DOI QR코드

DOI QR Code

FRACTIONAL POLYA-SZEGÖ INEQUALITY

  • Received : 2011.03.06
  • Accepted : 2011.05.16
  • Published : 2011.06.30

Abstract

Let 0 < s < 1. For $f^{\ast}$ representing the symmetric radial decreasing rearrangement of f, we build up a fractional version of Polya-$Szeg{\ddot{o}}$ inequality: $${\int}_{\mathbb{R}^n}{\mid}(-\Delta)^{s/2}f^{\ast}(x){\mid}^2dx{\leq}{\int}_{\mathbb{R}^n}{\mid}(-\Delta)^{s/2}f(x){\mid}^2dx$$.

Keywords

References

  1. Frederick J. Almgren and Elliott H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc. 2 (1989), 683-773. https://doi.org/10.1090/S0894-0347-1989-1002633-4
  2. W. Beckner, Inequalities in Fourier analysis, Ann. Math. 102 (1975), 159-182. https://doi.org/10.2307/1970980
  3. W. Beckner, Geometric inequalities in Fourier analysis, Essays on Fourier Analysis in honor of Elias M. Stein, Princeton University Press, 36-68, 1995.
  4. W. Beckner, Sobolev inequalities, the Poisson semigroup, and analysis on the sphere on Sn, Proc. Natl. Acad. Sci. 89 (1992), 4816-4819. https://doi.org/10.1073/pnas.89.11.4816
  5. H. Hajaiej and C.A. Stuart, Existence and non-existence of Schwarz symmet- ric ground states for elliptic eigenvalue problems, Ann. Mat. Pura Appl. 184 (2005), 297-314. https://doi.org/10.1007/s10231-004-0114-8
  6. B. Kawohl, Rearrangements and convexity of level sets in PDE, Springer- Verlag, 1985.
  7. E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquards nonlinear equation, Studies in Appl. Math. 57 (1976/77), 93-105. https://doi.org/10.1002/sapm197757293
  8. E. H. Lieb and M. Loss, Analysis, Volume 14 of Graduate Studies in Mathematics, AMS, 1997.
  9. Y. J. Park, Logarithmic Sobolev trace inequality, Proc. Amer. Math. Soc. 132 (2004). 2067-2073. https://doi.org/10.1090/S0002-9939-04-07327-7
  10. G. Polya and G. Szego, Inequalities for the capacity of a condenser, Amer. J. Math. 67 (1945), 1-32. https://doi.org/10.2307/2371912