= The product space I(R)× I(R)× . . .× I(R)︸ ︷︷ ︸

k times

.

Ck
v= k dimensional column whose elements are intervals. Ck

v ∈ (I(R))k, Ck
v =

(C1,C2, . . . ,Ck)
T , Cj = [cLj , c

R
j ], j = 1, 2, . . . , k.

2.1. Algebraic operations and order relation in I(R) in parametric
form. Let ∗ ∈ {+,−, ·, /} be a binary operation on the set of real numbers.
The binary operation ~ between two intervals A = [aL, aR] and B = [bL, bR]
in I(R), denoted by A ~ B is the set {a ∗ b : a ∈ A, b ∈ B}. In the case of
division, A ⊘ B, it is assumed that 0 /∈ B. These interval operations can also
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be expressed in terms of parameters. Mahapatra and Mandal [12] defined the

parametric form for positive interval [aL, aR] as (aL)
t
(aR)

1−t
, where t ∈ [0, 1].

However, this parametric form holds for the interval A with aL > 0. To avoid
this restriction, we consider a liner expression of [aL, aR]. Any point in A may
be expressed as a(t) = aL + t(aR − aL), t ∈ [0, 1]. An interval A is said to be a
positive interval if a(t) is positive for every t ∈ [0, 1].
The algebraic operations of intervals in the classical form are defined in terms
of either lower and upper bound or, mean and spread of the intervals. The
algebraic operations of intervals and other properties can also be explained in
parametric form as follows.

A~B = {a(t1) ∗ b(t2)| t1, t2 ∈ [0, 1]}. (1)

An interval vector Ck
v ∈ (I(R))k, Ck

v = (C1,C2, . . . ,Ck)
T , can be expressed in

terms of parameters as

Ck
v =

{
c(t)| c(t) = (c1(t1), c2(t2), . . . , ck(tk))

T , cj(tj) ∈ Cj , cj(0) = cLj ,

cj(1) = cRj , t = (t1, t2, . . . , tk)
T , 0 ≤ tj ≤ 1, j = 1, 2, . . . , k

}
(2)

The product of a real number k and an interval A is

kA = Ak = {a(t)k| a(t) ∈ A}.
The product of a real vector d ∈ Rk and an interval vector Ck

v ∈ (I(R))k is

denoted by Ck
v ⋄ d and is equals to

∑k
j=1 Cjdj .

The following properties hold in I(R), whose proofs are easy and follow from
the definition of algebraic operations of intervals in terms of parameters as in
Expression (1).

Lemma 2.1. (a) For α, β ∈ R and A ∈ I(R), (α+ β)A = αA⊕ βA.
(b) For a, b ∈ Rn and An

v ∈ (I(R))n, An
v ⋄ (a+ b) = (An

v ⋄ a)⊕ (An
v ⋄ b).

The set of intervals I(R), is not a totally order set. Several partial orderings in
I(R) exist in literature. Moore [13] defined two type of order relations between
A, B ∈ I(R), one of which is explained as the extension of “ < ” on real line
(“A < B iff aR < bL”) and another is the extension of set inclusion (“A ⊆ B
iff aL ≥ bL and aR ≤ bR”). These order relations can not explain the ranking
between two partially overlapping intervals. So Ishibuchi and Tanaka [7] defined
partial order relations ≼LR, ≼LC , ≼RC to rank between the partially overlapping
intervals. Bhurjee and Panda [1] redefined the following specific partial ordering
in terms of parameters, which reduces to all the above partial order relations in
particular cases.

Definition 2.2 ([1]). For A,B ∈ I(R),

(i) A ≼ B if a(t) ≤ b(t) ∀ t ∈ [0, 1].

(ii) A ̸= B if a(t) ≠ b(t) for at least one t ∈ [0, 1].
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2.2. Interval valued function. Interval valued function is defined in several
ways by many authors. (See [3, 13, 15]) Some of these are functions of one
or more interval arguments onto intervals and others are interval extension of
real valued functions. The interval valued function in the parametric form,
introduced by [1] is as follows.
For c(t) ∈ Ck

v , let fc(t) : R
n → R. Then for a given interval vector Ck

v , we define
an interval valued function FCk

v
: Rn → I(R) by

FCk
v
(x) =

{
fc(t)(x)

∣∣∣ fc(t) : Rn → R, c(t) ∈ Ck
v

}
.

For every fixed x, if fc(t)(x) is continuous in t then mint∈[0,1]k fc(t)(x) and
maxt∈[0,1]k fc(t)(x), exist. In that case

FCk
v
(x) =

[
min

t∈[0,1]k
fc(t)(x), max

t∈[0,1]k
fc(t)(x)

]
.

If fc(t)(x) is linear in t then mint∈[0,1]k fc(t)(x) and maxt∈[0,1]k fc(t)(x) exist in the

set of vertices of Ck
v . If fc(t)(x) is monotonically increasing in t then FCk

v
(x) =

[fc(0)(x), fc(1)(x)].

2.3. Interval valued convex function. Property of interval valued convex
function plays an important role for the existence of the solution of interval
optimization problem.

Definition 2.3 ([1]). An interval valued function FCk
v
: Rn → I(R) is said

to be convex function with respect to ≼ on a convex set D ⊆ Rn if for every
x1, x2 ∈ D and 0 ≤ λ ≤ 1,

FCk
v
(λx1 + (1− λ)x2) ≼ λFCk

v
(x1)⊕ (1− λ)FCk

v
(x2).

Remark 2.1. From Definition (2.3), one may observe that FCk
v
is convex with

respect to ≼ means

fc(t)(λx1 + (1− λ)x2) ≤ λfc(t)(x1) + (1− λ)fc(t)(x2), (3)

for all t ∈ [0, 1]k; the value of t is same on both sides of this inequality. So one
can conclude that FCk

v
is convex with respect to ≼ if and only if fc(t)(x) is a

convex function on D for every t.

3. Interval Fractional Programming Problem

We consider a general interval fractional programming problem (IFP ) as

(IFP ) : min
FCk

v
(x)

GDl
v
(x)

subject to Hj

B
mj
v

(x) ≼ Aj , j ∈ J,

where the interval valued functionsFCk
v
, GDl

v
, Hj

B
mj
v

: Rn → I(R) are the sets,

FCk
v
(x) =

{
fc(t)(x)| c(t) ∈ Ck

v

}
, GDl

v
(x) =

{
gd(t′)(x) > 0| d(t′) ∈ Dl

v

}
,
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Hj

B
mj
v

(x) =
{
hj

bj(t
′′
j )
(x)| bj(t′′j ) ∈ B

mj
v

}
, Aj ∈ I(R), Aj = [aL

j , a
R
j ] and J = {1, 2, . . . , p}.

Throughout this section, we consider t ∈ [0, 1]k, t′ ∈ [0, 1]l, t′′j ∈ [0, 1], j ∈ J.

Following the partial ordering in Definition (2.3), the feasible region of (IFP )
can be expressed as the set,

S = {x ∈ Rn : Hj

B
mj
v

(x) ≼ Aj , j ∈ J}

= {x ∈ Rn : hj
bj(t′′j )

(x) ≤ aj(t
′′
j ), aj(t

′′
j ) ∈ Aj , j ∈ J} (4)

The objective function of (IFP ), which is a ratio of two interval valued functions,
can be expressed in the form of a set of real valued functions as follows.

FCk
v
(x)

GDl
v
(x)

=
{ fc(t)(x)

gd(t′)(x)

∣∣∣ c(t) ∈ Ck
v , d(t

′) ∈ Dl
v, gd(t′)(x) > 0

}
(5)

So

min
x∈S

FCk
v
(x)

GDl
v
(x)

= min
x∈S

{ fc(t)(x)

gd(t′)(x)

∣∣∣ gd(t′)(x) > 0, c(t) ∈ Ck
v , d(t

′) ∈ Dl
v

}
For different pairs (t, t′),

fc(t)(x)

gd(t′)(x)
represents different functions of x. Hence

(IFP ) can be treated as a multi-objective problem. Assuming that for ev-

ery pair (c(t), d(t′)), the optimization problem minx∈S
fc(t)(x)

gd(t′)(x)
has a solution,

we define the solution of (IFP ) ( which is parallel to the concept of efficient
solution in case of multi-objective programming problem ), as follows.

Definition 3.1. x∗ ∈ S is called an efficient solution of (IFP ) if there is no
x ∈ S with

fc(t)(x)

gd(t′)(x)
≤

fc(t)(x
∗)

gd(t′)(x∗)
∀ (t, t′) and for at least one (t, t′),

fc(t)(x)

gd(t′)(x)
<

fc(t)(x
∗)

gd(t′)(x∗)
.

Definition 3.2. x∗ ∈ S is called a properly efficient solution of (IFP ) if
(i) x∗ is an efficient solution and
(ii) if there is a real number µ > 0 such that, for every (t, t′) ∈ [0, 1]k+l, we have

fc(t)(x
∗)

gd(t′)(x∗)
−

fc(t)(x)

gd(t′)(x)
≤ µ

( fc(t)(x)

gd(t′)(x)
−

fc(t)(x
∗)

gd(t′)(x∗)

)
for some (t, t′) ̸= (t, t′) such that

fc(t)(x)

gd(t′)(x)
>

fc(t)(x
∗)

gd(t′)(x
∗) whenever x ∈ S and

fc(t)(x)

gd(t′)(x)
<

fc(t)(x
∗)

gd(t′)(x
∗) .

3.1. Interval convex fractional programming problem. In the light of a
general convex optimization problem, one can define interval convex fractional
programming problem. An interval fractional programming problem (IFP ) is

said to be an interval convex fractional programming problem if
F

Ck
v
(x)

G
Dl

v
(x) is an
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interval valued convex function on a convex feasible region. It is very difficult

to impose conditions on FCk
v
,GDl

v
to justify that

F
Ck

v
(x)

G
Dl

v
(x) is an interval convex

function. So we study some particular type (IFP ) which can be transformed to
a general convex programming problem and free from interval uncertainties.

For x ∈ Rn, let

1

GDl
v
(x)

= [τL, τR] =
{
τ ∈ R+ | τ ∈ [τL, τR]

}
,

where τL = mint′
1

gd(t′)(x)
, τR = maxt′

1
gd(t′)(x)

. Denote, 1
gd(t′)(x)

= τ. Since

gd(t′)(x) > 0 so τ > 0 and mint′ gd(t′)(x) ≤ gd(t′)(x) ≤ maxt′ gd(t′)(x) ∀ t′ ∈
[0, 1]l. Then

τ min
t′

gd(t′)(x) ≤ 1 and τ max
t′

gd(t′)(x) ≥ 1 (6)

If we put y = τx, then the feasible set S defined in (4) is transformed to the
following set χ.

χ =
{
(y, τ) | τ min

t′
gd(t′)(y/τ) ≤ 1, τ max

t′
gd(t′)(y/τ) ≥ 1,

τhj
bj(t′′j )

(y/τ) ≤ τaj(t
′′
j ), j ∈ J

}
(7)

With the help of above transformation, Expression (5) may be written as,

FCk
v
(x)

GDl
v
(x)

=
{
τfc(t)(x)

∣∣∣ gd(t′)(x)τ = 1, c(t) ∈ Ck
v , d(t

′) ∈ Dm
v

}
(8)

To take care all real valued functions τfc(t)(x) in the objective function, select

a weight function w : [0, 1]k → R+, and consider the following optimization
problem (IFP )I .

(IFP )I : min

∫
k

w(t)τfc(t)

(y
τ

)
dT (9)

subject to (y, τ) ∈ χ,

where
∫
k
=

∫ 1

0

∫ 1

0

. . .

∫ 1

0︸ ︷︷ ︸
k times

, dT = dt1dt2 . . . dtk, t = (t1, t2, . . . , tk)
T , y = τx,

x ∈ S. The optimization problem (IFP )I is free from the interval uncertainty
and partial order relations. In the objective function of (IFP )I one may consider
w(t) in such a way that

∫
k
w(t)dT = 1, but it may not be mandatory. This weight

may be provided by the decision maker.
Since t1, t2, . . . , tk are mutually independent continuous variables in [0, 1] and
w(t) is real valued function in ti’s, so the objective function of (IFP )I can be
simplified by integrating with respect to each ti. Then the objective function
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is a function of y and τ only and we denote this by ρ(y, τ). Hence (IFP )I is
equivalent to

(IFP )I : min ρ(y, τ)

subject to Φj(y, τ, t
′′
j ) ≤ τaj(t

′′
j ), (10)

max
t′

Ψ(y, τ, t′) ≥ 1, (11)

min
t′

Ψ(y, τ, t′) ≤ 1, (12)

where ρ(y, τ) =
∫
k
w(t)τfc(t)

(
y
τ

)
dT ; Φj(y, τ, t

′′
j ) = τhj

bj(t′′j )

(
y
τ

)
, j ∈ J ;

Ψ(y, τ, t′) = τgd(t′)

(
y
τ

)
.

Theorem 3.3. If the interval valued functions Hj

B
mj
v

: D → I(R), j ∈ J are

convex functions with respect to ≼ on the open convex set D ⊆ Rn then the
feasible set of (IFP ) is a convex set.

Proof. Suppose Hj

B
mj
v

∀ j are interval valued convex functions with respect to

≼ on the open convex set D ⊆ Rn. From Definition (??) and Remark (2.1), for

x1, x2 ∈ S (S is defined in (4)) and 0 ≤ σ ≤ 1, j ∈ J ; we have hj
bj(t′′j )

(x1) ≤

aj(t
′′
j ), h

j
bj(t′′j )

(x2) ≤ aj(t
′′
j ) and

hj
bj(t′′j )

(σx1 + (1− σ)x2) ≤ σhj
bj(t′′j )

(x1) + (1− σ)hj
bj(t′′j )

(x2)

≤ σaj(t
′′
j ) + (1− σ)aj(t

′′
j ) = aj(t

′′
j )

holds for every t′′j . This implies that Hj

B
mj
v

(σx1 +(1−σ)x2) ≼ Aj , j ∈ J. Hence

σx1 + (1− σ)x2 ∈ S, that is, the feasible set S of (IFP ) is a convex set. �
Definition 3.4. For Cn+1

v ∈ (I(R))n+1, with Cn+1
v = (C1,C2, . . . ,Cn,B)T , an

interval valued function FCn+1
v

: D → I(R), D ⊆ Rn is an affine function if it is
written in the following form,

FCn+1
v

(x) = C1x1 ⊕C2x2 ⊕ . . .⊕Cnxn ⊕B.

In the light of the discussion in Section 2, we may write

F
Cn+1

v
(x) = Cn

v ⋄ x⊕B = C1x1 ⊕C2x2 ⊕ . . .⊕Cnxn ⊕B

= {fα(t̂)(x)|α(t̂) = (c1(t1), c2(t2), . . . , cn(tn), b(tn+1))
T }

where t̂ = (t1, t2, . . . , tn+1)
T ∈ [0, 1]n+1, fα(t̂)(x) =

∑n
j=1 cj(tj)xj + b(tn+1).

For every x, y ∈ D and 0 ≤ λ ≤ 1,

F
C

n+1
v

(λx + (1 − λ)y) = C
n
v ⋄ (λx + (1 − λ)y) ⊕ B

=
{ n∑

j=1

cj(tj)(λxj + (1 − λ)yj) + b(tn+1)|tj ∈ [0, 1], ∀j
}

= λ
{ n∑

j=1

cj(tj)xj + b(tn+1)
}

+ (1 − λ)
{ n∑

j=1

cj(tj)yj + b(tn+1)
}
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= λ(C
n
v ⋄ x ⊕ B) + (1 − λ)(C

n
v ⋄ y ⊕ B)

= λF
C

n+1
v

(x) ⊕ (1 − λ)F
C

n+1
v

(y).

Hence, if FCn+1
v

: D → I(R) is an interval valued affine function on D ⊆ Rn,

FCn+1
v

(x) = Cn
v ⋄ x⊕B then for every x, y ∈ D and 0 ≤ λ ≤ 1,

FCn+1
v

(λx+ (1− λ)y) = λFCn+1
v

(x)⊕ (1− λ)FCn+1
v

(y) (13)

Remark 3.1. From (13), one may observe that FCk
v
is affine if and only if

fα(t̂)(x) is an affine function on D for every t̂.

Theorem 3.5. If FCk
v
,Hj

B
mj
v

: D → I(R) are interval valued convex functions

with respect to the order relation ≼ on the convex set D ⊆ Rn; and GDl
v
:

D → I(R) is an interval valued affine function on D then (IFP )I is a convex
programming problem.

Proof. Let FCk
v
and Hj

B
mj
v

are interval valued convex functions with respect to

the order relation ≼ on D; and GDl
v
is an interval valued affine function on

convex set D.
First we need to see that the feasible set for (IFP )I is a convex set. That is,
if (y1, τ1), (y2, τ2) are feasible points then for λ ∈ [0, 1], (λy1 + (1 − λ)y2, λτ1 +
(1− λ)τ2) satisfies the conditions (10),(11) and (12).
For t′′j , j ∈ J , suppose Φj(y1, τ1, t

′′
j ) ≤ τ1aj(t

′′
j ), Φj(y2, τ2, t

′′
j ) ≤ τ2aj(t

′′
j ). Now

Φj(λy1 + (1 − λ)y2, λτ1 + (1 − λ)τ2, t
′′
j )

= (λτ1 + (1 − λ)τ2)h
j

bj(t
′′
j
)

(λy1 + (1 − λ)y2

λτ1 + (1 − λ)τ2

)
= (λτ1 + (1 − λ)τ2)h

j

bj(t
′′
j
)

[
λτ1

λτ1 + (1 − λ)τ2

(y1

τ1

)
+

(1 − λ)τ2

λτ1 + (1 − λ)τ2

(y2

τ2

)]
(14)

Since Hj

B
mj
v

, j ∈ J is a convex interval valued function with respect to ≼, so

from Remark (2.1), hj
bj(t′′j )

, j ∈ J is a convex function for each t′′j on S′ = { y
τ |y =

τx, x ∈ D, τ ∈ R, τ > 0}. Then (14) becomes,

Φj(λy1 + (1− λ)y2, λτ1 + (1− λ)τ2, t
′′
j ) ≤ λτ1h

j

bj(t
′′
j )

(y1
τ1

)
+ (1− λ)τ2h

j

bj(t
′′
j )

(y2
τ2

)
= λΦj(y1, τ1, t

′′
j ) + (1− λ)Φj(y2, τ2, t

′′
j )

≤ λτ1aj(t
′′
j ) + (1− λ)τ2aj(t

′′
j )

= (λτ1 + (1− λ)τ2)aj(t
′′
j ).

Hence Inequality (10) holds for (λy1 + (1− λ)y2, λτ1 + (1− λ)τ2).
Similarly,

Ψ(λy1 + (1− λ)y2, λτ1 + (1− λ)τ2, t
′)

= (λτ1 + (1− λ)τ2)gd(t′)

(λy1 + (1− λ)y2

λτ1 + (1− λ)τ2

)
= (λτ1 + (1− λ)τ2)gd(t′)

[
λτ1

λτ1 + (1− λ)τ2

(y1

τ1

)
+

(1− λ)τ2

λτ1 + (1− λ)τ2

(y2

τ2

)]
(15)



862 A. K. Bhurjee, G. Panda

Since GDl
v
is an interval valued affine function, so for each t′, gd(t′) is an affine

function on S′. Then Equation (15) becomes,

Ψ(λy1 + (1 − λ)y2, λτ1 + (1 − λ)τ2, t
′
) = λ

[
τ1gd(t′)

(y1

τ1

)]
+ (1 − λ)

[
τ2gd(t′)

(y2

τ2

)]
= λΨ(y1, τ1, t

′
) + (1 − λ)Ψ(y2, τ2, t

′
) (16)

Since maxt′ Ψ(y1, τ1, t
′) ≥ 1,maxt′ Ψ(y2, τ2, t

′) ≥ 1 and mint′ Ψ(y1, τ1, t
′) ≤

1,mint′ Ψ(y2, τ2, t
′) ≤ 1, we obtain the following two relations from (16).

max
t′

Ψ(λy1 + (1− λ)y2, λτ1 + (1− λ)τ2, t
′) ≥ 1 (17)

and min
t′

Ψ(λy1 + (1− λ)y2, λτ1 + (1− λ)τ2, t
′) ≤ 1. (18)

So Inequalities (11) and (12) hold for (λy1 + (1− λ)y2, λτ1 + (1− λ)τ2). Hence
the feasible set for (IFP )I is a convex set.
Next to see that the objective function of the problem (IFP )I is a convex func-
tion.

ρ(λy1 + (1− λ)y2, λτ1 + (1− λ)τ2)

=

∫
k

w(t)(λτ1 + (1− λ)τ2)fc(t)

(λy1 + (1− λ)y2
λτ1 + (1− λ)τ2

)
dT

=

∫
k

w(t)(λτ1 + (1− λ)τ2)fc(t)

[
λτ1

λτ1 + (1− λ)τ2

(y1
τ1

)
+

(1− λ)τ2
λτ1 + (1− λ)τ2

(y2
τ2

)]
dT

Since FCk
v
is an interval valued convex function with respect to ≼, so for each

t, fc(t) is convex function on S′. Hence the above equation reduces to

ρ(λy1 + (1− λ)y2, λτ1 + (1− λ)τ2)

≤ λ

∫
k

w(t)τ1fc(t)

(y1
τ1

)
dT + (1− λ)

∫
k

w(t)τ2fc(t)

(y2
τ2

)
dT

= λρ(y1, τ1) + (1− λ)ρ(y2, τ2)

From the above discussion, we conclude that (IFP )I is a convex programming
problem. �

3.2. Existence of solution of (IFP ). From the discussions of previous sub-
section one can conclude that (IFP )I is a general convex programming problem
under certain assumptions on the interval valued functions of (IFP ). Then
(IFP )I can be solved using general convex programming techniques. However,
to find the solution of (IFP ), a relation between the solution of (IFP ) and
(IFP )I should be established. This is the central idea of the entire develop-
ment. The following result establishes such a relation.

Theorem 3.6. If (y∗, τ∗) ∈ χ is an optimal solution of (IFP )I then x∗ = y∗

τ∗ ∈
S is a properly efficient solution of (IFP ).

Proof. Let (y∗, τ∗) ∈ χ be an optimal solution of (IFP )I . Then x∗ is an efficient

solution of (IFP ). Otherwise there will be x′ ∈ χ, with x′ = y′

τ ′ for some y′ and
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τ ′ such that τ ′fc(t)(x
′) ≤ τ∗fc(t)(x

∗) for all t and τ ′fc(t)(x
′) ̸= τ∗fc(t)(x

∗) for at
least one t holds. Since w(t) ≥ 0, this implies∫

k

w(t)τ ′fc(t)(x
′) dt1dt2 . . . dtk ≤

∫
k

w(t)τ∗fc(t)(x
∗) dt1dt2 . . . dtk

This contradicts the optimality of (y∗, τ∗).
Assume that x∗ is not a properly efficient solution of (IFP ). From Definition
(3.2) it follows that for some t ∈ [0, 1]k and some x = y

τ ∈ S with τfc(t)(x) <

τ∗fc(t)(x
∗), one can choose µ = max

{
w(t)
w(t)

}
, t ̸= t; t, t ∈ [0, 1]k, w(t) > 0, such

that

τ∗fc(t)(x
∗)− τfc(t)(x)

τfc(t)(x)− τ∗fc(t)(x∗)
> µ, (19)

with τfc(t)(x) > τ∗fc(t)(x
∗) holds. (µ always exists since w(t) > 0 in [0, 1]k).

This implies

τ∗fc(t)(x
∗)− τfc(t)(x) >

w(t)

w(t)

(
τfc(t)(x)− τ∗fc(t)(x

∗)
)

⇒ w(t)τ∗fc(t)

(y∗
τ∗

)
+ w(t)τ∗fc(t)

(y∗
τ∗

)
> w(t)τfc(t)

(y
τ

)
+ w(t)τfc(t)

(y
τ

)
.

This implies∫
k

w(t)τ∗fc(t)

(y∗
τ∗

)
dt1dt2 . . . dtk +

∫
k

w(t)τ∗fc(t)

(y∗
τ∗

)
dt1dt2 . . . dtk

>∫
k

w(t)τfc(t)

(y
τ

)
dt1dt2 . . . dtk +

∫
k

w(t)τfc(t)

(y
τ

)
dt1dt2 . . . dtk.

Hence∫
k

w(t)τ∗fc(t)

(y∗
τ∗

)
dT >

∫
k

w(t)τfc(t)

(y
τ

)
dT ⇒ ρ(y∗, τ∗) > ρ(y, τ).

This contradicts to the assumption that (y∗, τ∗) is an optimal solution of (IFP )I .
�

3.3. Solution procedure for (IFP )I . Let Ψ(y, τ, t′) has the maximum and
the minimum value over t′ at t′∗ and t′∗, respectively. Then the optimization
problem (IFP )I becomes,

(IFP )I : min ρ(y, τ)

subject to Ψ(y, τ, t′∗) ≥ 1,Ψ(y, τ, t′∗) ≤ 1,

Φj(y, τ, t
′′
j ) ≤ τaj(t

′′
j ),

y ∈ Rn, τ > 0.
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Under the assumption of Theorem (3.5), it is true that the above problem is a
convex programming problem. So KKT optimality conditions are sufficient for
the existence of it’s optimal solution. The Lagrangian function for (IFP )I is

L(y, τ, η, µ, ν) = ρ(y, τ) + η1(1− τgd(t′∗)

(y
τ

)
) + η2(τgd(t′∗)

(y
τ

)
− 1)

+

p∑
j=1

µj(τhjbj(t′′j )

(y
τ

)
− τaj(t

′′
j ))− ν(τ),

where η1, η2 ∈ R+, µj ∈ R+, j ∈ J, ν ∈ R+ are dual variables. The KKT
optimality conditions for (IFP )I are∫

k

w(t)∇yfc(t)

(y
τ

)
dT − eta1∇ygd(t′∗)

(y
τ

)
L

+ η2l∇ygd(t′∗)

(y
τ

)
+

p∑
j=1

µj∇yhjbj(t′′j )

(y
τ

)
= 0,∫

k

w(t)fc(t)

(y
τ

)
dT −

(y
τ

)∫
k

w(t)∂τfc(t)

(y
τ

)
dT

+ η1

[(y
τ

)
∂τgd(t′∗)

(y
τ

)
− gd(t′∗)

(y
τ

)]
+ η2

[
−
(y
τ

)
∂τgd(t′∗)

(y
τ

)
+ gd(t′∗)

(y
τ

)]
+

p∑
j=1

µj

[
hjbj(t′′j )

(y
τ

)
−

(y
τ

)
∂τhjbj(t′′j )

(y
τ

)
− aj(t

′′
j )] = ν,

η1(1− τgd(t′∗)

(y
τ

)
) = 0, η2(τgd(t′∗)

(y
τ

)
− 1) = 0,

µj(hjbj(t′′j )

(y
τ

)
− aj(t

′′
j )) = 0, y ∈ Rn, τ > 0,

where ∂τ = ∂
∂τ . Methodology of this section is explained in the following nu-

merical example.

Example 3. Consider the following interval fractional quadratic programming
problem as,

(IFP ) min
[−10,−6]x1 ⊕ [2, 3]x2 ⊕ [4, 10]x2

1 ⊕ [−1, 1]x1x2 ⊕ [10, 20]x2
2

[−5,−3]x1 ⊕ [1, 2]x2

s.t. [1, 2]x1 ⊕ 3x2 ≽ [1, 10], [−2, 8]x1 ⊕ [4, 6]x2 ≽ [4, 6], x1, x2 ≥ 0.

(IFP ) is equivalent to,

min
{ fc(t)(x1, x2)

gd(t′)(x1, x2)

∣∣∣t = (t1, t2, . . . , t5), t
′ = (t6, t7)

}
subject to (1 + t8)x1 + 3x2 ≥ (1 + 9t8),

(−2 + 10t9)x1 + (4 + 2t9)x2 ≥ (4 + 2t9),

x1 ≥ 0, x2 ≥ 0, ti ∈ [0, 1], i = 1, 2, . . . , 9.
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where fc(t)(x1, x2) = (−10+4t1)x1+(2+ t2)x2+(4+6t3)x
2
1+(−1+2t4)x1x2+

(10 + 10t5)x
2
2 and gd(t)(x1, x2) = (−5 + 2t6)x1 + (1 + t7)x2.

Let τ = 1
(−5+2t6)x1+(1+t7)x2

and yi = τxi i = 1, 2. For some w : [0, 1]5 → R+,

the transformed problem (IFP )I is

(IFP )I min

∫
5

w(t)

τ

{
(−10 + 4t1)τy1 + (2 + t2)τy2 + (4 + 6t3)y

2
1

+(−1 + 2t4)y1y2 + (10 + 10t5)y
2
2

}
dt1dt2 . . . , dt5

subject to − 5y1 + y2 ≤ 1,−3y1 + 2y2 ≥ 1, (1 + t8)y1 + 3y2 ≥ (1 + 9t8)τ,

(−2 + 10t9)y1 + (4 + 2t9)y2 ≥ (4 + 2t9)τ, y1 ≥ 0, y2 ≥ 0, τ > 0.

In particular for w(t1, t2, t3, t4, t5) = t1 + t3, (IFP )I is simplified.

(IFP )I min τ
{
− 23

3

y1
τ

+
5

2

y2
τ

+
15

2

(y1
τ

)2

+ 15
(y2
τ

)2}
subject to τ

(
− 5

y1
τ

+
y2
τ

)
≤ 1, τ

(
− 3

y1
τ

+ 2
y2
τ

)
≥ 1,

τ
(
(1 + t8)

y1
τ

+ 3
y2
τ

)
≥ (1 + 9t8)τ,

τ
(
(−2 + 10t9)

y1
τ

+ (4 + 2t9)
y2
τ

)
≥ (4 + 2t9)τ,

y1 ≥ 0, y2 ≥ 0, τ > 0.

Since the numerator of the objective function of (IFP ) is an interval valued
convex function and its denominator is an interval valued affine function, so by
Theorem (3.5), (IFP )I is a convex optimization problem. The KKT conditions
for (IFP )I are,

−23

3
+ 15

y1
τ

− 5η1 + 3η2 − (1 + t8)µ1 − (−2 + 10t9)µ2 − ν1 = 0,

5

2
+ 30

y2
τ

+ η1 − 2η2 + 3µ1 + (4 + 2t9)µ2 − ν2 = 0,

−15

2
(
y1
τ2

)2 − 15(
y1
τ2

)2 + η1(−5
y1
τ

+
y2
τ
)− η2(−3

y1
τ

+ 2
y2
τ
)

+µ1(1 + 9t8) + µ2(4 + 2t9)− ν3 = 0,

η1(−5y1 + y2 − 1) = 0, η2(1 + 3y1 − 2y2) = 0,

µ1(τ(1 + 9t8)− (1 + t8)y1 − 3y2) = 0,

µ2(τ(4 + 2t9)− (−2 + 10t9)y1 + (4 + 2t9)y2) = 0,

ν1y1 = 0, ν2y2 = 0, τ > 0.

This nonlinear system of equations has solution as y∗1 = 0.2451372 × 10−6,
y∗2 = 0.1537882× 10−7, τ∗ = 0.3422284× 10−6. By Theorem (3.6), the efficient
solution of (IFP ) is x∗

1 = 0.71629707, x∗
2 = 0.0449373.

This methodology can be applied to large scale computational also. Since the
problem in our example has less number of variables, so we have solved in LINGO
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directly. However, in case of large number of variables it can solved in MATLAB,
MATHEMATICA or other optimization softwares.

4. Conclusion

In this paper, nonlinear interval fractional programming problem is converted
to a general nonlinear programming problem, which is free from interval uncer-
tainty and partial order relations. This problem becomes a convex programming
problem under some assumptions. We have proved that an optimal solution of
the deterministic equivalent is an efficient solution of the original problem. This
methodology may be used to solve generalized nonlinear fractional programming
models with interval parameters.
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