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ON A SUBCLASS OF PRESTALIKE
FUNCTIONS WITH NEGATIVE COEFFICIENTS

S. K. Lee and S. B. Joshi

Abstract. Motivated by recent work of Uralegaddi and Sarangi[12],

we aim at presenting here system study of novel subclass Rα[µ, β, ξ]
of prestarlike functions. Further using operators of fractional calcu-

lus, we have obtained distortion theorem for Rα[µ, β, ξ]. Lastly the

extreme points of Rα[µ, β, ξ] are obtained.

1. Introduction.

Let A denote the class of functions of the form

(1.1) f(z) = z +
∞∑

n=2

anzn

that are analytic in the unit disc U = {z : |z| < 1}, let S denote the
subclass of A consisting of analytic and univalent functions f(z) in the
unit disc U. Further T denote subclass of A consisting of functions f(z)
of the form

(1.2) f(z) = z −
∞∑

n=2

anzn, an ≥ 0.

Schild[8] studied a subclass of S consisting of polynomials having |z| =
1 as radius univalence. Subsequently, Silverman[10] proved useful re-
sults for the subclasses S∗(α) and C(α) of S, where S∗(α) and C(α)
denote respectively, the subclasses of starlike functions of order α and
convex functions of order α, 0 ≤ α < 1. We note that S∗(α) was
introduced by Robertson[5].
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The function

(1.3) Sα(z) = z(1− z)−2(1−α)

is the well known extremal function for the class S∗(α). Letting,

(1.4) C(α, n) =
∏n

k=2(k − 2α)
(n− 1)!

, n = 2, 3, · · ·

Sα(z) can be written in the form

(1.5) Sα(z) = z +
∞∑

n=2

C(α, n)zn.

We note that C(α, n) is decreasing in α and satisfies

(1.6) lim
n→∞

C(α, n) =


∞ α < 1

2

1 α = 1
2

0 α > 1
2 .

Let (f ∗ g)(z) denote the convolution or Hadamard product of f(z)
given by (1.1) and g(z) given by

g(z) = z +
∞∑

n=2

bnzn,

then

(1.8) (f ∗ g)(z) = z +
∞∑

n=2

anbnzn.

Let Rα(µ, β, ξ) denote the class of prestarlike functions, that satisfies
the condition

(1.9)

∣∣∣∣∣∣
zh′(z)
h(z) − 1

2ξ( zh′(z)
h(z) − µ)− ( zh′(z)

h(z) − 1)

∣∣∣∣∣∣ < β

where, h(z) = f ∗ Sα(z), 0 < β ≤ 1, 0 ≤ µ < 1, 1/2 < ξ ≤ 1. The
class of α-prestarlike functions was introduced by Ruscheweyh[7] and
later on rather extensively studied by Silverman and Silvia[9], Owa and
Ahuja[4] and Uralegaddi and Sarangi[12].

Let

(1.10) Rα[µ, β, ξ] = Rα(µ, β, ξ) ∩ T.

Our main tool in the present paper is the following, which can be
easily proved, the details are omitted.
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Lemma 1. Let f(z) be defined by (1.2), then f(z) is in the class
Rα[µ, β, ξ] if and only if

∞∑
n=2

((n− 1) + β(2ξ(n− µ)− (n− 1)))C(α, n)an ≤ 2βξ(1− µ).

The result is sharp.

2. Distortion Theorems Involving Fractional Calculus

In this section, we shall prove distortion theorems for functions be-
longing to the class Rα[µ, β, ξ]. Each of these would involve operators
of fractional calculus which are defined as follows (cf. e.g [2, 3, 6, 11]).

Defintion 1. The fractional integral of order λ is defined by

(2.1) D−λ
z f(z) =

1
Γ(λ)

∫ z

0

f(ζ)
(z − ζ)1−λ

dζ

where λ > 0, f(z) is an analytic function in a simply connected region
of the z-plane containing the origin, and the multiplicity of (z − ζ)λ−1

is removed by requiring log(z − ζ) to be real when z − ζ > 0.

Definition 2. The fractional derivative of order λ is defined by

(2.2) Dλ
z f(z) =

1
Γ(1− λ)

d

dz

∫ z

0

f(ζ)
(z − ζ)λ

dζ,

where 0 ≤ λ < 1, f(z) is an analytic function in a simply connected
region of the z-plane containing the origin and the multiplicity of (z −
ζ)−λ is removed as in Definition 1.

Definition 3. Under the hypothesis of Definition 2, the fractional
derivative of order n + λ is defined by

(2.3) Dn+λ
z f(z) =

dn

dzn
Dλ

z f(z),

where 0 ≤ λ < 1, n ∈ N ∪ {0}, N = {1, 2, · · · }.
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Theorem 1. Let f(z) given by (1.2) be in the class Rα[µ, β, ξ].
Then

(2.4) |D−λ
z f(z)| ≥ |z|1+λ

Γ(2 + λ)

(
1− βξ(1− µ)

(1 + β(4ξ − 2ξµ− 1))(1− α)
|z|

)
and

(2.5) |D−λ
z f(z)| ≤ |z|1+λ

Γ(2 + λ)

(
1 +

βξ(1− µ)
(1 + β(4ξ − 2ξµ− 1))(1− α)

|z|
)

for λ > 0, z ∈ U. The bounds are sharp.

Proof. Let

F (z) = Γ(2 + λ)z−λD−λ
z f(z)(2.6)

= z −
∞∑

n=2

Γ(n + 1)Γ(2 + λ)
Γ(n + 1 + λ)

anzn

for λ > 0. We note that

(2.7) 0 <
Γ(n + 1)Γ(2 + λ)

Γ(n + 1 + λ)
< n

for λ > 0, n ≥ 2, and that C(α, n + 1) ≥ C(α, n), for 0 ≤ α < 1/2,
and n ≥ 2. Consequently, by using Lemma 1, we have

|F (z)| ≥ |z| − |z|2
∞∑

n=2

Γ(n + 1)Γ(2 + λ)
Γ(n + 1 + λ)

an

≥ |z| − βξ(1− µ)
(1 + β(4ξ − 2ξµ− 1))(1− α)

|z|2

which implies (2.4), and

|F (z)| ≤ |z|+ |z|2
∞∑

n=2

Γ(n + 1)Γ(2 + λ)
Γ(n + 1 + λ)

an

≤ |z|+ ξβ(1− µ)
(1 + β(4ξ − 2ξµ− 1))(1− α)

|z|2

which gives (2.5).
The result is sharp for the function f(z) given by

D−λ
z f(z) =

z1+λ

Γ(2 + λ)

(
1− βξ(1− µ)

(1 + β(4ξ − 2ξµ− 1))(1− α)
z

)
.

�
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Corollary 1. Let the functions f(z) be defined by (1.2) is in the
class Rα[µ, β, ξ], with 0 ≤ α ≤ 1/2, 1/2 < ξ ≤ 1, 0 < β ≤ 1 and
0 ≤ µ < 1. Then D−λ

z f(z) is included in a disc with center at origin
and radius r1 given by

(2.8) r1 =
1

Γ(2 + λ)

(
1 +

βξ(1− µ)
(1 + β(4ξ − 2ξµ− 1))(1− α)

)
,

where λ > 0.

Theorem 2. Let the functions f(z) given by (1.2) be in the class
Rα[µ, β, ξ]. Then

(2.9) |Dλ
z f(z)| ≥ |z|1−λ

Γ(2− λ)

(
1− 2ξβ(1− µ)

(1 + β(4ξ − 4ξµ− 1))(1− α)
|z|

)
and

(2.10) |Dλ
z f(z)| ≤ |z|1−λ

Γ(2− λ)

(
1 +

2ξβ(1− µ)
(1 + β(4ξ − 4ξµ− 1))(1− α)

|z|
)

for 0 ≤ λ < 1, z ∈ U. The bounds are sharp.

Proof. Let

G(z) = Γ(2− λ)zλDλ
z f(z)

= z −
∞∑

n=2

Γ(n + 1)Γ(2− λ)
Γ(n + 1− λ)

anzn

for 0 ≤ λ < 1. By using Lemma 1, we observe that

1
2

(1 + β(4ξ − 4ξµ− 1))C(α, 2)
∞∑

n=2

nan

(2.11)

≤
∞∑

n=2

(
(n− 1) + β(2ξ(n− µ)− (n− 1))

)
C(α, n)an

≤ 2βξ(1− µ),
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which implies that

(2.12)
∞∑

n=2

nan ≤
2ξβ(1− µ)

(1 + β(4ξ − 4ξµ− 1))(1− α)
.

Further, we note that 1 < Γ(n+1)Γ(2−λ)
Γ(n+1−λ) < n for 0 ≤ λ < 1, n ≥ 2.

Hence we have

|G(z)| ≥ |z| − |z|2
∞∑

n=2

Γ(n + 1)Γ(2− λ)
Γ(n + 1− λ)

an

≥ |z| − |z|2
∞∑

n=2

nan

≥ |z| − 2ξβ(1− µ)
(1 + β(4ξ − 4ξµ− 1))(1− α)

|z|2

which proves (2.9), and

|G(z)| ≤ |z|+ |z|2
∞∑

n=2

Γ(n + 1)Γ(2− λ)
Γ(n + 1− λ)

an

≤ |z|+ |z|2
∞∑

n=2

nan

≤ |z|+ 2ξβ(1− µ)
(1 + β(4ξ − 4ξµ− 1))(1− α)

|z|2

which gives (2.10).
Finally, The bound of (2.9) and (2.10) are sharp, extremal function

being

Dλ
z f(z) =

z1−λ

Γ(2− λ)

(
1− 2ξβ(1− µ)

(1 + β(4ξ − 4ξµ− 1))(1− α)

)
.

�
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Corollary 2. Let the function f(z) given by (1.2) be in the class
Rα[µ, β, ξ]. Then Dλ

z f(z) is included in the disc with center at origin
and radius r2 given by,

(2.13) r2 =
1

Γ(2− λ)

(
1 +

2ξβ(1− µ)
(1 + β(4ξ − 4ξµ− 1))(1− α)

)
,

where 0 ≤ λ < 1.

Finally, we obtain extreme points of Rα[µ, β, ξ] by the routine cal-
culation.

Theorem 3. Let
f1(z) = z

and

(2.14) fn(z) = z − 2βξ(1− µ)(
(n− 1) + β(2ξ(n− µ)− (n− 1))

)
C(α, n)

zn,

n = 2, 3, · · · . Then f ∈ Rα[µ, β, ξ] if and only if it can be expressed in
the form

f(z) =
∞∑

n=1

λnfn(z),

where λn ≥ 0,
∑∞

n=1 λn = 1.
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