• 제목/요약/키워드: fractional inequality

검색결과 65건 처리시간 0.02초

Reverse Inequalities through k-weighted Fractional Operators with Two Parameters

  • Bouharket Benaissa;Noureddine Azzouz
    • Kyungpook Mathematical Journal
    • /
    • 제64권1호
    • /
    • pp.31-46
    • /
    • 2024
  • The aim of this paper is to present an approach to improve reverse Minkowski and Hölder-type inequalities using k-weighted fractional integral operators a+𝔍𝜇w with respect to a strictly increasing continuous function 𝜇, by introducing two parameters of integrability, p and q. For various choices of 𝜇 we get interesting special cases.

FRACTIONAL POLYA-SZEGÖ INEQUALITY

  • Park, Young Ja
    • 충청수학회지
    • /
    • 제24권2호
    • /
    • pp.267-271
    • /
    • 2011
  • Let 0 < s < 1. For $f^{\ast}$ representing the symmetric radial decreasing rearrangement of f, we build up a fractional version of Polya-$Szeg{\ddot{o}}$ inequality: $${\int}_{\mathbb{R}^n}{\mid}(-\Delta)^{s/2}f^{\ast}(x){\mid}^2dx{\leq}{\int}_{\mathbb{R}^n}{\mid}(-\Delta)^{s/2}f(x){\mid}^2dx$$.

REFINEMENTS OF FRACTIONAL VERSIONS OF HADAMARD INEQUALITY FOR LIOUVILLE-CAPUTO FRACTIONAL DERIVATIVES

  • GHULAM FARID;LAXMI RATHOUR;SIDRA BIBI;MUHAMMAD SAEED AKRAM;LAKSHMI NARAYAN MISHRA;VISHNU NARAYAN MISHRA
    • Journal of Applied and Pure Mathematics
    • /
    • 제5권1_2호
    • /
    • pp.95-108
    • /
    • 2023
  • The Hadamard type inequalities for fractional integral operators of convex functions are studied at very large scale. This paper provides the Hadamard type inequalities for refined (α,h-m)-convex functions by utilizing Liouville-Caputo fractional (L-CF) derivatives. These inequalities give refinements of already existing (L-CF) inequalities of Hadamard type for many well known classes of functions provided the function h is bounded above by ${\frac{1}{\sqrt{2}}}$.

A NOTE ON LINEAR IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS

  • Choi, Sung Kyu;Koo, Namjip
    • 충청수학회지
    • /
    • 제28권4호
    • /
    • pp.583-590
    • /
    • 2015
  • This paper deals with linear impulsive fractional differential equations involving the Caputo derivative with non-integer order q. We provide exact solutions of linear impulsive fractional differential equations with constant coefficient by mean of the Mittag-Leffler functions. Then we apply the exact solutions to improve impulsive integral inequalities with singularity.

ITERATED LEFT ABSTRACT FRACTIONAL LANDAU INEQUALITIES

  • ANASTASSIOU, GEORGE A.
    • Journal of applied mathematics & informatics
    • /
    • 제38권5_6호
    • /
    • pp.559-577
    • /
    • 2020
  • We present uniform and Lp left Caputo-Bochner abstract iterated fractional Landau inequalities over ℝ+. These estimate the size of second and third iterated left abstract fractional derivates of a Banach space valued function over ℝ+. We give an application when the basic fractional order is ${\frac{1}{2}}$.

ANALYSIS OF SOLUTIONS FOR THE BOUNDARY VALUE PROBLEMS OF NONLINEAR FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS INVOLVING GRONWALL'S INEQUALITY IN BANACH SPACES

  • KARTHIKEYAN, K.;RAJA, D. SENTHIL;SUNDARARAJAN, P.
    • Journal of applied mathematics & informatics
    • /
    • 제40권1_2호
    • /
    • pp.305-316
    • /
    • 2022
  • We study the existence and uniqueness of solutions for a class of boundary value problems of nonlinear fractional order differential equations involving the Caputo fractional derivative by employing the Banach's contraction principle and the Schauder's fixed point theorem. In addition, an example is given to demonstrate the application of our main results.

REFINEMENTS OF HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS

  • Xiang, Ruiyin
    • Journal of applied mathematics & informatics
    • /
    • 제33권1_2호
    • /
    • pp.119-125
    • /
    • 2015
  • In this note, two new mappings associated with convexity are propoesd, by which we obtain some new Hermite-Hadamard type inequalities for convex functions via Riemann-Liouville fractional integrals. We conclude that the results obtained in this work are the refinements of the earlier results.