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Abstract. The Hadamard type inequalities for fractional integral opera-

tors of convex functions are studied at very large scale. This paper pro-
vides the Hadamard type inequalities for refined (α,h-m)-convex functions

by utilizing Liouville-Caputo fractional (L-CF) derivatives. These inequal-

ities give refinements of already existing (L-CF) inequalities of Hadamard
type for many well known classes of functions provided the function h is

bounded above by 1√
2
.
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1. Introduction

Convex functions are very important and useful in the study of integral in-
equalities. In recent years, integral inequalities for various kinds of convex func-
tions have been published. Due to generalizations and extensions of convex
functions, it becomes possible to get generalizations and extensions of classi-
cal inequalities. For example, Bombardelli and Varosanec [5] gave Hermite-
Hadamard-Fejér inequalities for h-convex functions. Chen and Wu [9] proved
Hermite-Hadamard type inequalities for harmonically convex functions. Dragomir
[12] established Ostrowski like inequalities for convex functions. İşcan [15] proved
Hermite-Hadamard type inequalities for harmonically (α,m)-convex functions.

İşcan [16] proved Ostrowski type inequalities for p-convex functions. Kunt and

İşcan [19] proved Hermite-Hadamard-Fejér type inequalities for p-convex func-
tions. Mehreen and Anwar [21] proved Hermite-Hadamard type inequalities for

exponentially p-convex functions and exponentially s-convex functions. Özdemir
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et al. [22] have obtained Hadamard inequality by (h-m)-convexity. Özdemir et
al. [23] have established Ostrowski’s type inequalities for (α,m)-convex func-
tions. Obeidat et al. [24] have proved Fejér and Hermite-Hadamard type in-
equalities involving h-convex functions. Sezer [26] gave the Hermite-Hadamard
inequality for s-convex function in the third sense.

Motivated by recent research articles, we aim to present the (L-CF) deriva-
tive inequalities of Hadamard type for refined (α,h-m)-convex functions. In the
following we give the definitions of convex function, (α,h-m)-convex function,
refined (α,h-m)-convex function, (L-CF) derivative operators and beta function
respectively.

Definition 1.1. A function f : I → R, where I is an interval in R, is called
convex function, if the undermentioned inequality holds:

f(ta+ (1− t)b) ≤ tf(a) + (1− t)f(b), ∀t ∈ [0, 1], a, b ∈ I. (1)

The classical Hadamard inequality is an interpretation of convex function. It
is stated as follows:

Theorem 1.2. A convex function f : I → R defined on an interval I ⊂ R
satisfies the inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
, (2)

where a, b ∈ I and a < b. If order in (2) is reversed, then it holds for concave
function.

Many authors have studied the Hadamard inequality for different fractional
integral operators. For example, Sarikaya et al. gave the Hadamard inequal-
ity for classical Riemann-Liouville fractional integral operators in [25]. Kang
et al. gave the Hadamard inequality for (L-CF) derivatives in [17]. Mehmood
et al. proved the Hadamard inequality for generalized fractional integral op-
erators containing Mittag-Leffler functions in [20]. Anastassiou have obtained
generalized fractional Hermite-Hadamard inequalities involvingm-convexity and
(s,m)-convexity in [1]. Agarwal et al. presented certain Hermite-Hadamard type
inequalities via generalized k-fractional integrals in [3]. Chen has established
Hermite-Hadamard type inequalities for R-L fractional integrals via two kinds
of convexity in [8]. Chen and Katugampola have introduced Hermite-Hadamard
and Hermite-Hadamard-Fejér type inequalities for generalized fractional inte-
grals in [7]. Farid et al. presented fractional integral inequalities of Hadamard
type for m-convex function via Caputo k-fractional derivatives in [13]. Farid
et al. have introduced k-fractional integral inequalities of Hadamard type for
(h-m)-convex functions in [14].

There are many types of convex functions which have been formulated from
the analytical definition of convex functions, one of them is (α,h-m)-convex func-
tion given in the following definition:
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Definition 1.3. [14] Let J ⊆ R be an interval containing (0, 1) and let h : J → R
be a non-negative function, h ̸= 0. A function f : I → R is called (α,h-m)-convex
functions, if the undermentioned inequality holds:

f(ta+m(1−t)b) ≤ h(tα)f(a)+mh(1−tα)f(b), ∀t ∈ [0, 1], a, b ∈ I, (α,m) ∈ [0, 1]2.
(3)

Recently, in [28], Wu et al. introduced a new class of convex functions, namely
refined (α,h-m)-convex functions defined as follows:

Definition 1.4. Let J ⊆ R be an interval containing (0, 1) and let h : J → R
be a non-negative function, h ̸= 0. A function f : I → R is called refined
(α,h-m)-convex functions, if the undermentioned inequality holds:

f(ta+m(1− t)b) ≤ h(tα)h(1− tα)(f(a) +mf(b)), ∀t ∈ [0, 1], a, b ∈ I, (4)

(α,m) ∈ [0, 1]2.

Remark 1.1. Several definitions of convex functions are reproduced from re-
fined (α,h-m)-convex functions. For example, for α = 1, h(t) = ts and m = 1
in (4) the definition of s − tgs-convex functions is reproduced given in [4], for
α = 1, h(t) = t−s and m = 1 in (4) the definition of Godunova-Levin-Dragomir
tgs-convex functions is reproduced given in [4], for α = 1, h(t) = t and m = 1 in
(4) the definition of tgs-convex functions is reproduced given in [27], for α = 1,
h(t) = 1 and m = 1 in (4) the definition of p-functions is reproduced given in
[11].

Remark 1.2. A lot of new definitions of convex functions can be deduced from
refined (α,h-m)-convex functions for different choices of h, m and α, we leave it
for interested readers.

Fractional calculus is the extension of concepts of classical calculus related to
derivatives and integrals. In [6], Caputo made the most significant contribution
to fractional calculus by giving improved formulas of fractional derivatives. The
(L-CF) derivatives are defined as follows:

Definition 1.5. ([6, 18]) Let f ∈ ACn[a, b] and n = [ℜ(β)] + 1. Then (L-CF)
derivatives of order β ∈ C, ℜ(β) > 0 of f are defined as follows:

CDβ
a+f(x) =

1

Γ(n− β)

∫ x

a

f (n)(t)

(x− t)β−n+1
dt, x > a (5)

and

CDβ
b−f(x) =

(−1)n

Γ(n− β)

∫ b

x

f (n)(t)

(t− x)β−n+1
dt, x < b. (6)

If β = n ∈ {1, 2, 3, ...} and usual derivative of order n exists, then (L-CF)

derivative (CDβ
a+f)(x) coincides with f (n)(x), whereas (CDβ

b−f)(x) coincides
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with f (n)(x) with exactness to a constant multiplier (−1)n. In particular, we
have

(CD0
a+f)(x) = (CD0

b−f)(x) = f(x) (7)

where n = 1 and β = 0.

We also use the well-known beta function defined as follows:

Definition 1.6. [10] The beta function of two variables x and y is defined as:

β(x, y) =

∫ 1

0

tx−1(1− t)y−1dt, ℜ(x),ℜ(y) > 0.

In the upcoming section, we give two versions of the Hadamard inequalities
for refined (α,h-m)-convex functions. To prove these inequalities (L-CF) deriva-
tives are utilized. Further, the Hadamard inequalities for refined (h-m)-convex
functions, refined (α-m)-convex functions, refined (s-m)-convex functions, re-
fined h-convex functions and refined m-convex functions are given. In whole
paper, we assume f and g be real valued and non-negative functions defined on
I. Also, I and J are the intervals in R and (0, 1) ⊆ J.

2. Main Results

First, we give the Hadamard inequality for refined (α,h-m)-convex functions
via (L-CF) derivatives. Also from now to onward we use the notation RCm

h (α)
for refined (α,h-m)-convex.

Theorem 2.1. Let f be a positive, integrable and RCm
h (α) functions. Then the

following inequality for (L-CF) derivatives holds:

f (n)
(
u+mv

2

)
h( 1

2α
)h(1− 1

2α
)
≤ Γ(n− β + 1)

(mv − u)n−β

[
(−1)nmn−β+1

(
CDβ

v−f
)( u

m

)
+
(
CDβ

u+f
)
(mv)

]
≤ (n− β)

(
f (n)(u) + 2mf (n)(v) +m2f (n)

( u

m2

))∫ 1

0

h(tα)h(1− tα)t(n−β−1)dt.

(8)

Proof. Since f (n) is RCm
h (α) function for x, y ∈ [u, v], t ∈ [0, 1]. Then, we have

f (n)

(
mx+ y

2

)
≤ h

(
1

2α

)
h

(
1− 1

2α

)
(mf (n)(x) + f (n)(y)). (9)

Let x = (1− t) u
m + tv ≤ v and y = m(1− t)v + tu ≥ u in (9), we have

f (n)

(
u+mv

2

)
≤ h

(
1

2α

)
h

(
1− 1

2α

)(
mf (n)

(
(1− t)

u

m
+ tv

)
+ f (n)(m(1− t)v + tu)

)
.
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By multiplying above inequality with tn−β−1 and then doing integration on [0, 1],
the following inequality is yielded

f (n)

(
u+mv

2

)∫ 1

0

tn−β−1dt ≤ h

(
1

2α

)
h

(
1− 1

2α

)
(10)

×
[
m

∫ 1

0

f (n)
(
(1− t)

u

m
+ tv

)
tn−β−1dt+

∫ 1

0

f (n)(m(1− t)v + tu)tn−β−1dt

]
.

The above inequality takes the following form by considering change of variables

1

n− β
f (n)

(
u+mv

2

)
≤ h

(
1

2α

)
h

(
1− 1

2α

)(
m

(mv − u)n−β

∫ v

u
m

(
x− u

m

)n−β−1

f (n)(x)dx

+
1

(mv − u)n−β

∫ mv

u

(mv − y)n−β−1f (n)(y)dy

)
.

(11)

Multiplying by (n − β) and using Definition 1.1, the first inequality of (8) can
be obtained. Again by using RCm

h (α)ity of f (n), we have

f (n)(tu+m(1− t)v) +mf (n)
(
(1− t)

u

m
+ tv

)
≤ h(tα)h(1− tα)

(
f (n)(u) + 2mf (n)(v) +m2f (n)

( u

m2

))
.

Multiplying the above inequality by tn−β−1 and integrating over [0, 1], then
by using change of variables and Definition 1.1, the second inequality of (8) is
obtained. □

The extension of inequality (8) is given in the following result:

Theorem 2.2. Let h(t) ≤ 1√
2
along with same assumptions as stated in Theorem

2.1. Then the following inequality is valid:

2f (n)
(u+mv

2

)
≤

f (n)
(
u+mv

2

)
h( 1

2α
)h(1− 1

2α
)
≤ Γ(n− β + 1)

(mv − u)n−β

[
(−1)nmn−β+1

(
CDβ

v−f
)( u

m

)
+
(
CDβ

u+f
)
(mv)

]
≤ (n− β)

(
f (n)(u) + 2mf (n)(v) +m2f (n)

( u

m2

))
×
∫ 1

0

h(tα)h(1− tα)t(n−β−1)dt ≤ 1

2

(
f (n)(u) + 2mf (n)(v) +m2f (n)

( u

m2

))
.

(12)

Proof. It is given that h(t) ≤ 1√
2
, so we can write∫ 1

0

h(tα)h(1− tα)t(n−β−1)dt ≤ 1

2(n− β)

and
f (n)

(
u+mv

2

)
h( 1

2α )h(1−
1
2α )

≥ 2f (n)

(
u+mv

2

)
.
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By using these inequalities along with inequality (8), we will get inequality (12).
□

Corollary 2.3. By using α = 1 in (8), the inequality for (L-CF) derivatives of
RCm

h (1) functions is obtained:

f (n)
(
u+mv

2

)
(h( 12 ))

2
≤ Γ(n− β + 1)

(mv − u)n−β

[
(−1)nmn−β+1

(
CDβ

v−f
)( u

m

)
+
(
CDβ

u+f
)
(mv)

]
≤ (n− β)

(
f (n)(u) + 2mf (n)(v) +m2f (n)

( u

m2

))∫ 1

0

h(t)h(1− t)t(n−β−1)dt.

(13)

Corollary 2.4. By using α = 1 in (12), the inequality for (L-CF) derivatives
of RCm

h (1) functions is obtained:

2f (n)

(
u+mv

2

)
≤

f (n)
(
u+mv

2

)
(h( 12 ))

2
≤ Γ(n− β + 1)

(mv − u)n−β

[
(−1)nmn−β+1

(
CDβ

v−f
)( u

m

)
+
(
CDβ

u+f
)
(mv)

]
≤ (n− β)

(
f (n)(u) + 2mf (n)(v) +m2f (n)

( u

m2

))
×
∫ 1

0

h(t)h(1− t)t(n−β−1)dt ≤ 1

2

(
f (n)(u) + 2mf (n)(v) +m2f (n)

( u

m2

))
.

(14)

Corollary 2.5. By using h(t) = t in (8), the inequality for (L-CF) derivatives
of RCm

Id
(α) functions is obtained:

22αf (n)
(
u+mv

2

)
2α − 1

≤ Γ(n− β + 1)

(mv − u)n−β

[
(−1)nmn−β+1

(
CDβ

v−f
)( u

m

)
+
(
CDβ

u+f
)
(mv)

]
≤

α(n− β)
(
f (n)(u) + 2mf (n)(v) +m2f (n)

(
u

m2

))
(α+ n− β)(2α+ n− β)

.

(15)

Corollary 2.6. By using h(t) = t in (12), the inequality for (L-CF) derivatives
of RCm

Id
(α) function is obtained:

2f (n)
(u+mv

2

)
≤

22αf (n)
(
u+mv

2

)
2α − 1

≤ Γ(n− β + 1)

(mv − u)n−β

[
(−1)nmn−β+1

(
CDβ

v−f
)( u

m

)
+
(
CDβ

u+f
)
(mv)

]
≤

α(n− β)
(
f (n)(u) + 2mf (n)(v) +m2f (n)

(
u

m2

))
(α+ n− β)(2α+ n− β)

≤ 1

2

(
f (n)(u) + 2mf (n)(v) +m2f (n)

( u

m2

))
.

(16)
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Corollary 2.7. By using α = 1 and h(t) = ts in (8), the inequality for (L-CF)
derivatives of RCm

ts (1) functions is obtained:

22sf (n)
(u+mv

2

)
≤ Γ(n− β + 1)

(mv − u)n−β

[
(−1)nmn−β+1

(
CDβ

v−f
)( u

m

)
+
(
CDβ

u+f
)
(mv)

]
≤ (n− β)

(
f (n)(u) + 2mf (n)(v) +m2f (n)

( u

m2

))
β(s+ 1, n− β + s).

(17)

Corollary 2.8. By using α = 1 and h(t) = ts in (12), the inequality for (L-CF)
derivatives of RCm

ts (1) functions is obtained:

2f
(n)

(
u + mv

2

)
≤ 2

2s
f
(n)

(
u + mv

2

)
≤

Γ(n − β + 1)

(mv − u)n−β

[
(−1)

n
m

n−β+1
(
C
D

β

v−f
)(

u

m

)
+

(
C
D

β

u+f
)
(mv)

]
≤ (n − β)

(
f
(n)

(u) + 2mf
(n)

(v) + m
2
f
(n)

(
u

m2

))
β(s + 1, n − β + s)

≤
1

2

(
f
(n)

(u) + 2mf
(n)

(v) + m
2
f
(n)

(
u

m2

))
.

(18)

Corollary 2.9. By using α = 1 and m = 1 in (8), the inequality for (L-CF)
derivatives of RC1

h(1) functions is obtained:

f (n)
(
u+v
2

)
(h( 12 ))

2
≤ Γ(n− β + 1)

(v − u)n−β

[
(−1)n

(
CDβ

v−f
)
(u) +

(
CDβ

u+f
)
(v)
]

≤ 2(n− β)
(
f (n)(u) + f (n)(v)+

)∫ 1

0

h(t)h(1− t)t(n−β−1)dt.

(19)

Corollary 2.10. By using h(t) = t and α = 1in (8), the inequality for (L-CF)
derivatives of RCm

Id
(1) functions is obtained:

4f (n)
(u+mv

2

)
≤ Γ(n− β + 1)

(mv − u)n−β

[
(−1)nmn−β+1

(
CDβ

v−f
)( u

m

)
+
(
CDβ

u+f
)
(mv)

]
≤

(n− β)
(
f (n)(u) + 2mf (n)(v) +m2f (n)

(
u

m2

))
(1 + n− β)(2 + n− β)

.

(20)

Theorem 2.11. Let f be a positive, integrable and RCm
h (α) function. Then the

following inequality for (L-CF) derivatives holds:

1

h( 1
2α )h(1−

1
2α )

f (n)

(
u+mv

2

)
≤ 2n−βΓ(n− β + 1)

(mv − u)n−β

[(
CDβ

u+mv
2

+f

)
(mv)

+mn−β+1(−1)n
(

CDβ
u+mv
2m

−f

)( u

m

)]
≤ (n− β)

(
m2f (n)

( u

m2

)
+f (n)(u) + 2mf (n)(v)

)∫ 1

0

h

(
t

2

)α

h

(
1−

(
t

2

)α)
tn−β−1dt.

(21)

Proof. From RCm
h (α)ity of f (n), we have

f (n)

(
mx+ y

2

)
≤ h

(
1

2α

)
h

(
1− 1

2α

)
(mf (n)(x) + f (n)(y)). (22)
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Let x = u
m

(
2−t
2

)
+ vt

2 and y = ut
2 +m (2−t)

2 v in (9), t ∈ [0, 1]. Then we have

f (n)
(u+mv

2

)
≤ h

(
1

2α

)
h

(
1− 1

2α

)(
mf (n)

(
u

m

(
2− t

2

)
+

vt

2

)
+ f (n)

(
ut

2
+m

(2− t)

2
v

))
.

By multiplying above inequality with tn−β−1 and then doing integration on [0, 1], the
following inequality is yielded

f (n)
(u+mv

2

)∫ 1

0

tn−β−1dt ≤ h

(
1

2α

)
h

(
1− 1

2α

)
(23)[∫ 1

0

mf (n)

(
u

m

(
2− t

2

)
+

vt

2

)
tn−β−1dt+

∫ 1

0

f (n)

(
ut

2
+m

(2− t)

2
v

)
tn−β−1dt

]
.

The above inequality takes the following form by considering change of variables

1

n− β
f (n)

(u+mv

2

)
≤ h

(
1

2α

)
h

(
1− 1

2α

)(
2n−β

(mv − u)n−β

∫ u+mv
2m

u
m

mn−β+1
(
x− u

m

)n−β−1

f (n)(x)dx

+
2n−β

(mv − u)n−β

∫ mv

u+mv
2

(mv − y)n−β−1f (n)(y)dy

)
.

(24)
Which after using Definition 1.1 and multiplying the resulting inequality with (n−β),
the first inequality of (21) is obtained.

Again by using RCm
h (α)ity of f (n), we have

mf (n)

(
u

m

(
2− t

2

)
+

vt

2

)
+ f (n)

(
ut

2
+m

(2− t)

2
v

)
≤ h

(
t

2

)α

h

(
1−

(
t

2

)α)(
m2f (n)

( u

m2

)
+ f (n)(u) + 2mf (n)(v)

)
.

Multiplying the above inequality by tn−β−1 and integrating over [0, 1], then by using
change of variables and Definition 1.1, the second inequality of (21) is obtained. □

The extension of inequality (21) is given in the following result.

Theorem 2.12. Let h(t) ≤ 1√
2
along with same assumptions as stated in The-

orem 2.11. Then the following inequality is valid:

2f (n)
(u+mv

2

)
≤ 1

h( 1
2α

)h(1− 1
2α

)
f (n)

(u+mv

2

)
≤ 2n−βΓ(n− β + 1)

(mv − u)n−β

[(
CDβ

u+mv
2

+f

)
(mv) +mn−β+1(−1)n

(
CDβ

u+mv
2m

−f

)( u

m

)]
≤ (n− β)

(
m2f (n)

( u

m2

)
+ f (n)(u) + 2mf (n)(v)

)∫ 1

0

h

(
t

2

)α

h

(
1−

(
t

2

)α)
tn−β−1dt

≤ 1

2

(
m2f (n)

( u

m2

)
+ f (n)(u) + 2mf (n)(v)

)
.

(25)
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Proof. It is given h(t) ≤ 1√
2
, so we have∫ 1

0

h

(
t

2

)α

h

(
1−

(
t

2

)α)
tn−β−1dt ≤ 1

2(n− β)

and
1

h( 1
2α )h(1−

1
2α )

f (n)

(
u+mv

2

)
≥ 2f (n)

(
u+mv

2

)
.

By using these inequalities along with inequality (21), we will get inequality
(25). □

Corollary 2.13. By using α = 1 in (21), the inequality for (L-CF) derivatives
of RCm

h (1) functions is obtained:

f (n)
(
u+mv

2

)
(h( 12 ))

2
≤ 2n−βΓ(n− β + 1)

(mv − u)n−β

[
mn−β+1(−1)n

(
CDβ

u+mv
2m

−f

)( u

m

)
+

(
CDβ

u+mv
2

+f

)
(mv)

]
≤ (n− β)

(
m2f (n)

( u

m2

)
+ f (n)(u) + 2mf (n)(v)

)
×
∫ 1

0

h

(
t

2

)
h

(
1−

(
t

2

))
tn−β−1dt.

(26)

Corollary 2.14. By using α = 1 in (25), the inequality for (L-CF) derivatives
of RCm

h (1) functions is obtained:

2f (n)
(u+mv

2

)
≤

f (n)
(
u+mv

2

)
(h( 1

2
))2

≤ 2n−βΓ(n− β + 1)

(mv − u)n−β

[(
CDβ

u+mv
2

+f

)
(mv) +mn−β+1(−1)n

(
CDβ

u+mv
2m

−f

)( u

m

)]
≤ (n− β)

(
m2f (n)

( u

m2

)
+ f (n)(u) + 2mf (n)(v)

)∫ 1

0

h

(
t

2

)
h

(
1−

(
t

2

))
tn−β−1dt

≤ 1

2

(
m2f (n)

( u

m2

)
+ f (n)(u) + 2mf (n)(v)

)
.

(27)

Corollary 2.15. By using h(t) = t in (21), the inequality for (L-CF) derivatives
of RCm

Id
(α) functions is obtained:

22αf (n)
(
u+mv

2

)
2α − 1

≤ 2n−βΓ(n− β + 1)

(mv − u)n−β

[
mn−β+1(−1)n

(
CDβ

u+mv
2m

−f

)( u

m

)
+

(
CDβ

u+mv
2

+f

)
(mv)

]
≤

(n− β)
(
m2f (n)

(
u
m2

)
+ f (n)(u) + 2mf (n)(v)

)
[2α(2α+ n− β)− (α+ n− β)]

22α(2α+ n− β)(α+ n− β)
.

(28)
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Corollary 2.16. By using h(t) = t in (25), the inequality for (L-CF) derivatives
of RCm

Id
(α) functions is obtained:

2f (n)

(
u+mv

2

)
≤

22αf (n)
(
u+mv

2

)
2α − 1

≤ 2n−βΓ(n− β + 1)

(mv − u)n−β

[
mn−β+1(−1)n

(
CDβ

u+mv
2m

−f

)( u

m

)
+

(
CDβ

u+mv
2

+f

)
(mv)

]
≤

(n− β)
(
m2f (n)

(
u
m2

)
+ f (n)(u) + 2mf (n)(v)

)
[2α(2α+ n− β)− (α+ n− β)]

22α(2α+ n− β)(α+ n− β)

≤ 1

2

(
m2f (n)

( u

m2

)
+ f (n)(u) + 2mf (n)(v)

)
.

(29)

Corollary 2.17. By using α = 1 and h(t) = ts in (21), the inequality for
(L-CF) derivatives of RCm

ts (1) functions is obtained:

22sf (n)

(
u+mv

2

)
≤ 2n−βΓ(n− β + 1)

(mv − u)n−β

[
mn−β+1(−1)n

(
CDβ

u+mv
2m

−f

)( u

m

)
+

(
CDβ

u+mv
2

+f

)
(mv)

]
≤ (n− β)

22s

(
m2f (n)

( u

m2

)
+ f (n)(u) + 2mf (n)(v)

)∫ 1

0

ts+n−β−1(2− t)sdt.

(30)

Corollary 2.18. By using α = 1 and h(t) = ts in (25), the inequality for
(L-CF) derivatives of RCm

ts (1) functions is obtained:

2f (n)

(
u+mv

2

)
≤ 22sf (n)

(
u+mv

2

)
≤ 2n−βΓ(n− β + 1)

(mv − u)n−β

[(
CDβ

u+mv
2

+f

)
(mv) +mn−β+1(−1)n

(
CDβ

u+mv
2m

−f

)( u

m

)]
≤ (n− β)

22s

(
m2f (n)

( u

m2

)
+ f (n)(u) + 2mf (n)(v)

)∫ 1

0

ts+n−β−1(2− t)sdt

≤ 1

2

(
m2f (n)

( u

m2

)
+ f (n)(u) + 2mf (n)(v)

)
.

(31)
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Corollary 2.19. By using α = 1 and m = 1 in (21), the inequality for (L-CF)
derivatives of RC1

h(1) functions is obtained:

f (n)
(
u+v
2

)
(h( 12 ))

2
≤ 2n−βΓ(n− β + 1)

(v − u)n−β

[
(−1)n

(
CDβ

u+v
2

−f

)
(u)

+

(
CDβ

u+v
2

+f

)
(v)

]
≤ 2(n− β)

(
f (n) (u) + f (n)(v)

)
×
∫ 1

0

h

(
t

2

)
h

(
1−

(
t

2

))
tn−β−1dt.

(32)

Corollary 2.20. By using h(t) = t and α = 1in (21), the inequality for (L-CF)
derivatives of RCm

Id
(1) functions is obtained:

4f (n)

(
u+mv

2

)
≤ 2n−βΓ(n− β + 1)

(mv − u)n−β

[
mn−β+1(−1)n

(
CDβ

u+mv
2m

−f

)( u

m

)
+

(
CDβ

u+mv
2

+f

)
(mv)

]
≤

(n− β)(3 + n− β)
(
m2f (n)

(
u
m2

)
+ f (n)(u) + 2mf (n)(v)

)
4(2 + n− β)(1 + n− β)

.

(33)

3. Conclusions

This paper investigates the refinements of inequalities for Liouville-Caputo
fractional derivatives. Hadamard type inequalities are established for refined
convex functions utilizing Liouville-Caputo fractional derivatives. Many known
inequalities and their refinements are special cases of results of this paper. Also,
some new inequalities are deduced from main results.
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