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tained. Estimates are with respect to ∥·∥∞ .
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1. Introduction

In 1938, A. Ostrowski [7] proved the following important inequality:

Theorem 1.1. Let f : [a, b] → R be continuous on [a, b] and differentiable on
(a, b) whose derivative f ′ : (a, b) → R is bounded on (a, b) , i.e., ∥f ′∥∞ :=
sup

t∈(a,b)

|f ′ (t)| < +∞. Then∣∣∣∣∣ 1

b− a

∫ b

a

f (t) dt− f (x)

∣∣∣∣∣ ≤
[
1

4
+

(
x− a+b

2

)2
(b− a)

2

]
· (b− a) ∥f ′∥∞ , (1)

for any x ∈ [a, b]. The constant 1
4 is the best possible.

Since then there has been a lot of activity around these inequalities with
important applications to Numerical Analysis and Probability. This paper is
greatly motivated and inspired also by the following result.

Theorem 1.2 (see [1]). Let f ∈ Cn+1 ([a, b]), n ∈ N and x ∈ [a, b] be fixed, such
that f (k) (x) = 0, k = 1, ..., n. Then it holds∣∣∣∣∣ 1

b− a

∫ b

a

f (y) dy − f (x)

∣∣∣∣∣ ≤
∥∥f (n+1)

∥∥
∞

(n+ 2)!
·

(
(x− a)

n+2
+ (b− x)

n+2

b− a

)
. (2)
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Inequality (2) is sharp. In particular, when n is odd is attained by f∗ (y) :=

(y − x)
n+1 · (b− a), while when n is even the optimal function is

f (y) := |y − x|n+α · (b− a) , α > 1.

Clearly inequality (2) generalizes inequality (1) for higher order derivatives of f .

Also in [2], see Chapters 24-26, we presented a complete theory of left frac-
tional Ostrowski inequalities.

2. Main Results

We need

Remark 2.1. We define the ball B (0, R) = {x ∈ RN : |x| < R} ⊆ RN , N ≥ 2,
R > 0, and the sphere

SN−1 := {x ∈ RN : |x| = 1},

where |·| is the Euclidean norm. Let dω be the element of surface measure on
SN−1 and let

ωN =

∫
SN−1

dω =
2π

N
2

Γ
(
N
2

) .
For x ∈ RN − {0} we can write uniquely x = rω, where r = |x| > 0 and

ω = x
r ∈ SN−1, |ω| = 1. Note that

∫
B(0,R)

dy = ωNRN

N is the Lebesgue measure

of the ball.
Following [5, pp. 149-150, exercise 6], and [6, pp.87-88, Theorem 5.2.2] we

can write F : B (0, R) → R a Lebesgue integrable function that∫
B(0,R)

F (x) dx =

∫
SN−1

(∫ R

0

F (rω) rN−1dr

)
dω; (3)

we use this formula a lot.
Initially the function f : B (0, R) → R is radial; that is, there exists a function

g such that f (x) = g (r), where r = |x|, r ∈ [0, R], ∀ x ∈ B (0, R). Here we
assume that g ∈ ACm ([0, R]) (means g(m−1) is in AC ([0, R])), m = ⌈α⌉ (⌈·⌉
ceilling of the number), α > 0, and g(k) (R) = 0, k = 1, ...,m− 1.

By [3] we get

g (s)− g (R) =
1

Γ (α)

∫ R

s

(J − s)
α−1

Dα
R−g (J) dJ, (4)

∀ s ∈ [0, R], where Dα
R−g is the right Caputo derivative. Further assume that

Dα
R−g ∈ L∞ ([0, R]) .
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We obtain

|g (s)− g (R)| ≤ 1

Γ (α)

∫ R

s

(J − s)
α−1 ∣∣Dα

R−g (J)
∣∣ dJ

≤ 1

Γ (α)

(∫ R

s

(J − s)
α−1

dJ

)∥∥Dα
R−g

∥∥
∞,[0,R]

=
(R− s)

α

Γ (α+ 1)

∥∥Dα
R−g

∥∥
∞,[0,R]

.

(5)

I.e.

|g (s)− g (R)| ≤

∥∥Dα
R−g

∥∥
∞,[0,R]

Γ (α+ 1)
(R− s)

α
, (6)

∀ s ∈ [0, R].
Next observe that∣∣∣∣∣f (Rω)−

∫
B(0,R)

f (y) dy

V ol (B (0, R))

∣∣∣∣∣ =
∣∣∣∣∣∣g (R)−

∫
SN−1

(∫ R

0
g (s) sN−1ds

)
dω∫

SN−1

(∫ R

0
sN−1ds

)
dω

∣∣∣∣∣∣
=

∣∣∣∣g (R)− N

RN

∫ R

0

g (s) sN−1ds

∣∣∣∣
=

N

RN

∣∣∣∣∫ R

0

sN−1 (g (R)− g (s)) ds

∣∣∣∣
≤ N

RN

∫ R

0

sN−1 |g (R)− g (s)| ds

≤ N

RN

∥Dα
R−g∥∞,[0,R]

Γ (α+ 1)

∫ R

0

sN−1 (R− s)α ds

=
N

RN

∥Dα
R−g∥∞,[0,R]

Γ (α+ 1)

∫ R

0

(R− s)(α+1)−1 sN−1ds

=
N

RN

∥Dα
R−g∥∞,[0,R]

Γ (α+ 1)

Γ (α+ 1) (N − 1)!

Γ (α+N + 1)
Rα+N

= ∥Dα
R−g∥∞,[0,R]

N !Rα

Γ (α+N + 1)
.

(7)

So we have proved that∣∣∣∣∣f (Rω)−

∫
B(0,R)

f (y) dy

V ol (B (0, R))

∣∣∣∣∣ =
∣∣∣∣∣g (R)− N

RN

∫ R

0

g (s) sN−1ds

∣∣∣∣∣ (8)

≤
∥∥Dα

R−g
∥∥
∞,[0,R]

N !Rα

Γ (α+N + 1)
. (9)

The last inequality (9) is sharp, it is attained by g (r) = (R− r)
α
, α > 0,

r ∈ [0, R]. As in [4] we get

Dα
R−g (r) = Γ (α+ 1) , ∀ r ∈ [0, R] .
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Hence
∥∥Dα

R−g
∥∥
∞,[0,R]

= Γ (α+ 1). And g (R) = 0. Therefore

L.H.S.(9) =
N

RN

∫ R

0

(R− s)
α
sN−1ds

=
N

RN

∫ R

0

(R− s)
(α+1)−1

(s− 0)
N−1

ds

=
N

RN

Γ (α+ 1)Γ (N)

Γ (α+N + 1)
Rα+N =

Γ (α+ 1)N !

Γ (α+N + 1)
Rα.

And

R.H.S.(9) =
Γ (α+ 1)N !Rα

Γ (α+N + 1)
,

proving attainability of (9).

We have established the following multivariate Ostrowski inequality

Theorem 2.1. Let f : B (0, R) → R which is radial, that is, there exists g

such that f (x) = g (r), r = |x|, ∀ x ∈ B (0, R). Assume that g ∈ ACm ([0, R]),
m = ⌈α⌉, α > 0, and g(k) (R) = 0, k = 1, ...,m − 1, and Dα

R−g ∈ L∞ ([0, R]).
Then ∣∣∣∣∣f (Rω)−

∫
B(0,R)

f (y) dy

V ol (B (0, R))

∣∣∣∣∣ =
∣∣∣∣∣g (R)− N

RN

∫ R

0

g (s) sN−1ds

∣∣∣∣∣
≤
∥∥Dα

R−g
∥∥
∞,[0,R]

N !Rα

Γ (α+N + 1)
.

(10)

The last inequality is sharp, that is attained by g (r) = (R− r)
α
, α > 0, ∀

r ∈ [0, R] .

We also make

Remark 2.2. Let the spherical shell A := B (0, R2)− B (0, R1), 0 < R1 < R2,
A ⊆ RN , N ≥ 2, x ∈ A. Consider again that f : A → R is radial, that is, there
exists g such that f (x) = g (r), r = |x|, r ∈ [R1, R2], ∀ x ∈ A. Here again x can
be written uniquely as x = rω, where r = |x| > 0, and ω = x

r ∈ SN−1, |ω| = 1.

We can write for F : A → R a Lebesgue integrable function that∫
A

F (x) dx =

∫
SN−1

(∫ R2

R1

F (rω) rN−1dr

)
dω. (11)

Here V ol (A) =
ωN(RN

2 −RN
1 )

N , and we assume that g ∈ ACm ([R1, R2]), m = ⌈α⌉,
α > 0, and g(k) (R2) = 0, k = 1, ...,m− 1. We get (see [3])

g (s)− g (R2) =
1

Γ (α)

∫ R2

s

(J − s)
α−1

Dα
R2−g (J) dJ, (12)
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∀ s ∈ [R1, R2], where Dα
R2−g is the right Caputo fractional derivative. Further

assume that Dα
R2−g ∈ L∞ ([R1, R2]). Hence

|g (s)− g (R2)| ≤
1

Γ (α)

∫ R2

s

(J − s)
α−1 ∣∣Dα

R2−g (J)
∣∣ dJ

≤ 1

Γ (α)

(∫ R2

s

(J − s)
α−1

dJ

)∥∥Dα
R2−g

∥∥
∞,[R1,R2]

=
1

Γ (α)

(R2 − s)
α

α

∥∥Dα
R2−g

∥∥
∞,[R1,R2]

.

(13)

Therefore

|g (s)− g (R2)| ≤

∥∥Dα
R2−g

∥∥
∞,[R1,R2]

Γ (α+ 1)
(R2 − s)

α
, (14)

∀ s ∈ [R1, R2] .
Next we observe that∣∣∣∣f (R2ω)−

∫
A f (y) dy

V ol (A)

∣∣∣∣ =
∣∣∣∣∣g (R2)−

(
N

RN
2 −RN

1

)∫ R2

R1

g (s) sN−1ds

∣∣∣∣∣
=

(
N

RN
2 −RN

1

)∣∣∣∣∫ R2

R1

(g (R2)− g (s)) sN−1ds

∣∣∣∣
≤
(

N

RN
2 −RN

1

)∫ R2

R1

|g (R2)− g (s)| sN−1ds

≤
(

N

RN
2 −RN

1

) ∥∥∥Dα
R2−g

∥∥∥
∞,[R1,R2]

Γ (α+ 1)

∫ R2

R1

(R2 − s)α sN−1ds

=: (∗) .

(15)

We evaluate∫ R2

R1

(R2 − s)
α
sN−1ds

=

∫ R2

R1

(R2 − s)
α
((s−R1) +R1)

N−1
ds

=

∫ R2

R1

(R2 − s)
α

(
N−1∑
k=0

(
N − 1

k

)
(s−R1)

k
RN−1−k

1

)
ds

=
N−1∑
k=0

(
N − 1

k

)
RN−1−k

1

∫ R2

R1

(R2 − s)
(α+1)−1

(s−R1)
(k+1)−1

ds

=
N−1∑
k=0

(
N − 1

k

)
RN−1−k

1

Γ (α+ 1)Γ (k + 1)

Γ (α+ k + 2)
(R2 −R1)

α+k+1

=
N−1∑
k=0

(N − 1)!

k! (N − k − 1)!
RN−1−k

1

Γ (α+ 1) k!

Γ (α+ k + 2)
(R2 −R1)

α+k+1
.

(16)
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Therefore we get∫ R2

R1

(R2 − s)α sN−1ds = (N − 1)!Γ (α+ 1)

N−1∑
k=0

RN−1−k
1 (R2 −R1)

α+1+k

(N − 1− k)!Γ (α+ 2 + k)
. (17)

Consequently we find

(∗) =
(

N !

RN
2 −RN

1

)
∥Dα

R2−g∥∞,[R1,R2]

(
N−1∑
k=0

RN−1−k
1 (R2 −R1)

α+1+k

(N − 1− k)!Γ (α+ 2 + k)

)
. (18)

So we have proved that∣∣∣∣f (R2ω)−
∫
A
f (y) dy

V ol (A)

∣∣∣∣
=

∣∣∣∣∣g (R2)−
(

N

RN
2 −RN

1

)∫ R2

R1

g (s) sN−1ds

∣∣∣∣∣
≤
(

N !

RN
2 −RN

1

)(N−1∑
k=0

RN−1−k
1 (R2 −R1)

α+1+k

(N − 1− k)!Γ (α+ 2 + k)

)∥∥Dα
R2−g

∥∥
∞,[R1,R2]

.

(19)

The last inequality (19) is sharp, that is attained by ACm ([R1, R2]) ∋ g (r) =
(R2 − r)

α
, α > 0, m = ⌈α⌉, r ∈ [R1, R2] . Indeed

Dα
R2−g (r) = Γ (α+ 1) , ∀ r ∈ [R1, R2]

and ∥∥Dα
R2−g

∥∥
∞,[R1,R2]

= Γ (α+ 1) . (20)

Also we have g(k) (R2) = 0, k = 0, 1, ...,m − 1, and Dα
R2−g ∈ L∞ ([R1, R2]). So

g fulfills all the assumptions here.
We observe that

L.H.S. (19)

=
N

RN
2 −RN

1

∫ R2

R1

(R2 − s)α sN−1ds
N !Γ (α+ 1)

RN
2 −RN

1

N−1∑
k=0

RN−1−k
1 (R2 −R1)

α+1+k

(N − 1− k)!Γ (α+ 2 + k)

=

(
N !

RN
2 −RN

1

)(N−1∑
k=0

RN−1−k
1 (R2 −R1)

α+1+k

(N − 1− k)!Γ (α+ 2 + k)

)
∥Dα

R2−g∥∞,[R1,R2]

= R.H.S.(19),

(21)

proving the optimality of (19).

We have established the Ostrowski inequality

Theorem 2.2. Let f : A → R be radial; that is there exists g such that f (x) =
g (r), r = |x|, ∀ x ∈ A; ω ∈ SN−1. Assume g ∈ ACm ([R1, R2]) , m = ⌈α⌉,
α > 0, and g(k) (R2) = 0, k = 1, ...,m− 1, and Dα

R2−g ∈ L∞ ([R1, R2]). Then
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∣∣∣∣f (R2ω)−
∫
A
f (y) dy

V ol (A)

∣∣∣∣
=

∣∣∣∣∣g (R2)−
(

N

RN
2 −RN

1

)∫ R2

R1

g (s) sN−1ds

∣∣∣∣∣
≤
(

N !

RN
2 −RN

1

)(N−1∑
k=0

RN−1−k
1 (R2 −R1)

α+1+k

(N − 1− k)!Γ (α+ 2 + k)

)∥∥Dα
R2−g

∥∥
∞,[R1,R2]

.

(22)

The last inequality (22) is sharp, that is attained by

g (s) = (R2 − s)
α
, α > 0, s ∈ [R1, R2] . (23)

We need

Definition 2.1. Let F : A → R, α > 0, m = ⌈α⌉ such that F (·ω) ∈
ACm ([R1, R2]), for all ω ∈ SN−1. We call the Caputo right radial fractional
derivative the following function

∂α
R2−F (x)

∂rα
=

(−1)
m

Γ (m− α)

∫ R2

r

(t− r)
m−α−1 ∂mF (tω)

∂rm
dt, (24)

where x ∈ A; that is, x = rω, r ∈ [R1, R2], ω ∈ SN−1.
Clearly

∂0
R2−F (x)

∂r0
= F (x) , (25)

∂α
R2−F (x)

∂rα
=

∂αF (x)

∂rα
, if α ∈ N. (26)

The above defined function exists almost everywhere for x ∈ A. We justify
this next.

Note 2.1. Call

Λ1 :=

{
r ∈ [R1, R2] :

∂α
R2−F (x)

∂rα
does not exist

}
.

We have that Lebesgue measure λR (Λ1) = 0. Call ΛN := Λ1 × SN−1. So there
exists a Borel set Λ∗

1 ⊂ [R1, R2], such that Λ1 ⊂ Λ∗
1, λR (Λ∗

1) = λR (Λ1) = 0; thus
RN (Λ∗

1) = 0, see [2], pp. 419-422.
Consider now Λ∗

N := Λ∗
1 × SN−1 ⊂ A, which is a Borel set of RN − {0}.

Clearly then by Theorem 16.59, p. 420, [2], λRN (Λ∗
N ) = 0, but ΛN ⊂ Λ∗

N ,
implying λRN (ΛN ) = 0. Consequently the above radial derivative exists a.e. in
x w.r.t. λRN on A.

We make



452 George A. Anastassiou

Remark 2.3. We treat here the general, not necessarily radial, case of f. We
apply last Theorem 2.2 to f (rω), ω is fixed, r ∈ [R1, R2], under the following
assumptions: f (·ω) ∈ ACm ([R1, R2]) , for all ω ∈ SN−1, α > 0, m = ⌈α⌉, where
f : A → R is Lebesgue integrable; ∂kf

∂rk
, k = 1, ...,m − 1 vanish on ∂B (0, R2),

and
∂α
R2−f

∂rα ∈ B
(
A
)
, along with Dα

R2−f (·ω) ∈ L∞ ([R1, R2]), ∀ ω ∈ SN−1.
So we have∣∣∣∣∣f (R2ω)−

(
N

RN
2 −RN

1

)∫ R2

R1

f (sω) sN−1ds

∣∣∣∣∣
≤
(

N !

RN
2 −RN

1

)(N−1∑
k=0

RN−1−k
1 (R2 −R1)

α+1+k

(N − 1− k)!Γ (α+ 2 + k)

)∥∥∥∥∂α
R2−f

∂rα

∥∥∥∥
∞,A

=: λ1.

(27)

Consequently it holds∣∣∣∣
∫
SN−1 f (R2ω) dω

ωN
− N

(RN
2 −RN

1 )ωN

∫
SN−1

(∫ R2

R1

f (sω) sN−1ds

)
dω

∣∣∣∣ ≤ λ1. (28)

That is ∣∣∣∣∣Γ
(
N
2

)
2π

N
2

∫
SN−1

f (R2ω) dω −
∫
A
f (x) dx

V ol (A)

∣∣∣∣∣ ≤ λ1. (29)

Therefore, it holds for x ∈ A, that∣∣∣∣f (x)−
∫
A
f (x) dx

V ol (A)

∣∣∣∣
=

∣∣∣∣∣f (x)−
Γ
(
N
2

)
2π

N
2

∫
SN−1

f (R2ω) dω +
Γ
(
N
2

)
2π

N
2

∫
SN−1

f (R2ω) dω −
∫
A
f (x) dx

V ol (A)

∣∣∣∣∣
≤

∣∣∣∣∣f (x)−
Γ
(
N
2

)
2π

N
2

∫
SN−1

f (R2ω) dω

∣∣∣∣∣+ λ1.

(30)

We have proved

Theorem 2.3. Let f : A → R be Lebesgue integrable with f (·ω) ∈ ACm ([R1, R2]),

α > 0, m = ⌈α⌉, ∀ ω ∈ SN−1; ∂kf
∂rk

, k = 1, ...,m − 1 vanish on ∂B (0, R2) ;

∂α
R2−f (·ω) ∈ L∞ ([R1, R2]), ∀ ω ∈ SN−1; and

∂α
R2−f

∂rα ∈ B
(
A
)
(bounded func-

tions on A). Then, for x ∈ A, we have∣∣∣∣f (x)−
∫
A
f (x) dx

V ol (A)

∣∣∣∣ ≤
∣∣∣∣∣f (x)−

Γ
(
N
2

)
2π

N
2

∫
SN−1

f (R2ω) dω

∣∣∣∣∣
+

(
N !

RN
2 −RN

1

)(N−1∑
k=0

RN−1−k
1 (R2 −R1)

α+1+k

(N − 1− k)!Γ (α+ 2 + k)

)∥∥∥∥∂α
R2−f

∂rα

∥∥∥∥
∞,A

.

(31)

We also make
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Remark 2.4. Let f : B (0, R) → R be a Lebesgue integrable function, that is
not necessarily a radial function. Assume f (·ω) ∈ AC1 ([0, R]), ∀ ω ∈ SN−1;
0 < α < 1, and Dα

R−f (·ω) ∈ L∞ ([0, R]), ∀ ω ∈ SN−1. Clearly here we obtain

f (sω)− f (Rω) =
1

Γ (α)

∫ R

s

(J − s)
α−1

Dα
R−f (Jω) dJ, (32)

∀ ω ∈ SN−1, ∀ s ∈ [0, R] .
We further assume that∥∥Dα

R−f (Jω)
∥∥
∞,(J∈[0,R])

≤ K, ∀ ω ∈ SN−1,

where K > 0.
Applying the earlier Theorem 2.1 we get∣∣∣∣f (Rω)− N

RN

∫ R

0

f (sω) sN−1ds

∣∣∣∣ ≤ (∥Dα
R−f (tω)∥∞,(t∈[0,R])

) N !Rα

Γ (α+N + 1)

≤ KN !Rα

Γ (α+N + 1)
.

(33)

Consequently we get∣∣∣∣
∫
SN−1 f (Rω) dω

ωN
− N

RNωN

∫
SN−1

(∫ R

0

f (sω) sN−1ds

)
dω

∣∣∣∣ ≤ KN !Rα

Γ (α+N + 1)
. (34)

Hence ∣∣∣∣∣Γ
(
N
2

)
2π

N
2

∫
SN−1

f (Rω) dω −

∫
B(0,R)

f (x) dx

V ol (B (0, R))

∣∣∣∣∣ ≤ KN !Rα

Γ (α+N + 1)
. (35)

Consequently it holds∣∣∣∣∣f (Rω)−

∫
B(0,R) f (x) dx

V ol (B (0, R))

∣∣∣∣∣
=

∣∣∣∣∣∣f (Rω)−
Γ
(

N
2

)
2π

N
2

∫
SN−1

f (Rω) dω +
Γ
(

N
2

)
2π

N
2

∫
SN−1

f (Rω) dω −

∫
B(0,R) f (x) dx

V ol (B (0, R))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣f (Rω)−
Γ
(

N
2

)
2π

N
2

∫
SN−1

f (Rω) dω

∣∣∣∣∣∣+ KN !Rα

Γ (α+N + 1)
.

(36)

So we have proved the Ostrowski inequality

Theorem 2.4. Let f : B (0, R) → R be a Lebesgue integrable function, not
necessarily radial. Assume f (·ω) ∈ AC1 ([0, R]), R > 0, ∀ ω ∈ SN−1; 0 < α < 1,
and Dα

R−f (·ω) ∈ L∞ ([0, R]), ∀ ω ∈ SN−1.

Suppose also that
∥∥Dα

R−f (tω)
∥∥
∞,(t∈[0,R])

≤ K, ∀ ω ∈ SN−1, where K > 0. Then

∣∣∣∣∣f (Rω)−

∫
B(0,R) f (x) dx

V ol (B (0, R))

∣∣∣∣∣ ≤
∣∣∣∣∣∣f (Rω)−

Γ
(

N
2

)
2π

N
2

∫
SN−1

f (Rω) dω

∣∣∣∣∣∣+ KN !Rα

Γ (α+N + 1)
. (37)
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