• Title/Summary/Keyword: fractional function

검색결과 336건 처리시간 0.027초

HIGHER ORDER NONLOCAL NONLINEAR BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Khan, Rahmat Ali
    • 대한수학회보
    • /
    • 제51권2호
    • /
    • pp.329-338
    • /
    • 2014
  • In this paper, we study the method of upper and lower solutions and develop the generalized quasilinearization technique for the existence and approximation of solutions to some three-point nonlocal boundary value problems associated with higher order fractional differential equations of the type $$^c{\mathcal{D}}^q_{0+}u(t)+f(t,u(t))=0,\;t{\in}(0,1)$$ $$u^{\prime}(0)={\gamma}u^{\prime}({\eta}),\;u^{\prime\prime}(0)=0,\;u^{\prime\prime\prime}(0)=0,{\ldots},u^{(n-1)}(0)=0,\;u(1)={\delta}u({\eta})$$, where, n-1 < q < n, $n({\geq}3){\in}\mathbb{N}$, 0 < ${\eta},{\gamma},{\delta}$ < 1 and $^c\mathcal{D}^q_{0+}$ is the Caputo fractional derivative of order q. The nonlinear function f is assumed to be continuous.

ON SOME WEIGHTED HARDY-TYPE INEQUALITIES INVOLVING EXTENDED RIEMANN-LIOUVILLE FRACTIONAL CALCULUS OPERATORS

  • Iqbal, Sajid;Pecaric, Josip;Samraiz, Muhammad;Tehmeena, Hassan;Tomovski, Zivorad
    • 대한수학회논문집
    • /
    • 제35권1호
    • /
    • pp.161-184
    • /
    • 2020
  • In this article, we establish some new weighted Hardy-type inequalities involving some variants of extended Riemann-Liouville fractional derivative operators, using convex and increasing functions. As special cases of the main results, we obtain the results of [18,19]. We also prove the boundedness of the k-fractional integral operator on Lp[a, b].

Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories

  • Ezzat, M.A.;El-Bary, A.A.
    • Steel and Composite Structures
    • /
    • 제24권3호
    • /
    • pp.297-307
    • /
    • 2017
  • A unified mathematical model of phase-lag Green-Naghdi magneto-thermoelasticty theories based on fractional derivative heat transfer for perfectly conducting media in the presence of a constant magnetic field is given. The GN theories as well as the theories of coupled and of generalized magneto-thermoelasticity with thermal relaxation follow as limit cases. The resulting nondimensional coupled equations together with the Laplace transforms techniques are applied to a half space, which is assumed to be traction free and subjected to a thermal shock that is a function of time. The inverse transforms are obtained by using a numerical method based on Fourier expansion techniques. The predictions of the theory are discussed and compared with those for the generalized theory of magneto-thermoelasticity with one relaxation time. The effects of Alfven velocity and the fractional order parameter on copper-like material are discussed in different types of GN theories.

EXISTENCE OF SOLUTIONS OF A CLASS OF IMPULSIVE PERIODIC TYPE BVPS FOR SINGULAR FRACTIONAL DIFFERENTIAL SYSTEMS

  • Liu, Yuji
    • Korean Journal of Mathematics
    • /
    • 제23권1호
    • /
    • pp.205-230
    • /
    • 2015
  • A class of periodic type boundary value problems of coupled impulsive fractional differential equations are proposed. Sufficient conditions are given for the existence of solutions of these problems. We allow the nonlinearities p(t)f(t, x, y) and q(t)g(t, x, y) in fractional differential equations to be singular at t = 0, 1 and be involved a sup-multiplicative-like function. So both f and g may be super-linear and sub-linear. The analysis relies on a well known fixed point theorem. An example is given to illustrate the efficiency of the theorems.

NEIGHBORHOOD CONDITION AND FRACTIONAL f-FACTORS IN GRAPHS

  • Liu, Hongxia;Liu, Guizhen
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1157-1163
    • /
    • 2009
  • Let G be a graph with vertex set V(G) and let f be a nonnegative integer-valued function defined on V(G). A spanning subgraph F of G is called a fractional f-factor if $d^h_G$(x)=f(x) for all x $\in$ for all x $\in$ V (G), where $d^h_G$ (x) = ${\Sigma}_{e{\in}E_x}$ h(e) is the fractional degree of x $\in$ V(F) with $E_x$ = {e : e = xy $\in$ E|G|}. In this paper it is proved that if ${\delta}(G){\geq}{\frac{b^2(k-1)}{a}},\;n>\frac{(a+b)(k(a+b)-2)}{a}$ and $|N_G(x_1){\cup}N_G(x_2){\cup}{\cdots}{\cup}N_G(x_k)|{\geq}\frac{bn}{a+b}$ for any independent subset ${x_1,x_2,...,x_k}$ of V(G), then G has a fractional f-factor. Where k $\geq$ 2 be a positive integer not larger than the independence number of G, a and b are integers such that 1 $\leq$ a $\leq$ f(x) $\leq$ b for every x $\in$ V(G). Furthermore, we show that the result is best possible in some sense.

  • PDF

Augmentation of Fractional-Order PI Controller with Nonlinear Error-Modulator for Enhancing Robustness of DC-DC Boost Converters

  • Saleem, Omer;Rizwan, Mohsin;Khizar, Ahmad;Ahmad, Muaaz
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.835-845
    • /
    • 2019
  • This paper presents a robust-optimal control strategy to improve the output-voltage error-tracking and control capability of a DC-DC boost converter. The proposed strategy employs an optimized Fractional-order Proportional-Integral (FoPI) controller that serves to eliminate oscillations, overshoots, undershoots and steady-state fluctuations. In order to significantly improve the error convergence-rate during a transient response, the FoPI controller is augmented with a pre-stage nonlinear error-modulator. The modulator combines the variations in the error and error-derivative via the signed-distance method. Then it feeds the aggregated-signal to a smooth sigmoidal control surface constituting an optimized hyperbolic secant function. The error-derivative is evaluated by measuring the output-capacitor current in order to compensate the hysteresis effect rendered by the parasitic impedances. The resulting modulated-signal is fed to the FoPI controller. The fixed controller parameters are meta-heuristically selected via a Particle-Swarm-Optimization (PSO) algorithm. The proposed control scheme exhibits rapid transits with improved damping in its response which aids in efficiently rejecting external disturbances such as load-transients and input-fluctuations. The superior robustness and time-optimality of the proposed control strategy is validated via experimental results.

WEAK CONVERGENCE FOR MULTIPLE STOCHASTIC INTEGRALS IN SKOROHOD SPACE

  • Kim, Yoon Tae
    • Korean Journal of Mathematics
    • /
    • 제22권1호
    • /
    • pp.71-84
    • /
    • 2014
  • By using the multidimensional normal approximation of functionals of Gaussian fields, we prove that functionals of Gaussian fields, as functions of t, converge weakly to a standard Brownian motion. As an application, we consider the convergence of the Stratonovich-type Riemann sums, as a function of t, of fractional Brownian motion with Hurst parameter H = 1/4.

ON A SUBCLASS OF PRESTALIKE FUNCTIONS WITH NEGATIVE COEFFICIENTS

  • Lee, S.K.;Joshi, S.B.
    • Korean Journal of Mathematics
    • /
    • 제8권2호
    • /
    • pp.127-134
    • /
    • 2000
  • Motivated by recent work of Uralegaddi and Sarangi[12], we aim at presenting here system study of novel subclass $R_{\alpha}[{\mu},{\beta},{\xi}]$ of prestarlike functions. Further using operators of fractional calculus, we have obtained distortion theorem for $R_{\alpha}[{\mu},{\beta},{\xi}]$. Lastly the extreme points of $R_{\alpha}[{\mu},{\beta},{\xi}]$ are obtained.

  • PDF

SOME MULTI-SUBLINEAR OPERATORS ON GENERALIZED MORREY SPACES WITH NON-DOUBLING MEASURES

  • Shi, Yanlong;Tao, Xiangxing
    • 대한수학회지
    • /
    • 제49권5호
    • /
    • pp.907-925
    • /
    • 2012
  • In this paper the boundedness for a large class of multi-sublinear operators is established on product generalized Morrey spaces with non-doubling measures. As special cases, the corresponding results for multilinear Calder$\acute{o}$n-Zygmund operators, multilinear fractional integrals and multi-sublinear maximal operators will be obtained.