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VECTORIAL HILFER-PRABHAKAR-HARDY TYPE

FRACTIONAL INEQUALITIES

GEORGE A. ANASTASSIOU

Abstract. We present a variety of univariate and multivariate left and

right side Hardy type fractional inequalities, many of them under convexity,
and other also of Lp type, p ≥ 1, in the setting of generalized Hilfer and

Prabhakar fractional Calculi.
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1. Background

Let −∞ < a < b < ∞, the left and right Riemann-Liouville fractional inte-
grals of order α ∈ C (R (α) > 0) are defined by(

Iαa+f
)
(x) =

1

Γ (α)

∫ x

a

(x− t)
α−1

f (t) dt, (1)

x > a; where Γ stands for the gamma function,
and (

Iαb−f
)
(x) =

1

Γ (α)

∫ b

x

(t− x)
α−1

f (t) dt, (2)

x < b.
The Riemann-Liouville left and right fractional derivatives of order α ∈ C

(R (α) ≥ 0) are defined by(
∆α
a+y

)
(x) =

(
d

dx

)n (
In−αa+ y

)
(x) =

1

Γ (n− α)

(
d

dx

)n ∫ x

a

(x− t)
n−α−1

y (t) dt

(3)
(n = ⌈R (α)⌉, ⌈·⌉ means ceiling of the number; x > a)(

∆α
b−y
)
(x) = (−1)

n

(
d

dx

)n (
In−αb− y

)
(x) =
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(−1)
n

Γ (n− α)

(
d

dx

)n ∫ b

x

(t− x)
n−α−1

y (t) dt (4)

(n = ⌈R (α)⌉; x < b), respectively, where R (α) is the real part of α.
In particular, when α = n ∈ Z+, then(

∆0
a+y

)
(x) =

(
∆0
b−y
)
(x) = y (x) ;(

∆n
a+y

)
(x) = y(n) (x) , and

(
∆n
b−y
)
(x) = (−1)

n
y(n) (x) , n ∈ N,

(5)

see [12].
Let α > 0, I = [a, b] ⊂ R, f an integrable function defined on I and ψ ∈ C1 (I)

an increasing function such that ψ′ (x) ̸= 0, for all x ∈ I. Left fractional integrals
and left Riemann-Liouville fractional derivatives of a function f with respect to
another function ψ are defined as ([9], [12])

Iα,ψa+ f (x) =
1

Γ (α)

∫ x

a

ψ′ (t) (ψ (x)− ψ (t))
α−1

f (t) dt, (6)

and

∆α,ψ
a+ f (x) =

(
1

ψ′ (x)

d

dx

)n
In−α,ψa+ f (x) = (7)

1

Γ (n− α)

(
1

ψ′ (x)

d

dx

)n ∫ x

a

ψ′ (t) (ψ (x)− ψ (t))
n−α−1

f (t) dt,

respectively, where n = ⌈α⌉.
Similarly, we define the right ones:

Iα,ψb− f (x) =
1

Γ (α)

∫ b

x

ψ′ (t) (ψ (t)− ψ (x))
α−1

f (t) dt, (8)

and

∆α,ψ
b− f (x) =

(
− 1

ψ′ (x)

d

dx

)n
In−α,ψb− f (x) =

1

Γ (n− α)

(
− 1

ψ′ (x)

d

dx

)n ∫ b

x

ψ′ (t) (ψ (t)− ψ (x))
n−α−1

f (t) dt. (9)

The following semigroup property holds; if α, β > 0, f ∈ C (I), then

Iα,ψa+ Iβ,ψa+ f = Iα+β,ψa+ f and Iα,ψb− Iβ,ψb− f = Iα+β,ψb− f .

Next let again α > 0, n = ⌈α⌉, I = [a, b], f, ψ ∈ Cn (I) : ψ is increasing and
ψ′ (x) ̸= 0, for all x ∈ I. The left ψ-Caputo fractional derivative of f of order α
is given by ([1])

CDα,ψ
a+ f (x) = In−α,ψa+

(
1

ψ′ (x)

d

dx

)n
f (x) , (10)

and the right ψ-Caputo fractional derivative ([1])

CDα,ψ
b− f (x) = In−α,ψb−

(
− 1

ψ′ (x)

d

dx

)n
f (x) . (11)
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We set

f
[n]
ψ (x) := f

(n)
ψ f (x) :=

(
1

ψ′ (x)

d

dx

)n
f (x) . (12)

Clearly, when α = m ∈ N we have

CDα,ψ
a+ f (x) = f

[m]
ψ (x) and CDα,ψ

b− f (x) = (−1)
m
f
[m]
ψ (x) ,

and if α /∈ N, then

CDα,ψ
a+ f (x) =

1

Γ (n− α)

∫ x

a

ψ′ (t) (ψ (x)− ψ (t))
n−α−1

f
[n]
ψ (t) dt, (13)

and

CDα,ψ
b− f (x) =

(−1)
n

Γ (n− α)

∫ b

x

ψ′ (t) (ψ (t)− ψ (x))
n−α−1

f
[n]
ψ (t) dt. (14)

If ψ (x) = x, then we get the usual left and right Caputo fractional derivatives

CDm
a+f (x) = f (m) (x) , CDm

b−f (x) = (−1)
m
f (m) (x) ,

for m ∈ N, and (α /∈ N)

Dα
∗af (x) =

CDα
a+f (x) =

1

Γ (n− α)

∫ x

a

(x− t)
n−α−1

f (n) (t) dt, (15)

Dα
b− (x) = CDα

b−f (x) =
(−1)

n

Γ (n− α)

∫ b

x

(t− x)
n−α−1

f (n) (t) dt. (16)

Also we set
CD0,ψ

a+ f (x) =
CD0,ψ

b− f (x) = f (x) .

Next we talk about the ψ-Hilfer fractional derivative.

Definition 1.1. ([14]) Let n − 1 < α < n, n ∈ N, I = [a, b] ⊂ R and f, ψ ∈
Cn ([a, b]), ψ is increasing and ψ′ (x) ̸= 0, for all x ∈ I. The ψ-Hilfer fractional

derivative (left-sided and right-sided) HDα,β;ψa+(b−)f of order α and type 0 ≤ β ≤ 1,

respectively, are defined by

HDα,β;ψa+ f (x) = I
β(n−α);ψ
a+

(
1

ψ′ (x)

d

dx

)n
I
(1−β)(n−α);ψ
a+ f (x) , (17)

and

HDα,β;ψb− f (x) = I
β(n−α);ψ
b−

(
− 1

ψ′ (x)

d

dx

)n
I
(1−β)(n−α);ψ
b− f (x) , x ∈ [a, b] . (18)

The original Hilfer fractional derivatives ([13]) come from ψ (x) = x, and are

denoted by HDα,βa+ f (x) and HDα,βb− f (x).
When β = 0, we get Riemann-Liouville fractional derivatives, while when

β = 1 we have Caputo type fractional derivatives.
We define γ = α + β (n− α). We notice that n − 1 < α ≤ α + β (n− α) ≤

α+ n− α = n, hence ⌈γ⌉ = n. We can easily write that ([14])

HDα,β;ψa+ f (x) = Iγ−α;ψa+ ∆γ;ψ
a+ f (x) , (19)
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and
HDα,β;ψb− f (x) = Iγ−α;ψb− ∆γ;ψ

b− f (x) , x ∈ [a, b] . (20)

We have that ([14])

∆γ,ψ
a+ f (x) =

(
1

ψ′ (x)

d

dx

)n
I
(1−β)(n−α);ψ
a+ f (x) , (21)

and

∆γ,ψ
b− f (x) =

(
− 1

ψ′ (x)

d

dx

)n
I
(1−β)(n−α);ψ
b− f (x) . (22)

In particular, when 0 < α < 1 and 0 ≤ β ≤ 1; γ = α+ β (1− α), we have that

HDα,β;ψa+ f (x) =
1

Γ (γ − α)

∫ x

a

ψ′ (t) (ψ (x)− ψ (t))
γ−α−1

∆γ;ψ
a+ f (t) dt, (23)

and

HDα,β;ψb− f (x) =
1

Γ (γ − α)

∫ b

x

ψ′ (t) (ψ (t)− ψ (x))
γ−α−1

∆γ;ψ
b− f (t) dt, (24)

x ∈ [a, b] .

Remark 1.1. ([14]) Let µ = n (1− β) + βα, then ⌈µ⌉ = n.

Assume that g (x) = I
(1−β)(n−α);ψ
a+ f (x) ∈ Cn ([a, b]), we have that

HDα,β;ψa+ f (x) = In−µ;ψa+

(
1

ψ′ (x)

d

dx

)n
g (x) . (25)

Thus
HDα,β;ψa+ f = CDµ;ψ

a+ g (x) = CDµ;ψ
a+

[
I
(1−β)(n−α);ψ
a+ f (x)

]
. (26)

Assume that w (x) = I
(1−β)(n−α);ψ
b− f (x) ∈ Cn ([a, b]). Hence

HDα,β;ψb− f (x) = I
β(n−α);ψ
b−

(
− 1

ψ′ (x)

d

dx

)n
w (x) = In−µ;ψb−

(
− 1

ψ′ (x)

d

dx

)n
w (x) .

(27)
Thus

HDα,β;ψb− f = CDµ;ψ
b− w (x) = CDµ;ψ

b−

(
I
(1−β)(n−α);ψ
b− f (x)

)
. (28)

We mention the simplified ψ-Hilfer fractional Taylor formulae:

Theorem 1.2. (see also [14]) Let ψ, f ∈ Cn ([a, b]), with ψ being increasing such
that ψ′ (x) ̸= 0 over [a, b], where n−1 < α < n, 0 ≤ β ≤ 1, and γ = α+β (n− α),
x ∈ [a, b]. Then

f (x)−
n−1∑
k=1

(ψ (x)− ψ (a))
γ−k

Γ (γ − k + 1)
f
[n−k]
ψ

(
I
(1−β)(n−α);ψ
a+ f

)
(a) =

1

Γ (α)

∫ x

a

ψ′ (t) (ψ (x)− ψ (t))
α−1 HDα,β;ψa+ f (t) dt, (29)
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and

f (x)−
n−1∑
k=1

(−1)
k
(ψ (b)− ψ (x))

γ−k

Γ (γ − k + 1)
f
[n−k]
ψ

(
I
(1−β)(n−α);ψ
b− f

)
(b) =

1

Γ (α)

∫ b

x

ψ′ (t) (ψ (t)− ψ (x))
α−1 HDα,β;ψb− f (t) dt. (30)

Here notice that
(
I
(1−β)(n−α);ψ
a+ f

)
(a) =

(
I
(1−β)(n−α);ψ
b− f

)
(b) = 0.

We also mention the following alternative ψ-Hilfer fractional Taylor formulae:

Theorem 1.3. ([4]) Let f, ψ ∈ Cn ([a, b]), with ψ being increasing, ψ′ (x) ̸= 0
over [a, b] ⊂ R, α > 0 : ⌈α⌉ = n, 0 ≤ β ≤ 1, µ = n (1− β) + βα. Assume that

g (x) = I
(1−β)(n−α);ψ
a+ f (x) , w (x) = I

(1−β)(n−α);ψ
b− f (x) ∈ Cn ([a, b]).

Then
1)

Iµ;ψa+
HDα,β;ψa+ f (x) = g (x)−

n−1∑
k=0

g
[k]
ψ (a)

k!
(ψ (x)− ψ (a))

k
, (31)

where

g
[k]
ψ (x) =

(
1

ψ′ (x)

d

dx

)k
g (x) , k = 0, 1, ..., n− 1,

and
2)

Iµ;ψb−
HDα,β;ψb− f (x) = w (x)−

n−1∑
k=0

(−1)
k
w

[k]
ψ (b)

k!
(ψ (b)− ψ (x))

k
, (32)

where

w
[k]
ψ (x) =

(
1

ψ′ (x)

d

dx

)k
w (x) , k = 0, 1, ..., n− 1; x ∈ [a, b] .

Next we list two Hilfer fractional derivatives representation formulae:

Theorem 1.4. ([4]) Let α > 0, α /∈ N, ⌈α⌉ = n, 0 < β < 1; f ∈ Cn ([a, b]),
[a, b] ⊂ R; and set γ = α + β (n− α). Assume further that ∆γ

a+f ∈ C ([a, b]) :

∆γ−j
a+ f (a) = 0, for j = 1, ..., n. Let also α > 0 : ⌈α⌉ = n, with γ = α+β (n− α),

and assume that α > α and γ > γ. Then

HDα,βa+ f (x) =
1

Γ (α− α)

∫ x

a

(x− t)
α−α−1 HDα,βa+ f (t) dt, (33)

∀ x ∈ [a, b] ,

furthermore HDα,βa+ f ∈ AC ([a, b]) (absolutely continuous functions) if α−α ≥
1 and HDα,βa+ f ∈ C ([a, b]) if α− α ∈ (0, 1).
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Theorem 1.5. ([4]) Let α > 0, α /∈ N, ⌈α⌉ = n, 0 < β < 1; f ∈ Cn ([a, b]),
[a, b] ⊂ R; and set γ = α + β (n− α). Assume further that ∆γ

b−f ∈ C ([a, b]) :

∆γ−j
b− f (b) = 0, j = 1, ..., n. Let also α > 0 : ⌈α⌉ = n, with γ = α + β (n− α),

and assume that α > α and γ > γ. Then

HDα,βb− f (x) =
1

Γ (α− α)

∫ b

x

(t− x)
α−α−1 HDα,βb− f (t) dt, (34)

∀ x ∈ [a, b] ,

furthermore HDα,βb− f ∈ AC ([a, b]) if α − α ≥ 1 and HDα,βb− f ∈ C ([a, b]) if
α− α ∈ (0, 1).

The fractional integral operator Iαa+f and Iαb−f , α > 0, are bounded in
Lp (a, b), 1 ≤ p ≤ ∞, that is∥∥Iαa+f∥∥p ≤ K ∥f∥p ,

∥∥Iαb−f∥∥p ≤ K ∥f∥p , (35)

where

K =
(b− a)

α

Γ (α+ 1)
. (36)

The left inequality (35) was proved by H.G. Hardy in one of his first papers,
see [8].

We continue this Background section with the following material from [5],
where the author introduced the genralized ψ-Prabhakar type of fractional cal-
culus and mixed it with the ψ-Hilfer fractional calculus.

So we consider the Prabhakar function (also known as the three parameter
Mittag-Laffler function), (see [7], p. 97; [6])

Eγα,β (z) =

∞∑
k=0

(γ)k
k!Γ (αk + β)

zk, (37)

where Γ is the gamma function; α, β, γ ∈ R : α, β > 0, z ∈ R, and (γ)k =
γ (γ + 1) ... (γ + k − 1). It is E0

α,β (z) =
1

Γ(β) .

Let a, b ∈ R, a < b and x ∈ [a, b]; f ∈ C ([a, b]) . Let also ψ ∈ C1 ([a, b]) which
is increasing. The left and right Prabhakar fractional integrals with respect to
ψ are defined as follows:(
eγ;ψρ,µ,ω,a+f

)
(x) =

∫ x

a

ψ′ (t) (ψ (x)− ψ (t))
µ−1

Eγρ,µ [ω (ψ (x)− ψ (t))
ρ
] f (t) dt,

(38)
and(
eγ;ψρ,µ,ω,b−f

)
(x) =

∫ b

x

ψ′ (t) (ψ (t)− ψ (x))
µ−1

Eγρ,µ [ω (ψ (t)− ψ (x))
ρ
] f (t) dt,

(39)
where ρ, µ > 0; γ, ω ∈ R.

Functions (38) and (39) are continuous ([5]).
Next, additionally, assume that ψ′ (x) ̸= 0 over [a, b] .



Vectorial Hilfer-Prabhakar-Hardy type fractional inequalities 321

Let ψ, f ∈ CN ([a, b]), where N = ⌈µ⌉, (⌈·⌉ is the ceiling of the number), 0 <
µ /∈ N. We define the ψ-Prabhakar-Caputo left and right fractional derivatives
of order µ as follows (x ∈ [a, b]):(

CDγ;ψ
ρ,µ,ω,a+f

)
(x) =

∫ x

a

ψ′ (t) (ψ (x)− ψ (t))
N−µ−1

E−γ
ρ,N−µ [ω (ψ (x)− ψ (t))

ρ
]

(
1

ψ′ (t)

d

dt

)N
f (t) dt, (40)

and (
CDγ;ψ

ρ,µ,ω,b−f
)
(x) = (−1)

N
∫ b

x

ψ′ (t) (ψ (t)− ψ (x))
N−µ−1

E−γ
ρ,N−µ [ω (ψ (t)− ψ (x))

ρ
]

(
1

ψ′ (t)

d

dt

)N
f (t) dt. (41)

One can write these (see (40), (41)) as(
CDγ;ψ

ρ,µ,ω,a+f
)
(x) =

(
e−γ;ψρ,N−µ,ω,a+f

[N ]
ψ

)
(x) , (42)

and (
CDγ;ψ

ρ,µ,ω,b−f
)
(x) = (−1)

N
(
e−γ;ψρ,N−µ,ω,b−f

[N ]
ψ

)
(x) , (43)

where

f
[N ]
ψ (x) = f

(N)
ψ f (x) :=

(
1

ψ′ (x)

d

dx

)N
f (x) , (44)

∀ x ∈ [a, b].
Functions (42) and (43) are continuous on [a, b].
Next we define the ψ-Prabhakar-Riemann Liouville left and right fractional

derivatives of order µ as follows (x ∈ [a, b]):(
RLDγ;ψ

ρ,µ,ω,a+f
)
(x) =

(
1

ψ′ (x)

d

dx

)N ∫ x

a

ψ′ (t) (ψ (x)− ψ (t))
N−µ−1

E−γ
ρ,N−µ [ω (ψ (x)− ψ (t))

ρ
] f (t) dt, (45)

and (
RLDγ;ψ

ρ,µ,ω,b−f
)
(x) =

(
− 1

ψ′ (x)

d

dx

)N ∫ b

x

ψ′ (t) (ψ (t)− ψ (x))
N−µ−1

E−γ
ρ,N−µ [ω (ψ (t)− ψ (x))

ρ
] f (t) dt. (46)

That is we have(
RLDγ;ψ

ρ,µ,ω,a+f
)
(x) =

(
1

ψ′ (x)

d

dx

)N (
e−γ;ψρ,N−µ,ω,a+f

)
(x) , (47)

and (
RLDγ;ψ

ρ,µ,ω,b−f
)
(x) =

(
− 1

ψ′ (x)

d

dx

)N (
e−γ;ψρ,N−µ,ω,b−f

)
(x) , (48)

∀ x ∈ [a, b].
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We define also the ψ-Hilfer-Prabhakar left and right fractional derivatives of
order µ and type 0 ≤ β ≤ 1, as follows(

HDγ,β;ψρ,µ,ω,a+f
)
(x) = e−γβ;ψρ,β(N−µ),ω,a+

(
1

ψ′ (x)

d

dx

)N
e
−γ(1−β);ψ
ρ,(1−β)(N−µ),ω,a+f (x) ,

(49)
and(

HDγ,β;ψρ,µ,ω,b−f
)
(x) = e−γβ;ψρ,β(N−µ),ω,b−

(
− 1

ψ′ (x)

d

dx

)N
e
−γ(1−β);ψ
ρ,(1−β)(N−µ),ω,b−f (x) ,

(50)
∀ x ∈ [a, b].

When β = 0, we get the Riemann-Liouville version, and when β = 1, we get
the Caputo version.

We call ξ = µ + β (N − µ), we have that N − 1 < µ ≤ µ + β (N − µ) ≤
µ+N − µ = N , hence ⌈ξ⌉ = N.

We can easily write that(
HDγ,β;ψρ,µ,ω,a+f

)
(x) = e−γβ;ψρ,ξ−µ,ω,a+

RLD
γ(1−β);ψ
ρ,ξ,ω,a+ f (x) , (51)

and (
HDγ,β;ψρ,µ,ω,b−f

)
(x) = e−γβ;ψρ,ξ−µ,ω,b−

RLD
γ(1−β);ψ
ρ,ξ,ω,b− f (x) , (52)

∀ x ∈ [a, b].
In this article we prove univariate and multivariate Hardy type inequalities

based on the above mentioned fractional background and convexity of functions.
Our work is inspired by [2], [3], [8], [10], [11].

2. Prerequisites

I) Here we follow [3], p. 441, see Chapter 22.
Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be measure spaces with positive σ-finite mea-

sures, and let ki : Ω1 × Ω2 → R be nonnegative measurable functions, ki (x, ·)
measurable on Ω2, and

Ki (x) =

∫
Ω2

ki (x, y) dµ2 (y) , for any x ∈ Ω1, (53)

i = 1, ...,m ∈ N. We assume that Ki (x) > 0 a.e. on Ω1 and the weight functions
are nonnegative measurable functions on the related set.

We consider measurable functions gi : Ω1 → R with the representation

gi (x) =

∫
Ω2

ki (x, y) fi (y) dµ2 (y) , (54)

where fi : Ω2 → R are measurable functions, i = 1, ...,m.
Here u stands for a weight function on Ω1 (u ≥ 0, which is measurable).
We will use the following general result:
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Theorem 2.1. ([3], p. 442) Assume that the functions (i = 1, 2, ...,m ∈ N)
x→

(
u (x) ki(x,y)Ki(x)

)
are integrable on Ω1, for each fixed y ∈ Ω2. Define ui on Ω2

by

ui (y) :=

∫
Ω1

u (x)
ki (x, y)

Ki (x)
dµ1 (x) <∞. (55)

Let pi > 1 :
m∑
i=1

1
pi

= 1. Let the functions Φi : R+ → R+, i = 1, ...,m, be convex

and increasing.
Then ∫

Ω1

u (x)

m∏
i=1

Φi

(∣∣∣∣ gi (x)Ki (x)

∣∣∣∣) dµ1 (x) ≤

m∏
i=1

(∫
Ω2

ui (y) Φi (|fi (y)|)pi dµ2 (y)

) 1
pi

, (56)

for all measurable functions fi : Ω2 → R (i = 1, ...,m) such that
(i) fi,Φi (|fi|)pi , are both ki (x, y) dµ2 (y) - integrable, µ1-a.e. in x ∈ Ω1,

i = 1, ...,m,
(ii) uiΦi (|fi|)pi is µ2-integrable, i = 1, ...,m,
and for all corresponding functions gi (i = 1, ...,m) given by (54).

II) Here we foolow [3], Chapter 27.
The basic setting follows:
Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be measure spaces with positive σ-finite mea-

sures, and let k : Ω1 × Ω2 → R be nonnegative measurable functions, k (x, ·)
measurable on Ω2, and

K (x) =

∫
Ω2

k (x, y) dµ2 (y) , for any x ∈ Ω1, (57)

i = 1, ...,m ∈ N. We assume that K (x) > 0 a.e. on Ω1 and the weight functions
are nonnegative measurable functions on the related set.

We consider measurable functions gi : Ω1 → R with the representation

gi (x) =

∫
Ω2

k (x, y) fi (y) dµ2 (y) , (58)

where fi : Ω2 → R are measurable functions, i = 1, ..., n.

Denote by x⃗ = x := (x1, ..., xn) ∈ Rn, g⃗ := (g1, ..., gn) and f⃗ := (f1, ..., fn).
We consider here Φ : Rn+ → R a convex function, which is increasing per

coordinate, i.e. if xi ≤ yi, i = 1, ..., n, then Φ (x1, ..., xn) ≤ Φ (y1, ..., yn) .
Next we may write

g⃗ (x) =

∫
Ω2

k (x, y) f⃗ (y) dµ2 (y) , (59)
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which means

(g1 (x) , ..., gn (x)) =

(∫
Ω2

k (x, y) f1 (y) dµ2 (y) , ...,

∫
Ω2

k (x, y) f1 (y) dµ2 (y)

)
.

(60)
Similarly, we may write

|⃗g (x)| =
∣∣∣∣∫

Ω2

k (x, y) f⃗ (y) dµ2 (y)

∣∣∣∣ , (61)

and we mean

(|g1 (x)| , ..., |gn (x)|)

=

(∣∣∣∣∫
Ω2

k (x, y) f1 (y) dµ2 (y)

∣∣∣∣ , ..., ∣∣∣∣∫
Ω2

k (x, y) fn (y) dµ2 (y)

∣∣∣∣) . (62)

We also can write that

|⃗g (x)| ≤
∫
Ω2

k (x, y)
∣∣∣f⃗ (y)∣∣∣ dµ2 (y) , (63)

and we mean the fact that

|gi (x)| ≤
∫
Ω2

k (x, y) |fi (y)| dµ2 (y) , (64)

for all i = 1, ..., n, etc.
More precisely here we follow:
Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be measure spaces with positive σ-finite mea-

sures, and let kj : Ω1 × Ω2 → R be nonnegative measurable functions, kj (x, ·)
measurable on Ω2, and

Kj (x) =

∫
Ω2

kj (x, y) dµ2 (y) , x ∈ Ω1, j = 1, ...,m. (65)

We suppose that Kj (x) > 0 a.e. on Ω1. Let the measurable functions gji : Ω1 →
R with the representation

gji (x) =

∫
Ω2

kj (x, y) fji (y) dµ2 (y) ,

written also as

g⃗j (x) =

∫
Ω2

kj (x, y) f⃗j (y) dµ2 (y) , (66)

where fji : Ω2 → R are measurable functions, i = 1, ..., n and j = 1, ...,m.
We denote above the function vectors g⃗j := (gj1, gj2, ..., gjn) and

f⃗j := (fj1, ..., fjn) , j = 1, ...,m.

We say f⃗j is integrable with respect to measure µ, iff all fji are integrable
with respect to µ.

We also consider here Φj : Rn+ → R, j = 1, ...,m, convex functions that are
increasing per coordinate. Again u is a weight function on Ω1.

We will use the following theorem
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Theorem 2.2. ([3], p. 628) Assume that the functions (j = 1, 2, ...,m ∈ N)
x→

(
u (x)

kj(x,y)
Kj(x)

)
are integrable on Ω1, for each fixed y ∈ Ω2. Define uj on Ω2

by

uj (y) :=

∫
Ω1

u (x)
kj (x, y)

Kj (x)
dµ1 (x) <∞. (67)

Let pj > 1 :
m∑
j=1

1
pj

= 1. Let the functions Φj : Rn+ → R+, j = 1, ...,m, be convex

and increasing per coordinate.
Then ∫

Ω1

u (x)

m∏
i=1

Φj

(∣∣∣∣ g⃗j (x)Kj (x)

∣∣∣∣) dµ1 (x) ≤

m∏
j=1

(∫
Ω2

uj (y) Φj

(∣∣∣f⃗j (y)∣∣∣)pj dµ2 (y)

) 1
pj

, (68)

under the assumptions:

(i) f⃗j ,Φj

(∣∣∣f⃗j∣∣∣)pj , are both kj (x, y) dµ2 (y) - integrable, µ1-a.e. in x ∈ Ω1,

j = 1, ...,m,

(ii) ujΦj

(∣∣∣f⃗j∣∣∣)pj is µ2-integrable, j = 1, ...,m.

III) We will also use from [3], Chapter 26, the following theorem:

Theorem 2.3. ([3], p. 598) Let ρ ∈ {1, ...,m} be fixed. Assume that the function

x→

u(x)
m∏

j=1
kj(x,y)

m∏
j=1

Kj(x)

 is integrable on Ω1, for each y ∈ Ω2. Define λm on Ω2 by

λm (y) :=

∫
Ω1


u (x)

m∏
j=1

kj (x, y)

m∏
j=1

Kj (x)

 dµ1 (x) <∞. (69)

Let the functions Φj : Rn+ → R+, j = 1, ...,m, be convex and increasing per
coordinate. Then ∫

Ω1

u (x)

m∏
j=1

Φj

(∣∣∣∣ g⃗j (x)Kj (x)

∣∣∣∣) dµ1 (x) ≤ (70)

 m∏
j=1
j ̸=ρ

∫
Ω2

Φj

(∣∣∣f⃗j (y)∣∣∣) dµ2 (y)

(∫
Ω2

Φρ

(∣∣∣f⃗ρ (y)∣∣∣)λm (y) dµ2 (y)

)
,

under the assumptions:

(i) f⃗j ,Φj

(∣∣∣f⃗j∣∣∣), are kj (x, y) dµ2 (y) - integrable, µ1-a.e. in x ∈ Ω1, j =

1, ...,m,
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(ii) λmΦρ

(∣∣∣f⃗ρ∣∣∣) ; Φ1

(∣∣∣f⃗1∣∣∣) , Φ2

(∣∣∣f⃗2∣∣∣), Φ3

(∣∣∣f⃗3∣∣∣) , ...,
̂

Φρ

(∣∣∣f⃗ρ∣∣∣), ..., Φm

(∣∣∣f⃗m∣∣∣),
are all µ2-integrable,

and for all corresponding functions gi given by (54). Above
̂

Φρ

(∣∣∣f⃗ρ∣∣∣) means

a missing item.

Above all symbols are as in (II).

3. Main Results

I)’ Here we apply Theorem 2.1.

Let here pi > 1 :
m∑
i=1

1
pi

= 1.

We present

Theorem 3.1. Here i = 1, ...,m. Let αi > 0, αi /∈ N, ⌈αi⌉ = ni, 0 < βi < 1;
fi ∈ Cni ([a, b]), [a, b] ⊂ R; and set γi = αi + βi (ni − αi). Assume further that

∆γi
a+fi ∈ C ([a, b]) : ∆γi−ji

a+ fi (a) = 0, for ji = 1, ..., ni. Let also αi > 0 : ⌈αi⌉ =
ni, with γi = αi + βi (ni − αi), and assume that αi > αi and γi > γi.

Let also Φi : R+ → R+, i = 1, ...,m, be convex and increasing functions;
u ≥ 0 is a weight measurable function on [a, b]. We assume that

ui (y) = (αi − αi)

∫ b

y

u (x)
(x− y)

(αi−αi)−1

(x− a)
(αi−αi)

dx <∞, (71)

for all a < y < b and ui is Lebesgue integrable.
Then ∫ b

a

u (x)

m∏
i=1

Φi


∣∣∣HDαi,βi

a+ fi (x)
∣∣∣

(x− a)
αi−αi

Γ (αi − αi + 1)

 dx ≤

m∏
i=1

(∫ b

a

ui (y)
(
Φi

(∣∣∣HDαi,βi

a+ fi (y)
∣∣∣))pi dy) 1

pi

. (72)

Proof. By Theorems 1.4, 2.1 and from [2], pp. 31-33, see relations there (2.40)-
(2.47). □

Remark 3.1. (to Theorem 3.1) One can have Φi =identity map or ex, or
Φi (x) = xpi , x ∈ R+, pi > 1, etc.

To save space in this work we skip these interesting applications here and
later.

We continue with

Theorem 3.2. Here i = 1, ...,m. Let αi > 0, αi /∈ N, ⌈αi⌉ = ni, 0 < βi < 1;
fi ∈ Cni ([a, b]), [a, b] ⊂ R; and set γi = αi + βi (ni − αi). Assume further that

∆γi
b−fi ∈ C ([a, b]) : ∆γi−ji

b− fi (b) = 0, ji = 1, ..., ni. Let also αi > 0 : ⌈αi⌉ = ni,
with γi = αi + βi (ni − αi), and assume that αi > αi and γi > γi. Let also
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Φi : R+ → R+, i = 1, ...,m, be convex and increasing functions; u ≥ 0 is a
weight measurable function on [a, b]. We assume that

ui (y) := (αi − αi)

∫ y

a

u (x)
(y − x)

(αi−αi)−1

(b− x)
(αi−αi)

dx <∞, (73)

for all a < y < b and ui is Lebesgue integrable.
Then ∫ b

a

u (x)

m∏
i=1

Φi


∣∣∣HDαi,βi

b− fi (x)
∣∣∣

(b− x)
αi−αi

Γ (αi − αi + 1)

 dx ≤

m∏
i=1

(∫ b

a

ui (y)
(
Φi

(∣∣∣HDαi,βi

b− fi (y)
∣∣∣))pi dy) 1

pi

. (74)

Proof. By Theorems 1.5, 2.1 and from [2], pp. 35-37, see relations there (2.58)-
(2.67). □

We continue with

Theorem 3.3. Here i = 1, ...,m. Let fi ∈ Cni ([a, b]), θ := max {n1, ..., nm},
ψ ∈ Cθ ([a, b]), with ψ being increasing: ψ′ (x) ̸= 0 over [a, b], where ni − 1 <
αi < ni, 0 ≤ βi ≤ 1, and γi = αi + βi (ni − αi).

Assume that f
[ni−ki]
iψ

(
I
(1−βi)(ni−αi);ψ
a+ fi

)
(a) = 0, ki = 1, ..., ni − 1; i =

1, ...,m.
Let also Φi : R+ → R+, i = 1, ...,m, be convex and increasing functions;

u ≥ 0 is a weight measurable function on [a, b]. We assume that

uψi (y) = αiψ
′ (y)

∫ b

y

u (x)
(ψ (x)− ψ (y))

αi−1

(ψ (x)− ψ (a))
αi

dx <∞, (75)

for all a < y < b and uψi is Lebesgue integrable.
Then ∫ b

a

u (x)

m∏
i=1

Φi

(
|fi (x)|

(ψ (x)− ψ (a))
αi

Γ (αi + 1)

)
dx ≤

m∏
i=1

(∫ b

a

uψi (y) Φi

(∣∣∣(HDαi,βi;ψ
a+ fi

)
(y)
∣∣∣)pi dy) 1

pi

, (76)

true for continuous HDαi,βi;ψ
a+ fi, i = 1, ...,m.

Proof. From (29) we get:

fi (x) =
1

Γ (αi)

∫ x

a

ψ′ (t) (ψ (x)− ψ (t))
αi−1 HDαi,βi;ψ

a+ fi (t) dt, (77)

∀ x ∈ [a, b] ; i = 1, ...,m.
Then we apply Theorem 2.1, along with [2], pp. 47-49, see the relations there

(2.107)-(2.119). □
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We also give

Theorem 3.4. Here i = 1, ...,m. Let fi ∈ Cni ([a, b]), θ := max {n1, ..., nm},
ψ ∈ Cθ ([a, b]), with ψ being increasing: ψ′ (x) ̸= 0 over [a, b], where ni − 1 <
αi < ni, 0 ≤ βi ≤ 1, and γi = αi + βi (ni − αi).

Assume that f
[ni−ki]
iψ

(
I
(1−βi)(ni−αi);ψ
b− fi

)
(b) = 0, ki = 1, ..., ni − 1; i =

1, ...,m.
Let also Φi : R+ → R+, i = 1, ...,m, be convex and increasing functions;

u ≥ 0 is a weight measurable function on [a, b]. We assume that

uψi (y) = αiψ
′ (y)

∫ y

a

u (x)
(ψ (y)− ψ (x))

αi−1

(ψ (b)− ψ (x))
αi

dx <∞, (78)

for all a < y < b and uψi is Lebesgue integrable.
Then ∫ b

a

u (x)

m∏
i=1

Φi

(
|fi (x)|

(ψ (b)− ψ (x))
αi

Γ (αi + 1)

)
dx ≤

m∏
i=1

(∫ b

a

uψi (y) Φi

(∣∣∣(HDαi,βi;ψ
b− fi

)
(y)
∣∣∣)pi dy) 1

pi

, (79)

true for continuous HDαi,βi;ψ
b− fi, i = 1, ...,m.

Proof. From (30) we get:

fi (x) =
1

Γ (αi)

∫ b

x

ψ′ (t) (ψ (t)− ψ (x))
αi−1 HDαi,βi;ψ

b− fi (t) dt, (80)

∀ x ∈ [a, b] ; i = 1, ...,m.
Then we apply Theorem 2.1, along with [2], pp. 51-53, see the relations there

(2.132)-(2.142). □

We present

Theorem 3.5. Here i = 1, ...,m. Let fi ∈ Cni ([a, b]), θ := max {n1, ..., nm},
ψ ∈ Cθ ([a, b]), with ψ being increasing: ψ′ (x) ̸= 0 over [a, b] ⊂ R, αi >
0 : ⌈αi⌉ = ni, 0 ≤ βi ≤ 1, µi = ni (1− βi) + βiαi. Assume that gi (x) :=

I
(1−βi)(ni−αi);ψ
a+ fi (x) ∈ Cni ([a, b]), and g

[ki]
iψ (a) = 0, ki = 0, ..., ni − 1, where

g
[ki]
iψ (x) =

(
1

ψ′(x)
d
dx

)ki
gi (x) , ki = 0, 1, ..., ni − 1.

Let also Φi : R+ → R+, i = 1, ...,m, be convex and increasing functions;
u ≥ 0 is a weight measurable function on [a, b]. We assume that

λψi (y) = µiψ
′ (y)

∫ b

y

u (x)
(ψ (x)− ψ (y))

µi−1

(ψ (x)− ψ (a))
µi

dx <∞, (81)

for all a < y < b and λψi is Lebesgue integrable.
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Then ∫ b

a

u (x)

m∏
i=1

Φi

(
|gi (x)|

(ψ (x)− ψ (a))
µi
Γ (µi + 1)

)
dx ≤

m∏
i=1

(∫ b

a

λψi (y) Φi

(∣∣∣(HDαi,βi;ψ
a+ fi

)
(y)
∣∣∣)pi dy) 1

pi

, (82)

true for continuous HDαi,βi;ψ
a+ fi, i = 1, ...,m.

Proof. From (31) we get that

gi (x) = Iµi;ψ
a+

HDαi,βi;ψ
a+ fi (x) , (83)

∀ x ∈ [a, b] ; i = 1, ...,m.
Then we apply Theorem 2.1, along with [2], pp. 47-49, see the relations there

(2.107)-(2.119). □

We also give

Theorem 3.6. Here i = 1, ...,m. Let fi ∈ Cni ([a, b]), θ := max {n1, ..., nm},
ψ ∈ Cθ ([a, b]), with ψ being increasing, ψ′ (x) ̸= 0 over [a, b] ⊂ R, αi >
0 : ⌈αi⌉ = ni, 0 ≤ βi ≤ 1, µi = ni (1− βi) + βiαi. Assume that wi (x) :=

I
(1−βi)(ni−αi);ψ
b− fi (x) ∈ Cni ([a, b]), and w

[ki]
iψ (b) = 0, ki = 0, ..., ni − 1, where

w
[ki]
iψ (x) =

(
1

ψ′(x)
d
dx

)ki
wi (x) , ki = 0, 1, ..., ni − 1.

Let also Φi : R+ → R+, i = 1, ...,m, be convex and increasing functions;
u ≥ 0 is a weight measurable function on [a, b]. We assume that

λ
ψ

i (y) = µiψ
′ (y)

∫ y

a

u (x)
(ψ (y)− ψ (x))

µi−1

(ψ (b)− ψ (x))
µi

dx <∞, (84)

for all a < y < b and λ
ψ

i is Lebesgue integrable.
Then ∫ b

a

u (x)

m∏
i=1

Φi

(
|wi (x)|

(ψ (b)− ψ (x))
µi
Γ (µi + 1)

)
dx ≤

m∏
i=1

(∫ b

a

λ
ψ

i (y) Φi

(∣∣∣(HDαi,βi;ψ
b− fi

)
(y)
∣∣∣)pi dy) 1

pi

, (85)

true for continuous HDαi,βi;ψ
b− fi, i = 1, ...,m.

Proof. From (32) we get that

wi (x) = Iµi;ψ
b−

HDαi,βi;ψ
b− fi (x) , (86)

∀ x ∈ [a, b] , i = 1, ...,m.
Then we apply Theorem 2.1, along with [2], pp. 51-53, see the relations there

(2.132)-(2.142). □

We continue with
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Theorem 3.7. Here i = 1, ...,m. Let ni − 1 < αi < ni, ni ∈ N, I = [a, b] ⊂ R
and fi ∈ Cni ([a, b]), θ := max {n1, ..., nm}, ψ ∈ Cθ ([a, b]) , ψ is increasing and
ψ′ (x) ̸= 0, for all x ∈ I. Here 0 ≤ βi ≤ 1 and γi = αi + βi (ni − αi). Assume

that ∆γi;ψ
a+ fi,∆

γi;ψ
b− fi ∈ C ([a, b]) , i = 1, ...,m.

Let also Φi : R+ → R+, i = 1, ...,m, be convex and increasing functions;
u ≥ 0 is a weight measurable function on [a, b]. We assume that

λψi+ (y) = (γi − αi)ψ
′ (y)

∫ b

y

u (x)
(ψ (x)− ψ (y))

(γi−αi)−1

(ψ (x)− ψ (a))
(γi−αi)

dx <∞, (87)

for all a < y < b and λψi+ is Lebesgue integrable; and

λψi− (y) = (γi − αi)ψ
′ (y)

∫ y

a

u (x)
(ψ (y)− ψ (x))

(γi−αi)−1

(ψ (b)− ψ (x))
(γi−αi)

dx <∞, (88)

for all a < y < b and λψi− is Lebesgue integrable.
Then
i) ∫ b

a

u (x)

m∏
i=1

Φi


∣∣∣HDαi,βi;ψ

a+ fi (x)
∣∣∣

(ψ (x)− ψ (a))
γi−αi

Γ (γi − αi + 1)

 dx ≤

m∏
i=1

(∫ b

a

λψi+ (y) Φi

(∣∣∣(∆γi;ψ
a+ fi

)
(y)
∣∣∣)pi dy) 1

pi

, (89)

and
ii) ∫ b

a

u (x)

m∏
i=1

Φi


∣∣∣HDαi,βi;ψ

b− fi (x)
∣∣∣

(ψ (b)− ψ (x))
γi−αi

Γ (γi − αi + 1)

 dx ≤

m∏
i=1

(∫ b

a

λψi− (y) Φi

(∣∣∣(∆γi;ψ
b− fi

)
(y)
∣∣∣)pi dy) 1

pi

. (90)

Proof. By (19) and (20), respectively, we have that

HDαi,βi;ψ
a+ fi (x) = Iγi−αi;ψ

a+ ∆γi;ψ
a+ fi (x) , (91)

and
HDαi,βi;ψ

b− fi (x) = Iγi−αi;ψ
b− ∆γi;ψ

b− fi (x) , (92)

∀ x ∈ [a, b] , i = 1, ...,m.
Then, we apply Theorem 2.1 twice, along with [2], pp. 47-49, see there

(2.107)-(2.119), and [2], pp. 51-53, see there (2.132)-(2.142), respectively. □

We make
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Remark 3.2. We pick Ω1 = Ω2 = (a, b), dµ1 (x) = dx, dµ2 (y) = dy, the
Lebesgue measure. Here i = 1, ...,m. Let ρi, µi, γi, ωi > 0, and fi ∈ C ([a, b]),
with ψ ∈ C1 ([a, b]) which is increasing.

We have that (x ∈ [a, b]): (
eγi;ψρi,µi,ωi,a+fi

)
(x) =∫ x

a

ψ′ (t) (ψ (x)− ψ (t))
µi−1

Eγiρi,µi
[ωi (ψ (x)− ψ (t))

ρi ] fi (t) dt (93)

=

∫ b

a

χ(a,x] (t)ψ
′ (t) (ψ (x)− ψ (t))

µi−1
Eγiρi,µi

[ωi (ψ (x)− ψ (t))
ρi ] fi (t) dt,

where χ is the characteristic function.
So, we choose here

ki (x, t) := χ(a,x] (t)ψ
′ (t) (ψ (x)− ψ (t))

µi−1
Eγiρi,µi

[ωi (ψ (x)− ψ (t))
ρi ] , (94)

i = 1, ...,m.
That is

ki (x, y) =

 ψ′ (y) (ψ (x)− ψ (y))
µi−1

Eγiρi,µi
[ωi (ψ (x)− ψ (y))

ρi ] , a < y ≤ x,

0, x < y < b,
(95)

i = 1, ...,m.
Therefore we obtain

Ki (x) =

∫ b

a

χ(a,x] (y)ψ
′ (y) (ψ (x)− ψ (y))

µi−1
Eγiρi,µi

[ωi (ψ (x)− ψ (y))
ρi ] dy =∫ x

a

ψ′ (y) (ψ (x)− ψ (y))
µi−1

Eγiρi,µi
[ωi (ψ (x)− ψ (y))

ρi ] dy =

(by [5])

∞∑
ki=0

(γi)ki ω
ki
i

ki!Γ (ρiki + µi)

∫ x

a

ψ′ (y) (ψ (x)− ψ (y))
(ρiki+µi)−1

dy =

∞∑
ki=0

(γi)ki
ki!Γ (ρiki + µi)

ωkii (ψ (x)− ψ (a))
(ρiki+µi)

(ρiki + µi)
= (96)

(ψ (x)− ψ (a))
µi

∞∑
ki=0

(γi)ki
ki!Γ (ρiki + µi + 1)

(ωi (ψ (x)− ψ (a))
ρi)

ki =

(ψ (x)− ψ (a))
µi Eγiρi,µi+1 [ωi (ψ (x)− ψ (a))

ρi ] .

That is

Ki (x) = (ψ (x)− ψ (a))
µi Eγiρi,µi+1 [ωi (ψ (x)− ψ (a))

ρi ] , (97)

∀ x ∈ [a, b], i = 1, ...,m.
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Notice that

ki (x, y)

Ki (x)
=
χ(a,x] (y)ψ

′ (y) (ψ (x)− ψ (y))
µi−1

Eγiρi,µi
[ωi (ψ (x)− ψ (y))

ρi ]

(ψ (x)− ψ (a))
µi Eγiρi,µi+1 [ωi (ψ (x)− ψ (a))

ρi ]
(98)

=

(
χ(a,x] (y) (ψ

′ (y))
(ψ (x)− ψ (y))

µi−1

(ψ (x)− ψ (a))
µi

)
(

Eγiρi,µi
[ωi (ψ (x)− ψ (y))

ρi ]

Eγiρi,µi+1 [ωi (ψ (x)− ψ (a))
ρi ]

)
,

∀ x, y ∈ [a, b] .
Therefore for (55), we get for appropiate weight u ≥ 0 that the Lebesgue

integrable

uψi+ (y) = ψ′ (y)

∫ b

y

u (x)

(
(ψ (x)− ψ (y))

µi−1

(ψ (x)− ψ (a))
µi

)
(

Eγiρi,µi
[ωi (ψ (x)− ψ (y))

ρi ]

Eγiρi,µi+1 [ωi (ψ (x)− ψ (a))
ρi ]

)
dx <∞, (99)

for all a < y < b.
Based on Theorem 2.1 and the above, we have established the following gen-

eralized Prabhakar left fractional Hardy type inequality:

Theorem 3.8. Here i = 1, ...,m. Let ρi, µi, γi, ωi > 0, and fi ∈ C ([a, b]), with

ψ ∈ C1 ([a, b]) which is increasing. The function uψi+ (y) ∈ R by assumption, ∀
y ∈ [a, b], is given by (99). Here Φi : R+ → R+, i = 1, ...,m, are convex and
increasing functions. Then∫ b

a

u (x)

m∏
i=1

Φi


∣∣∣(eγi;ψρi,µi,ωi,a+fi

)
(x)
∣∣∣

(ψ (x)− ψ (a))
µi Eγiρi,µi+1 [ωi (ψ (x)− ψ (a))

ρi ]

 dx ≤

m∏
i=1

(∫ b

a

uψi+ (u) Φi (|fi (y)|)pi dy

) 1
pi

. (100)

We make

Remark 3.3. We pick Ω1 = Ω2 = (a, b), dµ1 (x) = dx, dµ2 (y) = dy, the
Lebesgue measure. Here i = 1, ...,m. Let ρi, µi, γi, ωi > 0, and fi ∈ C ([a, b]),
with ψ ∈ C1 ([a, b]) which is increasing.

We have that (x ∈ [a, b]): (
eγi;ψρi,µi,ωi,b−fi

)
(x) =∫ b

x

ψ′ (t) (ψ (t)− ψ (x))
µi−1

Eγiρi,µi
[ωi (ψ (t)− ψ (x))

ρi ] fi (t) dt (101)
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=

∫ b

a

χ[x,b) (t)ψ
′ (t) (ψ (t)− ψ (x))

µi−1
Eγiρi,µi

[ωi (ψ (t)− ψ (x))
ρi ] fi (t) dt,

where χ is the characteristic function.
So, we choose here

ki (x, t) := χ[x,b) (t)ψ
′ (t) (ψ (t)− ψ (x))

µi−1
Eγiρi,µi

[ωi (ψ (t)− ψ (x))
ρi ] , (102)

i = 1, ...,m.
That is

ki (x, y) =

 ψ′ (y) (ψ (y)− ψ (x))
µi−1

Eγiρi,µi
[ωi (ψ (y)− ψ (x))

ρi ] , x ≤ y < b,

0, a < y < x.
(103)

i = 1, ...,m.
Therefore we obtain

Ki (x) =

∫ b

a

χ[x,b) (y)ψ
′ (y) (ψ (y)− ψ (x))

µi−1
Eγiρi,µi

[ωi (ψ (y)− ψ (x))
ρi ] dy =∫ b

x

ψ′ (y) (ψ (y)− ψ (x))
µi−1

Eγiρi,µi
[ωi (ψ (y)− ψ (x))

ρi ] dy =

(by [5])

∞∑
ki=0

(γi)ki ω
ki
i

ki!Γ (ρiki + µi)

∫ b

x

ψ′ (y) (ψ (y)− ψ (x))
(ρiki+µi)−1

dy =

∞∑
ki=0

(γi)ki
ki!Γ (ρiki + µi)

ωkii (ψ (b)− ψ (x))
(ρiki+µi)

(ρiki + µi)
= (104)

(ψ (b)− ψ (x))
µi

∞∑
ki=0

(γi)ki
ki!Γ (ρiki + µi + 1)

(ωi (ψ (b)− ψ (x))
ρi)

ki =

(ψ (b)− ψ (x))
µi Eγiρi,µi+1 [ωi (ψ (b)− ψ (x))

ρi ] .

That is
Ki (x) = (ψ (b)− ψ (x))

µi Eγiρi,µi+1 [ωi (ψ (b)− ψ (x))
ρi ] , (105)

∀ x ∈ [a, b], i = 1, ...,m.
Notice that

ki (x, y)

Ki (x)
=
χ[x,b) (y)ψ

′ (y) (ψ (y)− ψ (x))
µi−1

Eγiρi,µi
[ωi (ψ (y)− ψ (x))

ρi ]

(ψ (b)− ψ (x))
µi Eγiρi,µi+1 [ωi (ψ (b)− ψ (x))

ρi ]

=

(
χ[x,b) (y) (ψ

′ (y))
(ψ (y)− ψ (x))

µi−1

(ψ (b)− ψ (x))
µi

)
(

Eγiρi,µi
[ωi (ψ (y)− ψ (x))

ρi ]

Eγiρi,µi+1 [ωi (ψ (b)− ψ (x))
ρi ]

)
, (106)

∀ x, y ∈ [a, b] .
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Therefore for (55), we get for appropiate weight u ≥ 0 that the Lebesgue
integrable:

uψi− (y) = ψ′ (y)

∫ y

a

u (x)

(
(ψ (y)− ψ (x))

µi−1

(ψ (b)− ψ (x))
µi

)
(

Eγiρi,µi
[ωi (ψ (y)− ψ (x))

ρi ]

Eγiρi,µi+1 [ωi (ψ (b)− ψ (x))
ρi ]

)
dx <∞, (107)

for all a < y < b.
Based on Theorem 2.1 and the above, we have established the following gen-

eralized Prabhakar right fractional Hardy type inequality:

Theorem 3.9. Here i = 1, ...,m. Let ρi, µi, γi, ωi > 0, and fi ∈ C ([a, b]), with

ψ ∈ C1 ([a, b]) which is increasing. The function uψi− (y) ∈ R by assumption, ∀
y ∈ [a, b], is given by (107). Here Φi : R+ → R+, i = 1, ...,m, are convex and
increasing functions. Then∫ b

a

u (x)

m∏
i=1

Φi


∣∣∣(eγi;ψρi,µi,ωi,b−fi

)
(x)
∣∣∣

(ψ (b)− ψ (x))
µi Eγiρi,µi+1 [ωi (ψ (b)− ψ (x))

ρi ]

 dx ≤

m∏
i=1

(∫ b

a

uψi− (y) Φi (|fi (y)|)pi dy

) 1
pi

. (108)

We continue with left and right ψ-Prabhakar-Caputo Hardy fractional in-
equalities:

Theorem 3.10. Here i = 1, ...,m. Let ρi, µi, ωi > 0, γi < 0, and fi ∈
CNi ([a, b]), Ni = ⌈µi⌉, µi /∈ N; θ := max (N1, ..., Nm), ψ ∈ Cθ ([a, b]) , ψ is in-

creasing with ψ′ (x) ̸= 0 over [a, b]. Set f
[Ni]
iψ (x) =

(
1

ψ′(x)
d
dx

)Ni

fi (x), x ∈ [a, b].

We assume that the weight function u ≥ 0 is such that

Cλψi+ (y) := ψ′ (y)

∫ b

y

u (x)

(
(ψ (x)− ψ (y))

(Ni−µi)−1

(ψ (x)− ψ (a))
(Ni−µi)

)
(

E−γi
ρi,Ni−µi

[ωi (ψ (x)− ψ (y))
ρi ]

E−γi
ρi,Ni−µi+1 [ωi (ψ (x)− ψ (a))

ρi ]

)
dx <∞, (109)

for all a < y < b, which is a Lebesgue integrable function.
Here Φi : R+ → R+, i = 1, ...,m, are convex and increasing functions. Then∫ b

a

u (x)

m∏
i=1

Φi


∣∣∣(CDγi;ψ

ρi,µi,ωi,a+fi

)
(x)
∣∣∣

(ψ (x)− ψ (a))
Ni−µi E−γi

ρi,Ni−µi+1 [ωi (ψ (x)− ψ (a))
ρi ]

 dx ≤

m∏
i=1

(∫ b

a

Cλψi+ (y) Φi

(∣∣∣f [Ni]
iψ (y)

∣∣∣)pi dy) 1
pi

. (110)
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Proof. By (42) we have that(
CDγi;ψ

ρi,µi,ωi,a+fi

)
(x) =

(
e−γi;ψρi,Ni−µi,ωi,a+

f
[Ni]
iψ

)
(x) , (111)

∀ x ∈ [a, b], i = 1, ...,m.
We apply Theorem 3.8. □

Theorem 3.11. Here i = 1, ...,m. Let ρi, µi, ωi > 0, γi < 0, and fi ∈
CNi ([a, b]), Ni = ⌈µi⌉, µi /∈ N; θ := max (N1, ..., Nm), ψ ∈ Cθ ([a, b]) , ψ is in-

creasing with ψ′ (x) ̸= 0 over [a, b]. Set f
[Ni]
iψ (x) =

(
1

ψ′(x)
d
dx

)Ni

fi (x), x ∈ [a, b].

We assume that the weight function u ≥ 0 is such that

Cλψi− (y) := ψ′ (y)

∫ y

a

u (x)

(
(ψ (y)− ψ (x))

(Ni−µi)−1

(ψ (b)− ψ (x))
(Ni−µi)

)
(

E−γi
ρi,Ni−µi

[ωi (ψ (y)− ψ (x))
ρi ]

E−γi
ρi,Ni−µi+1 [ωi (ψ (b)− ψ (x))

ρi ]

)
dx <∞, (112)

for all a < y < b, which is integrable.
Here Φi : R+ → R+, i = 1, ...,m, are convex and increasing functions. Then∫ b

a

u (x)

m∏
i=1

Φi


∣∣∣(CDγi;ψ

ρi,µi,ωi,b−fi

)
(x)
∣∣∣

(ψ (b)− ψ (x))
Ni−µi E−γi

ρi,Ni−µi+1 [ωi (ψ (b)− ψ (x))
ρi ]

 dx ≤

m∏
i=1

(∫ b

a

Cλψi− (y) Φi

(∣∣∣f [Ni]
iψ (y)

∣∣∣)pi dy) 1
pi

. (113)

Proof. By (43) we have that(
CDγi;ψ

ρi,µi,ωi,b−fi

)
(x) = (−1)

Ni

(
e−γi;ψρi,Ni−µi,ωi,b−f

[Ni]
iψ

)
(x) , (114)

∀ x ∈ [a, b], i = 1, ...,m.
We apply Theorem 3.9. □

Next we present left and right ψ-Hilfer-Prabhakar Hardy fractional inequali-
ties:

Theorem 3.12. Here i = 1, ...,m. Let ρi, µi, ωi > 0, γi < 0, and fi ∈
CNi ([a, b]), Ni = ⌈µi⌉, µi /∈ N; θ := max (N1, ..., Nm), ψ ∈ Cθ ([a, b]) , ψ is in-
creasing with ψ′ (x) ̸= 0 over [a, b]. Here 0 ≤ βi ≤ 1 and ξi = µi + βi (Ni − µi).

We assume that RLD
γi(1−βi);ψ
ρi,ξi,ωi,a+

fi ∈ C ([a, b]), i = 1, ...,m. We assume further
that the weight function u ≥ 0 is such that

Pλψi+ (y) := ψ′ (y)

∫ b

y

u (x)

(
(ψ (x)− ψ (y))

(ξi−µi)−1

(ψ (x)− ψ (a))
(ξi−µi)

)
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E−γiβi

ρi,ξi−µi
[ωi (ψ (x)− ψ (y))

ρi ]

E−γiβi

ρi,ξi−µi+1 [ωi (ψ (x)− ψ (a))
ρi ]

)
dx <∞, (115)

for all a < y < b, which is integrable.
Here Φi : R+ → R+, i = 1, ...,m, are convex and increasing functions. Then∫ b

a

u (x)

m∏
i=1

Φi


∣∣∣(HDγi,βi;ψ

ρi,µi,ωi,a+fi

)
(x)
∣∣∣

(ψ (x)− ψ (a))
ξi−µi E−γiβi

ρi,ξi−µi+1 [ωi (ψ (x)− ψ (a))
ρi ]

 dx ≤

m∏
i=1

(∫ b

a

Pλψi+ (y) Φi

(∣∣∣RLDγi(1−βi);ψ
ρi,ξi,ωi,a+

fi (y)
∣∣∣)pi dy) 1

pi

. (116)

Proof. By (51) we have that(
HDγi,βi;ψ

ρi,µi,ωi,a+fi

)
(x) = e−γiβi;ψ

ρi,ξi−µi,ωi,a+
RLD

γi(1−βi);ψ
ρi,ξi,ωi,a+

fi (x) , (117)

∀ x ∈ [a, b], i = 1, ...,m.
We apply Theorem 3.8. □

Theorem 3.13. Here i = 1, ...,m. Let ρi, µi, ωi > 0, γi < 0, and fi ∈
CNi ([a, b]), Ni = ⌈µi⌉, µi /∈ N; θ := max (N1, ..., Nm), ψ ∈ Cθ ([a, b]) , ψ is in-
creasing with ψ′ (x) ̸= 0 over [a, b]. Here 0 ≤ βi ≤ 1 and ξi = µi + βi (Ni − µi).

We assume that RLD
γi(1−βi);ψ
ρi,ξi,ωi,b−fi ∈ C ([a, b]), i = 1, ...,m. We assume further

that the weight function u ≥ 0 is such that

Pλψi− (y) := ψ′ (y)

∫ y

a

u (x)

(
(ψ (y)− ψ (x))

(ξi−µi)−1

(ψ (b)− ψ (x))
(ξi−µi)

)
(

E−γiβi

ρi,ξi−µi
[ωi (ψ (y)− ψ (x))

ρi ]

E−γiβi

ρi,ξi−µi+1 [ωi (ψ (b)− ψ (x))
ρi ]

)
dx <∞, (118)

for all a < y < b, which is integrable.
Here Φi : R+ → R+, i = 1, ...,m, are convex and increasing functions. Then∫ b

a

u (x)

m∏
i=1

Φi


∣∣∣(HDγi,βi;ψ

ρi,µi,ωi,b−fi

)
(x)
∣∣∣

(ψ (b)− ψ (x))
ξi−µi E−γiβi

ρi,ξi−µi+1 [ωi (ψ (b)− ψ (x))
ρi ]

 dx ≤

m∏
i=1

(∫ b

a

Pλψi− (y) Φi

(∣∣∣RLDγi(1−βi);ψ
ρi,ξi,ωi,b−fi (y)

∣∣∣pi) dy) 1
pi

. (119)

Proof. By (52) we have that(
HDγi,βi;ψ

ρi,µi,ωi,b−fi

)
(x) = e−γiβi;ψ

ρi,ξi−µi,ωi,b−
RLD

γi(1−βi);ψ
ρi,ξi,ωi,b−fi (x) , (120)

∀ x ∈ [a, b], i = 1, ...,m.
We apply Theorem 3.9. □



Vectorial Hilfer-Prabhakar-Hardy type fractional inequalities 337

II)’ Next we apply Theorem 2.2.
We present the following result.

Theorem 3.14. Here j = 1, ...,m. Let ρj , µj , γj , ωj > 0, and fji ∈ C ([a, b]),
i = 1, ..., n; with ψ ∈ C1 ([a, b]) , which is increasing. For appropiate weight
u ≥ 0, we assume that

uψj+ (y) := ψ′ (y)

∫ b

y

u (x)

(
(ψ (x)− ψ (y))

µj−1

(ψ (x)− ψ (a))
µj

)
(

E
γj
ρj ,µj [ωj (ψ (x)− ψ (y))

ρj ]

E
γj
ρj ,µj+1 [ωj (ψ (x)− ψ (a))

ρj ]

)
dx <∞, (121)

for all a < y < b, which is integrable.

Let pj > 1 :
m∑
j=1

1
pj

= 1. Let also the functions Φj : Rn+ → R+, j = 1, ...,m, be

convex and increasing per coordinate. Then

∫ b

a

u (x)

m∏
i=1

Φj


∣∣∣∣(−−−−−−−−→e

γj :ψ
ρj,µj,ωj,a+fj

)
(x)

∣∣∣∣
(ψ (x)− ψ (a))

µj E
γj
ρj ,µj+1 [ωj (ψ (x)− ψ (a))

ρj ]

 dx ≤

m∏
j=1

(∫ b

a

uψj+ (y) Φj

(∣∣∣−→fj (y)∣∣∣)pj dy)
1
pj

. (122)

Proof. By Theorem 2.2, see also Remark 3.2. □

We continue with

Theorem 3.15. Here j = 1, ...,m. Let ρj , µj , γj , ωj > 0, and fji ∈ C ([a, b]),
i = 1, ..., n; with ψ ∈ C1 ([a, b]) , which is increasing. For appropiate weight
u ≥ 0, we assume that

uψj− (y) := ψ′ (y)

∫ y

a

u (x)

(
(ψ (y)− ψ (x))

µj−1

(ψ(b)− ψ (x))
µj

)
(

E
γj
ρj ,µj [ωj (ψ (y)− ψ (x))

ρj ]

E
γj
ρj ,µj+1 [ωj (ψ (b)− ψ (x))

ρj ]

)
dx <∞, (123)

for all a < y < b, which is integrable.

Let pj > 1 :
m∑
j=1

1
pj

= 1. Let also the functions Φj : Rn+ → R+, j = 1, ...,m, be

convex and increasing per coordinate. Then

∫ b

a

u (x)

m∏
i=1

Φj


∣∣∣∣(−−−−−−−−→e

γj :ψ
ρj,µj,ωj,b−

fj

)
(x)

∣∣∣∣
(ψ (x)− ψ (a))

µj E
γj
ρj ,µj+1 [ωj (ψ (b)− ψ (x))

ρj ]

 dx ≤
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m∏
j=1

(∫ b

a

uψj− (y) Φj

(∣∣∣−→fj (y)∣∣∣)pj dy)
1
pj

. (124)

Proof. By Theorem 2.2, see also Remark 3.3. □

We also give

Theorem 3.16. Here j = 1, ...,m. Let ρj , µj , ωj > 0, γj < 0, and fji ∈
CNj ([a, b]), Nj = ⌈µj⌉, µj /∈ N; θ := max (N1, ..., Nm), ψ ∈ Cθ ([a, b]) , ψ is in-

creasing with ψ′ (x) ̸= 0 over [a, b]; i = 1, ..., n. Set f
[Nj ]
jiψ (x) =

(
1

ψ′(x)
d
dx

)Nj

fji (x),

x ∈ [a, b]. We assume that the weight function u ≥ 0 is such that

Cλψj+ (y) := ψ′ (y)

∫ b

y

u (x)

(
(ψ (x)− ψ (y))

(Nj−µj)−1

(ψ (x)− ψ (a))
(Nj−µj)

)
(

E
−γj
ρj ,Nj−µj

[ωj (ψ (x)− ψ (y))
ρj ]

E
−γj
ρj ,Nj−µj+1 [ωj (ψ (x)− ψ (a))

ρj ]

)
dx <∞, (125)

for all a < y < b, which is integrable.

Let pj > 1 :
m∑
j=1

1
pj

= 1. Let also the functions Φj : Rn+ → R+, j = 1, ...,m, be

convex and increasing per coordinate. Then

∫ b

a

u (x)

m∏
i=1

Φi


∣∣∣∣(−−−−−−−−−−−→CD

γj ;ψ
ρj ,µj ,ωj ,a+fj

)
(x)

∣∣∣∣
(ψ (x)− ψ (a))

Nj−µj E
−γj
ρj ,Nj−µj+1 [ωj (ψ (x)− ψ (a))

ρj ]

 dx ≤

m∏
j=1

(∫ b

a

Cλψj+ (y) Φj

(∣∣∣∣−−→f
[Nj ]
jψ (y)

∣∣∣∣)pj dy
) 1

pj

. (126)

Proof. By Theorem 3.14 and (42), see also (111). □

We continue with

Theorem 3.17. Here j = 1, ...,m. Let ρj , µj , ωj > 0, γj < 0, and fji ∈
CNj ([a, b]), Nj = ⌈µj⌉, µj /∈ N; θ := max (N1, ..., Nm), ψ ∈ Cθ ([a, b]) , ψ is in-

creasing with ψ′ (x) ̸= 0 over [a, b]; i = 1, ..., n. Set f
[Nj ]
jiψ (x) =

(
1

ψ′(x)
d
dx

)Nj

fji (x),

x ∈ [a, b]. We assume that the weight function u ≥ 0 is such that

Cλψj− (y) := ψ′ (y)

∫ y

a

u (x)

(
(ψ (y)− ψ (x))

(Nj−µj)−1

(ψ (b)− ψ (x))
(Nj−µj)

)
(

E
−γj
ρj ,Nj−µj

[ωj (ψ (y)− ψ (x))
ρj ]

E
−γj
ρj ,Nj−µj+1 [ωj (ψ (b)− ψ (x))

ρj ]

)
dx <∞, (127)

for all a < y < b, which is integrable.
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Let pj > 1 :
m∑
j=1

1
pj

= 1. Let also the functions Φj : Rn+ → R+, j = 1, ...,m, be

convex and increasing per coordinate. Then

∫ b

a

u (x)

m∏
i=1

Φi


∣∣∣∣(−−−−−−−−−−−→CD

γj ;ψ
ρj ,µj ,ωj ,b−fj

)
(x)

∣∣∣∣
(ψ (b)− ψ (x))

Nj−µj E
−γj
ρj ,Nj−µj+1 [ωj (ψ (b)− ψ (x))

ρj ]

 dx ≤

m∏
j=1

(∫ b

a

Cλψj− (y) Φj

(∣∣∣∣−−→f
[Nj ]
jψ (y)

∣∣∣∣)pj dy
) 1

pj

. (128)

Proof. By Theorem 3.15 and (43), see also (114). □

We continue with

Theorem 3.18. Here j = 1, ...,m. Let ρj , µj , ωj > 0, γj < 0, and fji ∈
CNj ([a, b]), Nj = ⌈µj⌉, µj /∈ N; θ := max (N1, ..., Nm), ψ ∈ Cθ ([a, b]) , ψ is
increasing with ψ′ (x) ̸= 0 over [a, b]; i = 1, ..., n. Here 0 ≤ βj ≤ 1 and ξj =

µj + βj (Nj − µj). We assume that RLD
γj(1−βj);ψ
ρj ,ξj ,ωj ,a+

fji ∈ C ([a, b]), j = 1, ...,m

and i = 1, ..., n. We assume further that the weight function u ≥ 0 is such that

Pλψj+ (y) := ψ′ (y)

∫ b

y

u (x)

(
(ψ (x)− ψ (y))

(ξj−µj)−1

(ψ (x)− ψ (a))
(ξj−µj)

)
 E

−γjβj

ρj ,ξj−µj
[ωj (ψ (x)− ψ (y))

ρj ]

E
−γjβj

ρj ,ξj−µj+1 [ωj (ψ (x)− ψ (a))
ρj ]

 dx <∞, (129)

for all a < y < b, which is integrable.

Let pj > 1 :
m∑
j=1

1
pj

= 1. Let also the functions Φj : Rn+ → R+, j = 1, ...,m, be

convex and increasing per coordinate. Then

∫ b

a

u (x)

m∏
j=1

Φj


∣∣∣∣(−−−−−−−−−−→HDγj ,βj ;ψ

ρj ,µj ,ωj ,a+f j

)
(x)

∣∣∣∣
(ψ (x)− ψ (a))

ξj−µj E
−γjβj

ρj ,ξj−µj+1 [ωj (ψ (x)− ψ (a))
ρj ]

 dx ≤

m∏
i=1

(∫ b

a

Pλψj+ (y) Φj

(∣∣∣∣(−−−−−−−−−−−−→RLD
γj(1−βj);ψ
ρj ,ξj ,ωj ,a+

fj

)
(y)

∣∣∣∣)pj dy
) 1

pj

. (130)

Proof. By Theorem 3.14 and (51), see also (117). □

The counter part of the last theorem follows:
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Theorem 3.19. Here j = 1, ...,m. Let ρj , µj , ωj > 0, γj < 0, and fji ∈
CNj ([a, b]), Nj = ⌈µj⌉, µj /∈ N; θ := max (N1, ..., Nm), ψ ∈ Cθ ([a, b]) , ψ is
increasing with ψ′ (x) ̸= 0 over [a, b]; i = 1, ..., n. Here 0 ≤ βj ≤ 1 and ξj =

µj + βj (Nj − µj). We assume that RLD
γj(1−βj);ψ
ρj ,ξj ,ωj ,b−fji ∈ C ([a, b]), j = 1, ...,m

and i = 1, ..., n. We assume further that the weight function u ≥ 0 is such that

Pλψj− (y) := ψ′ (y)

∫ y

a

u (x)

(
(ψ (y)− ψ (x))

(ξj−µj)−1

(ψ (b)− ψ (x))
(ξj−µj)

)
 E

−γjβj

ρj ,ξj−µj
[ωj (ψ (y)− ψ (x))

ρj ]

E
−γjβj

ρj ,ξj−µj+1 [ωj (ψ (b)− ψ (x))
ρj ]

 dx <∞, (131)

for all a < y < b, which is integrable.

Let pj > 1 :
m∑
j=1

1
pj

= 1. Let also the functions Φj : Rn+ → R+, j = 1, ...,m, be

convex and increasing per coordinate. Then

∫ b

a

u (x)

m∏
j=1

Φj


∣∣∣∣(−−−−−−−−−−−→HDγj ,βj ;ψ

ρj ,µj ,ωj ,b−fj

)
(x)

∣∣∣∣
(ψ (b)− ψ (x))

ξj−µj E
−γjβj

ρj ,ξj−µj+1 [ωj (ψ (b)− ψ (x))
ρj ]

 dx ≤

m∏
i=1

(∫ b

a

Pλψj− (y) Φj

(∣∣∣∣(−−−−−−−−−−−→RLD
γj(1−βj);ψ
ρj ,ξj ,ωj ,b−fj

)
(y)

∣∣∣∣pj) dy
) 1

pj

. (132)

Proof. By Theorem 3.15 and (52), see also (120). □

III)’ Here we apply Theorem 2.3.

Based on (69) and Remark 3.2, we get for appropiate weight u ≥ 0 that

(denote this particular λm by λ
ψ

m+) the integrable function:

λ
ψ

m+ (y) = (ψ′ (y))
m
∫ b

y

u (x)

 (ψ (x)− ψ (y))

m∑
j=1

µj−m

(ψ (x)− ψ (a))

m∑
j=1

µj


m∏
j=1

 E
γj
ρj ,µj

[
ωj (ψ (x)− ψ (y))

ρj
]

E
γj
ρj ,µj+1 [ωj (ψ (x)− ψ (a))

ρj ]

 dx <∞, (133)

for all a < y < b.
By Theorem 2.3 and the above, we have established the following multivariate

generalized Prabhakar left fractional Hardy type inequality:
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Theorem 3.20. Here j = 1, ...,m. Let ρj , µj , γj , ωj > 0, and fji ∈ C ([a, b]),

i = 1, ..., n, with ψ ∈ C1 ([a, b]) which is increasing. The function λ
ψ

m+ (y) ∈ R
by assumption, ∀ y ∈ [a, b], is given by (133). Here Φj : Rn+ → R+, j = 1, ...,m,
are convex and increasing per coordinate functions. Then

∫ b

a

u (x)

m∏
j=1

Φj


∣∣∣∣(−−−−−−−−−→e

γj ;ψ
ρj ,µj ,ωj ,a+fj

)
(x)

∣∣∣∣
(ψ (x)− ψ (a))

µj E
γj
ρj ,µj+1 [ωj (ψ (x)− ψ (a))

ρj ]

 dx ≤

 m∏
j=1
j ̸=ρ

∫ b

a

Φj

(∣∣∣−→fj (y)∣∣∣) dy

(∫ b

a

Φρ

(∣∣∣−→fρ (y)∣∣∣)λψm+ (y) dy

)
. (134)

Based on (69) and Remark 3.3, we get for appropiate weight u ≥ 0 that

(denote this particular λm by λ
ψ

m−) the integrable function:

λ
ψ

m− (y) = (ψ′ (y))
m
∫ y

a

u (x)

 (ψ (y)− ψ (x))

m∑
j=1

µj−m

(ψ (b)− ψ (x))

m∑
j=1

µj


m∏
j=1

 E
γj
ρj ,µj

[
ωj (ψ (y)− ψ (x))

ρj
]

E
γj
ρj ,µj+1 [ωj (ψ (b)− ψ (x))

ρj ]

 dx <∞, (135)

for all a < y < b.
By Theorem 2.3 and the above, we have established the following multivariate

generalized Prabhakar right fractional Hardy type inequality:

Theorem 3.21. Here j = 1, ...,m; i=1,...,n. Let ρj , µj , γj , ωj > 0, and fji ∈
C ([a, b]), i = 1, ..., n, with ψ ∈ C1 ([a, b]) which is increasing. The function

λ
ψ

m− (y) ∈ R by assumption, ∀ y ∈ [a, b], is given by (135). Here Φj : Rn+ → R+,
j = 1, ...,m, are convex and increasing per coordinate functions. Then

∫ b

a

u (x)

m∏
j=1

Φj


∣∣∣∣(−−−−−−−−−→e

γj ;ψ
ρj ,µj ,ωj ,b−fj

)
(x)

∣∣∣∣
(ψ (b)− ψ (x))

µj E
γj
ρj ,µj+1 [ωj (ψ (b)− ψ (x))

ρj ]

 dx ≤

 m∏
j=1
j ̸=ρ

∫ b

a

Φj

(∣∣∣−→fj (y)∣∣∣) dy

(∫ b

a

Φρ

(∣∣∣−→fρ (y)∣∣∣)λψm− (y) dy

)
. (136)

We continue with multivariate left and right ψ-Prabhakar-Caputo Hardy frac-
tional inequalities:
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Theorem 3.22. Here j = 1, ...,m; i = 1, ..., n. Let ρj , µj , ωj > 0, γj < 0, and
fji ∈ CNj ([a, b]), Nj = ⌈µj⌉, µj /∈ N; θ := max (N1, ..., Nm), ψ ∈ Cθ ([a, b]) ,

ψ is increasing with ψ′ (x) ̸= 0 over [a, b]. Set f
[Nj ]
jiψ (x) =

(
1

ψ′(x)
d
dx

)Ni

fji (x),

x ∈ [a, b]. We assume that the weight function u ≥ 0 is such that

Cλψm+ (y) := (ψ′ (y))
m
∫ b

y

u (x)

 (ψ (x)− ψ (y))

m∑
j=1

(Nj−µj)−m

(ψ (x)− ψ (a))

m∑
j=1

(Nj−µj)


m∏
j=1

(
E

−γj
ρj ,Nj−µj

[ωj (ψ (x)− ψ (y))
ρj ]

E
−γj
ρj ,Nj−µj+1 [ωj (ψ (x)− ψ (a))

ρj ]

)
dx <∞, (137)

for all a < y < b, which is integrable.
Here Φj : Rn+ → R+, j = 1, ...,m, are convex and increasing per coordinate

functions. Then

∫ b

a

u (x)

m∏
j=1

Φj


∣∣∣∣(−−−−−−−−−−−→CD

γj ;ψ
ρj ,µj ,ωj ,a+fj

)
(x)

∣∣∣∣
(ψ (x)− ψ (a))

Nj−µj E
−γj
ρj ,Nj−µj+1 [ωj (ψ (x)− ψ (a))

ρj ]

 dx ≤

 m∏
j=1
j ̸=ρ

∫ b

a

Φj

(∣∣∣∣−−→f
[Nj ]
jψ (y)

∣∣∣∣) dy

(∫ b

a

Φρ

(∣∣∣∣−−−−−→f
[Nρ]
ρψ (y)

∣∣∣∣) Cλψm+ (y) dy

)
. (138)

Proof. By (42) we have that(
CD

γj ;ψ
ρj ,µj ,ωj ,a+fji

)
(x) =

(
e
−γj ;ψ
ρj ,Nj−µj ,ωj ,a+

f
[Nj ]
jiψ

)
(x) , (139)

∀ x ∈ [a, b], j = 1, ...,m, i = 1, ..., n.
We apply Theorem 3.20. □

Theorem 3.23. Here j = 1, ...,m; i = 1, ..., n. Let ρj , µj , ωj > 0, γj < 0, and
fji ∈ CNj ([a, b]), Nj = ⌈µj⌉, µj /∈ N; θ := max (N1, ..., Nm), ψ ∈ Cθ ([a, b]) ,

ψ is increasing with ψ′ (x) ̸= 0 over [a, b]. Set f
[Nj ]
jiψ (x) =

(
1

ψ′(x)
d
dx

)Ni

fji (x),

x ∈ [a, b]. We assume that the weight function u ≥ 0 is such that

Cλψm− (y) := (ψ′ (y))
m
∫ y

a

u (x)

 (ψ (y)− ψ (x))

m∑
j=1

(Nj−µj)−m

(ψ (b)− ψ (x))

m∑
j=1

(Nj−µj)


m∏
j=1

(
E

−γj
ρj ,Nj−µj

[ωj (ψ (y)− ψ (x))
ρj ]

E
−γj
ρj ,Nj−µj+1 [ωj (ψ (b)− ψ (x))

ρj ]

)
dx <∞, (140)

for all a < y < b, which is integrable.
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Here Φj : Rn+ → R+, j = 1, ...,m, are convex and increasing per coordinate
functions. Then

∫ b

a

u (x)

m∏
j=1

Φj


∣∣∣∣(−−−−−−−−−−−→CD

γj ;ψ
ρj ,µj ,ωj ,b−fj

)
(x)

∣∣∣∣
(ψ (b)− ψ (x))

Nj−µj E
−γj
ρj ,Nj−µj+1 [ωj (ψ (b)− ψ (x))

ρj ]

 dx ≤

 m∏
j=1
j ̸=ρ

∫ b

a

Φj

(∣∣∣∣−−→f
[Nj ]
jψ (y)

∣∣∣∣) dy

(∫ b

a

Φρ

(−−−−−−→∣∣∣f [Nρ]
ρψ (y)

∣∣∣) Cλψm− (y) dy

)
. (141)

Proof. By (43) we have that(
CD

γj ;ψ
ρj ,µj ,ωj ,b−fji

)
(x) = (−1)

Nj

(
e
−γj ;ψ
ρj ,Nj−µj ,ωj ,b−f

[Nj ]
jiψ

)
(x) , (142)

∀ x ∈ [a, b], j = 1, ...,m, i = 1, ..., n..
We apply Theorem 3.21. □

Next we present multivariate left and right ψ-Hilfer-Prabhakar Hardy frac-
tional inequalities:

Theorem 3.24. Here j = 1, ...,m, i = 1, ..., n. Let ρj , µj , ωj > 0, γj < 0, and
fji ∈ CNj ([a, b]), Nj = ⌈µj⌉, µj /∈ N; θ := max (N1, ..., Nm), ψ ∈ Cθ ([a, b]) ,
ψ is increasing with ψ′ (x) ̸= 0 over [a, b]. Here 0 ≤ βj ≤ 1 and ξj = µj +

βj (Nj − µj). We assume that RLD
γj(1−βj);ψ
ρj ,ξj ,ωj ,a+

fji ∈ C ([a, b]), j = 1, ...,m, i =

1, ..., n. We assume further that the weight function u ≥ 0 is such that

Pλψm+ (y) := (ψ′ (y))
m
∫ b

y

u (x)

 (ψ (x)− ψ (y))

m∑
j=1

(ξj−µj)−m

(ψ (x)− ψ (a))

m∑
j=1

(ξj−µj)


m∏
j=1

 E
−γjβj

ρj ,ξj−µj
[ωj (ψ (x)− ψ (y))

ρj ]

E
−γjβj

ρj ,ξj−µj+1 [ωj (ψ (x)− ψ (a))
ρj ]

 dx <∞, (143)

for all a < y < b, which is integrable.
Here Φj : Rn+ → R+, j = 1, ...,m, are convex and increasing per coordinate

functions. Then

∫ b

a

u (x)

m∏
j=1

Φj


∣∣∣∣−−−−−−−−−−−−−−−−→(
HDγj ,βj ;ψ

ρj ,µj ,ωj ,a+fj

)
(x)

∣∣∣∣
(ψ (x)− ψ (a))

ξj−µj E
−γjβj

ρj ,ξj−µj+1 [ωj (ψ (x)− ψ (a))
ρj ]

 dx ≤
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j=1
j ̸=ρ

∫ b

a

Φj

(−−−−−−−−−−−−−−−−→
|RLDγj(1−βj);ψ

ρj ,ξj ,ωj ,a+
fj (y) |

)
dy


(∫ b

a

Φρ

(∣∣∣∣−−−−−−−−−−−−→RLD
γρ(1−βρ);ψ
ρρ,ξρ,ωρ,a+

fρ (y)

∣∣∣∣) Pλψm+ (y) dy

)
. (144)

Proof. By (51) we have that(
HDγj ,βj ;ψ

ρj ,µj ,ωj ,a+fji

)
(x) = e

−γjβj ;ψ
ρj ,ξj−µj ,ωj ,a+

RLD
γj(1−βj);ψ
ρj ,ξj ,ωj ,a+

fji (x) , (145)

∀ x ∈ [a, b], j = 1, ...,m, i = 1, ..., n.
We apply Theorem 3.20. □

Theorem 3.25. Here j = 1, ...,m, i = 1, ..., n. Let ρj , µj , ωj > 0, γj < 0, and
fji ∈ CNj ([a, b]), Nj = ⌈µj⌉, µj /∈ N; θ := max (N1, ..., Nm), ψ ∈ Cθ ([a, b]) ,
ψ is increasing with ψ′ (x) ̸= 0 over [a, b]. Here 0 ≤ βj ≤ 1 and ξj = µj +

βj (Nj − µj). We assume that RLD
γj(1−βj);ψ
ρj ,ξj ,ωj ,b−fji ∈ C ([a, b]), j = 1, ...,m, i =

1, ..., n. We assume further that the weight function u ≥ 0 is such that

Pλψm− (y) := (ψ′ (y))
m
∫ y

a

u (x)

 (ψ (y)− ψ (x))

m∑
j=1

(ξj−µj)−m

(ψ (b)− ψ (x))

m∑
j=1

(ξj−µj)


m∏
j=1

 E
−γjβj

ρj ,ξj−µj
[ωj (ψ (y)− ψ (x))

ρj ]

E
−γjβj

ρj ,ξj−µj+1 [ωj (ψ (b)− ψ (x))
ρj ]

 dx <∞, (146)

for all a < y < b, which is integrable.
Here Φj : Rn+ → R+, j = 1, ...,m, are convex and increasing per coordinate

functions. Then

∫ b

a

u (x)

m∏
j=1

Φj


∣∣∣∣(−−−−−−−−−−−→HDγj ,βj ;ψ

ρj ,µj ,ωj ,b−fj

)
(x)

∣∣∣∣
(ψ (b)− ψ (x))

ξj−µj E
−γjβj

ρj ,ξj−µj+1 [ωj (ψ (b)− ψ (x))
ρj ]

 dx ≤

 m∏
j=1
j ̸=ρ

∫ b

a

Φj

(−−−−−−−−−−−−−−−→
|RLDγj(1−βj);ψ

ρj ,ξj ,ωj ,b−fj (y) |
)
dy


(∫ b

a

Φρ

(∣∣∣∣−−−−−−−−−−−−→RLD
γρ(1−βρ);ψ
ρρ,ξρ,ωρ,b−fρ (y)

∣∣∣∣) Pλψm− (y) dy

)
. (147)
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Proof. By (52) we have that(
HDγj ,βj ;ψ

ρj ,µj ,ωj ,b−fji

)
(x) = e

−γjβj ;ψ
ρj ,ξj−µj ,ωj ,b−

RLD
γj(1−βj);ψ
ρj ,ξj ,ωj ,b−fji (x) , (148)

∀ x ∈ [a, b], j = 1, ...,m, i = 1, ..., n.
We apply Theorem 3.21. □

Conflicts of interest : The author declares no conflict of interest.

Data availability : Not applicable

References

1. R. Almeida, A Caputo fractional derivative of a function with respect to another function,

Commun. Nonlinear Sci. Numer. Simulat., 44 (2017), 460-481.

2. G.A. Anastassiou, Univariate Hardy-type fractional inequalities, Chapter 2, in ”Advances
in Applied Mathematics and Approximation Theory”, Contributions from AMAT 2012, G.

Anastassiou, O. Duman Editors, Springer, New York, 2013, pp. 21-56.

3. G.A. Anastassiou, Intelligent Comparisons: Analytic Inequalities, Springer, Heidelberg,
New York, 2016.

4. G. Anastassiou, Advancements on ψ-Hilfer fractional calculus and fractional integral in-
equalities, Discontinuity, Nonlinear and Complexity accepted, 2021.

5. G.A. Anastassiou, Foundations of Generalized Prabhakar-Hilfer fractional Calculus with

Applications, Submitted, 2021.
6. A. Giusti et al, A practical Guide to Prabhakar Fractional Calculus, Fractional Calculus &

Applied Analysis 23 (2020), 9-54.

7. R. Gorenflo, A. Kilbas, F. Mainardi, S. Rogosin, Mittag-Leffler functions, Related Topics
and Applications, Springer, Heidelberg, New York, 2014.

8. H.G. Hardy, Notes on some points in the integral calculus, Messenger of Mathematics 47

(1918), 145-150.
9. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differ-

entiation Equations, North Holland, Amsterdam, New York, 2006.

10. F. Polito, Z. Tomovski, Some properties of Prabhakar-type fractional calculus operators,
Fractional Differential Calculus 6 (2016), 73-94.

11. T.R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in

the kernel, Yokohama Math. J. 19 (1971), 7-15.
12. S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory

and Applications, Gordon and Breach Science Publishers, Switzerland, 1993.
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