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ANALYSIS OF SOLUTIONS FOR THE BOUNDARY VALUE
PROBLEMS OF NONLINEAR FRACTIONAL
INTEGRODIFFERENTIAL EQUATIONS INVOLVING
GRONWALL’S INEQUALITY IN BANACH SPACES
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ABSTRACT. We study the existence and uniqueness of solutions for a class
of boundary value problems of nonlinear fractional order differential equa-
tions involving the Caputo fractional derivative by employing the Banach’s
contraction principle and the Schauder’s fixed point theorem. In addition,
an example is given to demonstrate the application of our main results.
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1. Introduction

The purpose of this article is to extend the earlier works [1],[2],[6],[7] on
fractional boundary value problems (BVP for short), for fractional differential
equations in R to the abstract Banach space % of the type

CPYo(t) = E(t, p(t), Lp(t)), fort € J=la,b], n—1<a<mn, (11)
e (a) = pr, k=0,1,2,...,n—2; " D(b) = gy, '
where 2 is the Caputo fractional derivative, & : J x # — % is a continuous
function and
00, 91, - -+ Pn_2, Pp are real constants and .Z is a nonlinear integral operator
given by Zp(t) = fot ~v(t, 8)p(s)ds with y9 = mauxf(;s Y(t,s)ds : (t,s) € J x J
where k € C(J x J,R").

In fact, the abrupt changes such as shocks, harvesting, or natural disasters,
and many changes may happens in the dynamics of evolving processes. These
short-term perturbations are often treated as in the form of boundary value
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problems of partial differential equations (We refer to [13], [14] and [19] for
theoretical and numerical analysis related to this research issue.) and nonlinear
fractional order differential equations involving the Caputo fractional derivative.
Recently, in the published works, Caputo fractional order derivative.

The paper is structured as follows: we have presented some information in the
section 2 about Caputo fractional order derivative, mild solutions of equations
(1.1) along with some basic definitions, results and lemmas. We discuss the
main results for mild solutions for the equations (1.1) in the section 3. Finally,
an example is discussed to illustrate the main result.

2. Preliminaries

Some notations and lemmas are important in order to state our results. De-
note by % (J, R) the Banach space of all continuous functions from J into R with
the norm

[2]loo = sup{lp(®)[}, J = [a b].
teJ

Definition 2.1([1],[7]) For a function h € AC™/ given on the interval [a, b], the
a-th Caputo fractional-order derivative of h is defined by

! )/(t—s)"_a_lh(”)(s)ds, (2.1)

(“Dgh)(t) = Tn—a)

where n = [a] + 1 and [a] denotes the integer part of a.
A solution of the problem (1.1) is defined as follows.

Definition 2.2([1],[7]) The fractional order « > 0 integral of the function
h(t) € L'([a,b], Ry ) is defined by
1 t
I{jht:—/ t—8)* h(s)ds, 2.2
(0= g | (=97 0e) (2

where I' is the classical gamma function.

Definition 2.3 A function z € AC™(J) and such that Fz € L?(J), where
Fx(s) = &(t, p(t), Lp(t)) that satisfies (1.1) is called a solution of (1.1).
Lemma 2.1 ([24]) Let a > 0. Then the differential equation
‘DSh(t) =0
has solutions
h(t) =co+ci(t—a)+cat—a)* +---+cp1(t —a)"
G €R, i=01,2,....n—1,n=[a]+1.
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Lemma 2.2 Let o > 0. Then
I Deh(t) = h(t) + co +e1(t —a) + ot —a)® + -+ cpn(t —a)" L.
In particular, when a = 0,
I °D*h(t) = h(t) + co + c1t + cot® + -+ -+ cp 1 t" 1,

for some ¢; € Ri=0,1,2,...,n—1,n=[a]+ 1.

Lemma 2.3 ([18]) The relations
CDETCh(t) = h(t), ICTPh(t) = ISTPh(t) (2.3)

rTaTa

are valid in following case Re o > 0, Re 3 > 0, h(t) € L'(a,b).

3. Existence and Uniqueness Results

Theorem 3.1 Suppose that

(H1) 3 real valued functions 91,02 € €'(J, R) such that
€, 0(t), La(t)) — £, B(1), LB(1))|
<01(t)(|o(t) = BO)| +02(8)(|Za(t) = B(H)])
Vted=]ab]; ot),B(t) €R.
If

0 = (I“((’)l(t) + 52(15)70))

(b—a)* (b—a)"t .4
X<<n—2>!r<a—n+z>+ R *)llx—ylw-m (3.1)

then the BVP (1.1) has unique solution on J.

Proof. Transform the problem (1.1) into a fixed point problem. Consider the
operator

S: 6" YJ,R) = €"*(J,R)
defined

() =~ Fey / (t - )2 18(s, p(s), Lo(s))ds

+<( 5 +f(aw(a))(b—a>“‘"“><t_a>n-1 52

n—1)! (n—=2)T(a—n+2)

—a n—1 b
o (n— S'F(Cj “n+1) / (b— s)a_néa(SJ p(s),f@(s))ds
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n—2

+ Z %(t —a)*.

k=0

The Banach contraction principle is used to prove that & has a fixed point.
Let p(t),c(t) € €7 (J,R). Then Vt € J,
[Sp(t) — Sb(t)l
J;
= F 3
(t— )
(n—2)T(a—n+2)

—a)* ! b
= S!F(oz) D) / (b= 8)7"|6 (s, 0(s), Lp(s)) = & (5,1(5), Z1(5)) ds

(b—a)* ™" (01 (t) + Ba(t)y0) [l — ylloo

p(s), Lp(s)) — &(s,1(s), Zu(s))lds

1b a—n+1
. (b—a)

6(a, p(a), Zp(a)) — &(a, u(a), Li(a))|

lo = ylloo ', s
< bl [ t= 9 @)+ s +

(b—a)" Mz -yl
(n—1M(a—n+1)

=1I¢ (51(15) + 02(t)v0) +

(n—=2)T(a—n+2)

b
/ (b— 5)°"(B1(t) + B (t)y0)ds

(b—a)*(01(t) +0a2(t)%) | (b—a)"™
(n=2)T(a—n+2) (n—1)!

1
Ia7n+1(61(t)

+ 62(t)"ro)> I = tlloo-

Thus

”%@7 %LHOO

< (mam + 62@:)%)) (m e R IM+1> o= tle.

Consequently, by (3 1) S is a contraction operator. As a consequence of the
Banach Fixed point theorem, & has a fixed point which is the unique solution
of the problem (1.1). The proof is completed. O

Theorem 3.2 Assume that

(H2) 3 a constant ¥ > 0 such that

£t 0(0), Za() — 81,6, 250)| < ¥ (jo(t) — B®)| + | Za(t) — 25(0)))
Vit € J = [a,b]; o(t),B(t) € R.
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If

67/(b“)a<r(a1+ nt (n—l)!F(Z—n—i—Q)) <1 (3:3)
then the BVP (1.1) has a unique solution on J.
The third result is based on Schauder’s Fixed point theorem.
Theorem 3.3 Assume that
(H3) The function & : J x ¥ x % — % is continuous.

(H4) There exists a constant .# > 0, such that
|&(t,0(t), Lp(t))| < A for each t € J = [a,b] and Vo(t) € R. (3.4)

Then the BVP (1.1) has at least one solution on J.

Proof. Schauder’s Fixed point theorem is used to prove that & defined by (3.2)
has a fixed point. The proof will be given in several steps.
Step 1: S is continuous.

Let {pm} be a sequence such that @,, — g in €(J, R). Then for each t € J

[Spm(t) = ()]

< % / S (51 m(5), Lom(5)) = E (8, (8), Zo(t) | ds
(t—a)""1(b—a)*—"H!
(Tl — 2)!F(OL —n+ 2) |£(a, @m(a)vgpm(a)) - éa(a7 p(a),ﬁp(a))\

(t — a)n—l ’ a—n
+ (n — 1)'F(a —n+ 1) /a (b - S) |é"(3, pm(S),gpm(S)) - éo(t’ p(t)7$p(t))|d8

<t | =9 D16 (5. m(5). Lo () — E(t.(0), Lot ds

(a) seJ
b s 65,0 () L (5) — St 6(0). Zo(0)

(b — a)n—l ’ a—n
T [, (T s s o). Lo () — £ pl0). Lot ds

seJ

then
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(b—a) (b—a)! /*’  aen
TS a—ns2 DTt ), O
<NEC om(), Lom(.) = EC, 0(), ZLo())|loo (b — a)®

1 n
X )
(I‘(a D) T oD a—n+ 2))
Since & is a continuous function, it can be shown that
||%pm - (‘}@Hoo

1 n

< <b—a>a<w+ R l)lmnw)) € 9m () = 6.0 o

and hence

ISPm — Spllee = 0, m — .
Step 2: § maps the bounded sets into the bounded sets in € (J, R).
For any n* > 0, it can be shown that there exists a positive ¢ such that

Vo € By ={p € C(LR): [lpllc <17}, ISplloc < ¢
In fact, Vt € J, by (3.2) and (H4)

3
|

|

& e
|5 |6 (a, p(a)Lp(a))|(b — a)* ! -

o (T ><b—“>

1 ¢ o
e [ =9 e o). Zotelas
(b_a)nfl b o
e L 90, Zote)lds

<

13(0)] <

>
Il
o

+

/N

|p |(b7a) |pb|( ) nt

<kl (n—1)!

rae <r<a+1>+<n1>!r(an+2>>'

>
Il

Thus
1Spllee < £

where

. pj L loel (0= a)"
kz:: k! (n—1)!



Analysis of Solutions for the Boundary Value Problems 311

+ 4 (b—a) (I‘(Oé—f-l) T (n—l)!l“(a—n-i—?)).

Step 3: § maps the bounded sets into the equicontinuous sets of €(J, R).

Let t1,t2 € J, t1 < t2, By~ be abounded set of €'(J, R) as above, and p € By
[Sp(t2) — Sp(t)]

rl (/ (t2 =) 8 p11), ‘Z@(t))dsf/l(tl — )71, (1), Lp(1))ds)
@(a)’jp(a))(b B a)ozfnJrl n—1 n—1
(n—l (-2 012 )(Gza) ~ (-0
—a 1 n—1 b B
tQ(n— 1)'F(a(in+)1) / (b= )" &t p(t), Zo(t))ds
+Z (t2—a (tl—a)k).
Then

Sp(t2) = Sp(t1)]

ta

< r/(//a) /afl <(t2 —8) (¢ — s)o‘—l)ds + r{:)/t (t2 — )% 'ds

1

+ <( L + AU " )) ((t2 - a)n_l —(t1 — a)n_1>

n—1)0 (n-2)T(a—n+2

./ﬂ((tQ — a)n*1 _ (tl _ a)nfl) b .
i (n—D(a—n+1) /a (b—s)""ds

+ Z ‘i’;' ((t2 —a)f — (t — a)k)

< ity (o) 5190 )

k=0

‘p | n%(b_a)a—n-i-l n—1 n—1
" ((n—bl)! i (”—1)!F(a—n—|—2)) (=)' = (11 —a)"")

[N~}

As t; — to, the right-hand side of the above inequality tends to zero. As
a consequence of steps 1 to 3 together with the Arzeld — Ascoli theorem, S :

€ (J,R) — €(J,R) is completely continuous.

Step 4: A priori bounds.
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Let e = {p € €(J,R) : p = 0Sp for some 0 < d < 1}. It shall be shown that
the set is bounded.

Let p € ¢, then p = 0Jp for some 0 < d < 1. Thus Vi € J,
p=03p

= 5/t(t—s)“15(t (t), ZLp(t))ds

- F(a) " 7@ I p

L (( o Elapla). Loa) (b a)“ﬂ) t—ay?

=1 (m—2)T(a-n+2)

—a n—1 b
- Ejl()tlr(a) — / (b—5)* " E(t, p(t), Lo(t))ds +0 5 %(t —a)*.

By the condition (H4) and Step 2,

|| L opl(b—a)" -

k! (n—1)!

M |

k=0

Thus for every Vt € J,

n—2

o 1 n .
+ A —a) (F(a+1) + (nl)!F(an+2)> = 1

This shows that the set ¢ is bounded. As a consequence of Schauder’s fixed
point theorem, & has a fixed point which is a solution of the problem (1.1). O

Theorem 3.4 Assume that (H3) and the following conditions hold.

(H5) There exist a functional ¢y € L'(J, RT) and a continuous and nonde-
creasing ¢ : [0,00) — (0, 00), such that

161, 9(t), Zp(t))] < s (Dp(lp(b)]) for each t € 7 = [a,] and ¥ip(t) € R.
(H6) There exists a number . > 0, such that

92y_1<¢<5ﬂ>||fawfL1+5<b‘“>"_1“’<'7 ity + 3 LT

(n—1)!
L PR O () )(ba)a><1. (3.5)

(n—1)! (n=2)T(a—n+2
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Then the BVP (1.1) has at least one solution on J.

Proof. Considering the operator & defined by (3.2), Vd € [0,1], ¢t € J = [a, b],
letting p(t) meet p(t) = 0(Sp)(¢), then from (H5) and (H6),

lp®)] = [0(Sp) ()] < [3(1)] < ﬁ/ﬂ (t =) f(s,2(s)S(s))ds

x &(a, p(a), Lp(a))(b —a)* "t o
- ((n fbl)! - (n—2)T(a—n+2) )“‘“)
—a n—1 b

elligllse) [/, oo
< 2o [ (= ) (o)

L+ Yr@e(e(@)® - a)®
(n-—2)T'a—n+2)

[
+ o _bl)!(b—a)

o b_an—l b o
+(L7i(|pll)!1“>((an)+ 1)/ (b= 8)™ s d”Z‘ i
d)f( ) (|z(a)))(b — a)

e(lplloo) TP g L1 +(|xb|1)!(b_“) (n—2)I0(a —n +2)
n—1 n—2
+ (p(pll(o;;)fbl_)'a) Ia_n+1¢f(b) + Z |f€7’:|(b _ a)k.
’ k=0

By (H6), there exists . such that ||p|lec # . Let % = {p € €(J,R) :
l@lle < K}. The operator & : % — %(J, R) is completely continuous. Through
proper selection of %, there exists no p(t) € 0% such that p(t) = 9(Sp)(t) for
some 0 € (0,1).

Therefore, S is Leray — Schauder type operator, so that it has a fixed point
p(t) in U, which is a solution of the BVP (1.1).

4. Illustrated an example

Boundary value problem:

{C@S‘p(t) =leWlt e 7101, n—1<a<n,

1+p(t)°

where 14+ p(t 0.
P (0) =0, k=0,1,2,...,n— 2 p"=D(1) =1, p(t) #

(4.1)
Take
(t,o(t),So(t)) € J x [0,00).

@@(tﬂ U(t)7 fp(t)) =
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Let p(t),y(t) € [0,00), t € J. Then

p(t)  y()
1+ p(t) 1+ y(¢)

tlp(t) — u(b)
(1+ () (1 + (1))
< talp(t) — ()] + t2| Lo — [ L] (4.2)

(L p(t), Lo(t) — E(t1(t), Lu(b)| =t

Hence the condition (H1) holds with d(t) = t € €(J, R). It can be checked
that condition (3.2) is satisfied with b = 1. In fact,

9(0) 1

6=170(t) + (n—2)T(a—n+2)  (n— 1)gfa_"+15(1)
1 o 1 B
- mt e (n—1)MNa—n+3) <1, (t<1,38(0)=0) (4.3)
only if
1 1

Mat2) " DT (a—nt3 " (4.4)

For example, a = 3, thenn=[a]+1=3, I'(a+2) =T() = 105+/m

2 16
T(a—n+3)=T(a)=T(3) =3 (n—1)! =2 = 2.Then
0 < 1 + 1
“TNa+2) (n-—1DIT(a—n+3)
1 1 16 2\ 1
“T(a+2) @ 20(a) (ﬁ+§)ﬁ
=0.4621 < 1. (4.5)

Then by theorem 3.1 the boundary value problem (4.1) has a unique solution
on J = [0, 1] for the values of o € (2, 3].

5. Conclusion

In this paper, we establish the existence and uniqueness of solutions for a class
of boundary value problems of nonlinear fractional order differential equations
involving the Caputo fractional derivative by employing the Banach’s contrac-
tion principle and the Schauder’s fixed point theorem. We will try to investigate
the controllability of similar problem in our future research work.
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