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REFINEMENTS OF HERMITE-HADAMARD TYPE

INEQUALITIES FOR CONVEX FUNCTIONS VIA

FRACTIONAL INTEGRALS†

RUIYIN XIANG

Abstract. In this note, two new mappings associated with convexity are
propoesd, by which we obtain some new Hermite-Hadamard type inequal-

ities for convex functions via Riemann-Liouville fractional integrals. We
conclude that the results obtained in this work are the refinements of the
earlier results.
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1. Introduction

If f : I → R is a convex function on the interval I, then for any a, b ∈ I with
a ̸= b we have the following double inequality

f
(a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
. (1)

This remarkable result is well known in the literature as the Hermite-Hadamard
inequality.

Since then, some refinements of the Hermite-Hadamard inequality for convex
functions have been extensively obtained by a number of authors (e.g., [1], [2],
[3], [4], [5], [6], [7], [8], [9] and [10]).

In [4], S. S. Dragomir proposed the following Hermite-Hadamard type in-
equalities which refine the first inequality of (1).
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Theorem 1.1 ([4]). Let f is convex on [a, b]. Then H is convex, increasing on
[0, 1], and for all t ∈ [0, 1], we have

f
(a+ b

2

)
= H(0) ≤ H(t) ≤ H(1) =

1

b− a

∫ b

a

f(x)dx, (2)

where

H(t) =
1

b− a

∫ b

a

f
(
tx+ (1− t)

a+ b

2

)
dx.

An analogous result for convex functions which refines the second inequality
of (1) is obtained by G. S. Yang and M. C. Hong in [13] as follows.

Theorem 1.2 ([13]). Let f is convex on [a, b]. Then P is convex, increasing on
[0, 1], and for all t ∈ [0, 1], we have

1

b− a

∫ b

a

f(x)dx = P (0) ≤ P (t) ≤ P (1) =
f(a) + f(b)

2
, (3)

where

P (t) =
1

2(b− a)

∫ b

a

[
f
((1 + t

2

)
a+

(1− t

2

)
x
)
+ f

((1 + t

2

)
b+

(1− t

2

)
x
)]

dx.

G. S. Yang and K. L. Tseng in [12] established some generalizations of (2)
and (3) based on the following results.

Theorem 1.3 ([12]). Let f : [a, b] → R be a convex function, 0 < α < 1,
0 < β < 1, A = αa+ (1− α)b, u0 = (b− a)min{ α

1−β ,
1−α
β }, and let h be defined

by h(t) = (1 − β)f(A − βt) + βf(A + (1 − β)t), t ∈ [0, u0]. Then h is convex,
increasing on [0, u0] and for all t ∈ [0, u0],

f(αa+ (1− α)b) ≤ h(t) ≤ αf(a) + (1− α)f(b).

It is remarkable that M. Z. Sarikaya et al. [11] proved the following interesting
inequalities of Hermite-Hadamard type involving Riemann-Liouville fractional
integrals.

Theorem 1.4 ([11]). Let f : [a, b] → R be a positive function with a < b and
f ∈ L1[a, b]. If f is a convex function on [a, b], then the following inequalities
for fractional integrals hold:

f
(a+ b

2

)
≤ Γ(α+ 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)] ≤

f(a) + f(b)

2
, (4)

with α > 0.

We remark that the symbols Jα
a+ and Jα

b−f denote the left-sided and right-
sided Riemann-Liouville fractional integrals of the order α ≥ 0 with a ≥ 0 which
are defined by

Jα
a+f(x) =

1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x > a,
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and

Jα
b−f(x) =

1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x < b,

respectively. Here, Γ(α) is the Gamma function defined by Γ(α) =
∫∞
0

e−ttα−1dt.
In this paper, we establish some new Hermite-Hadamard type inequalities

for convex functions via Riemann-Liouville fractional integrals which refine the
inequalities of (4).

2. Main results

Lemma 2.1. Let f : [a, b] → R be a convex function and h be defined by

h(t) =
1

2

[
f
((a+ b

2

)
− t

2

)
+ f

((a+ b

2

)
+

t

2

)]
.

Then h(t) is convex, increasing on [0, b− a] and for all t ∈ [0, b− a],

f
(a+ b

2

)
≤ h(t) ≤ f(a) + f(b)

2
.

Proof. We can obtain the result by taking α = β = 1
2 in Theorem 1.3. �

Theorem 2.2. Let f : [a, b] → R be a positive function with a < b and f ∈
L1[a, b]. If f is a convex function on [a, b], then WH is convex and monotonically
increasing on [0, 1] and

f
(a+ b

2

)
= WH(0) ≤ WH(t) ≤ WH(1)

=
Γ(α+ 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)],

with α > 0, where

WH(t) =
α

2(b− a)α

∫ b

a

f
(
tx+ (1− t)

a+ b

2

)(
(b− x)α−1 + (x− a)α−1

)
dx.

Proof. Firstly, let t1, t2, β ∈ [0, 1], then

WH[(1− β)t1 + βt2]

=
α

2(b− a)α

∫ b

a
f
((

x−
a+ b

2

)
[(1− β)t1 + βt2] +

a+ b

2

)(
(b− x)α−1 + (x− a)α−1

)
dx

=
α

2(b− a)α

∫ b

a
f

{
(1− β)

[(
x−

a+ b

2

)
t1 +

a+ b

2

]
+ β

[(
x−

a+ b

2

)
t2 +

a+ b

2

]}
(
(b− x)α−1 + (x− a)α−1

)
dx.

Since f is convex, we get

f

{
(1− β)

[(
x− a+ b

2

)
t1 +

a+ b

2

]
+ β

[(
x− a+ b

2

)
t2 +

a+ b

2

]}

≤ (1− β)f
[(

x− a+ b

2

)
t1 +

a+ b

2

]
+ βf

[(
x− a+ b

2

)
t2 +

a+ b

2

]
.
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So

WH[(1− β)t1 + βt2]

≤
α

2(b− a)α
(1− β)

∫ b

a
f
((

x−
a+ b

2

)
t1 +

a+ b

2

)(
(b− x)α−1 + (x− a)α−1

)
dx

+
α

2(b− a)α
β

∫ b

a
f
((

x−
a+ b

2

)
t2 +

a+ b

2

)(
(b− x)α−1 + (x− a)α−1

)
dx

= (1− β)WH(t1) + βWH(t2),

from which we get WH is convex on [0, 1]. Next, by elementary calculus, we
have

WH(t) =
α

2(b− a)α

∫ b

a
f
(
tx+ (1− t)

a+ b

2

)(
(b− x)α−1 + (x− a)α−1

)
dx

=
α

2(b− a)α

∫ a+b
2

a
f
(
tx+ (1− t)

a+ b

2

)(
(b− x)α−1 + (x− a)α−1

)
dx

+
α

2(b− a)α

∫ b

a+b
2

f
(
tx+ (1− t)

a+ b

2

)(
(b− x)α−1 + (x− a)α−1

)
dx

=
α

2(b− a)α

∫ b−a

0
f
((a+ b

2

)
−

tx

2

)(( b− a

2

)
+

x

2

)α−1
+

(( b− a

2

)
−

x

2

)α−1)
dx

+
α

2(b− a)α

∫ b−a

0
f
((a+ b

2

)
+

tx

2

)(( b− a

2

)
+

x

2

)α−1
+

(( b− a

2

)
−

x

2

)α−1)
dx

=
α

2(b− a)α

∫ b−a

0

[
f
((a+ b

2

)
−

tx

2

)
+ f

((a+ b

2

)
+

tx

2

)](( b− a

2

)
+

x

2

)α−1

+
(( b− a

2

)
−

x

2

)α−1)
dx.

It follows from Lemma 2.1 that h(x) = 1
2

[
f
((

a+b
2

)
− x

2

)
+ f

((
a+b
2

)
+ x

2

)]
is

increasing on [0, b−a]. Since
((

b−a
2

)
+ x

2

)α−1

+
((

b−a
2

)
− x

2

)α−1)
is nonnegative,

hence WH(t) is increasing on [0, 1]. Finally, from

f
(a+ b

2

)
= WH(0)

and

WH(1) =
Γ(α+ 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)],

we have completed the proof. �

Similarly, we have the following theorem:

Theorem 2.3. Let f be defined as in Theorem 2.2, then WP is convex and
monotonically increasing on [0, 1] and

Γ(α+ 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)] = WP (0) ≤ WP (t) ≤ WP (1)

=
f(a) + f(b)

2
,
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with α > 0, where

WP (t) =
α

4(b− a)α

∫ b

a

[
f
((1 + t

2

)
a+

(1− t

2

)
x
)((2b− a− x

2

)α−1
+

(x− a

2

)α−1)
+f

((1 + t

2

)
b+

(1− t

2

)
x
)(( b− x

2

)α−1
+

(x+ b− 2a

2

)α−1)]
dx.

Proof. We note that if f is convex and g is linear, then the composition f ◦ g is
convex. Also we note that a positive constant multiple of a convex function and a

sum of two convex functions are convex, hence f
((

1+t
2

)
a+

(
1−t
2

)
x
)((

2b−a−x
2

)α−1

+(
x−a
2

)α−1)
and f

((
1+t
2

)
b +

(
1−t
2

)
x
)((

b−x
2

)α−1

+
(

x+b−2a
2

)α−1)
are convex,

from which we get that WP (t) is convex. Next, by elementary calculus, we have

WP (t) =
α

4(b− a)α

∫ b

a

[
f
((1 + t

2

)
a+

(1− t

2

)
x
)((2b− a− x

2

)α−1
+

(x− a

2

)α−1)
+f

((1 + t

2

)
b+

(1− t

2

)
x
)(( b− x

2

)α−1
+

(x+ b− 2a

2

)α−1)]
dx

=
α

4(b− a)α

∫ b−a

0

[
f
(
a+

(1− t

2

)
x
)((2b− 2a− x

2

)α−1
+

(x

2

)α−1)
+f

(
b−

(1− t

2

)
x
)((x

2

)α−1
+

(2b− 2a− x

2

)α−1)]
dx

=
α

4(b− a)α

∫ b−a

0

[
f
(
a+

(1− t

2

)
x
)
+ f

(
b−

(1− t

2

)
x
)]

×
[(2b− 2a− x

2

)α−1
+

(x

2

)α−1]
dx.

It follows from Lemma 2.1 that h(t) = 1
2

[
f
((

a+b
2

)
− t

2

)
+ f

((
a+b
2

)
+ t

2

)]
and k(t) = b − a − (1 − t)x are increasing on [0, b − a] and [0, 1], respectively.

Hence h(k(t)) = f
(
a+

(
1−t
2

)
x
)
+ f

(
b−

(
1−t
2

)
x
)
is increasing on [0, 1]. Since(

2b−2a−x
2

)α−1

+
(

x
2

)α−1

is nonnegative, it follows that WP is monotonically

increasing on [0, 1]. Finally, from

WP (0) =
Γ(α+ 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)],

and
f(a) + f(b)

2
= WP (1),

we get the desired result. �

Corollary 2.4. With assumptions in Theorem 2.2, if α = 1, we get

WH(t) =
1

(b− a)

∫ b

a

f
(
tx+ (1− t)

a+ b

2

)
dx = H(t),

where H(t) is defined as Theorem 1.1, which is just the result in Theorem 1.1.
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Corollary 2.5. With assumptions in Theorem 2.3, if α = 1, we get

WP (t) =
1

2(b− a)

∫ b

a

[
f
((1 + t

2

)
a+

(1− t

2

)
x
)
+ f

((1 + t

2

)
b+

(1− t

2

)
x
)]

dx = P (t),

where P (t) is defined as Theorem 1.2, which is just the result in Theorem 1.2.

3. Conclusion

In this note, we obtain some new Hermite-Hadamard type inequalities for
convex functions via Riemann-Liouville fractional integrals. We conclude that
the results obtained in this work are the refinements of the earlier results. An
interesting topic is whether we can use the methods in this paper to establish
the Hermite-Hadamard inequalities for convex functions on the co-ordinates via
Riemann-Liouville fractional integrals.
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