SOME MULTI-SUBLINEAR OPERATORS ON GENERALIZED MORREY SPACES WITH NON-DOUBLING MEASURES

YANLONG SHI AND XIANGXING TAO

ABSTRACT. In this paper the boundedness for a large class of multisublinear operators is established on product generalized Morrey spaces with non-doubling measures. As special cases, the corresponding results for multilinear Calderón-Zygmund operators, multilinear fractional integrals and multi-sublinear maximal operators will be obtained.

1. Introduction

A Radon measure μ on \mathbb{R}^d is called a doubling measure if it satisfies the doubling condition, i.e., there is a constant C>0 such that $\mu(2Q)\leq C\mu(Q)$ for any cube $Q\subset\mathbb{R}^d$. This doubling condition on μ seems to be a key assumption in classical Fourier analysis, however, it has been shown recently that many results also hold without the doubling assumption, see [4, 8, 9, 14, 15] among other literatures. In this paper we will investigate a large class of multisublinear operators, including multilinear Calderón-Zygmund operators, multilinear fractional integrals and multi-sublinear maximal operators, on product generalized Morrey spaces with non-doubling measures.

In fact, for $m \in \mathbb{N}$ and m-tuple (f_1, f_2, \ldots, f_m) , we consider the multisublinear operators \mathcal{T} satisfying the following size condition,

$$|\mathcal{T}(f_1,\ldots,f_m)(x)| \le C \int_{(\mathbb{R}^d)^m} \frac{|f_1(y_1)\cdots f_m(y_m)|}{(|x-y_1|+\cdots+|x-y_m|)^{mn-\alpha}} \prod_{i=1}^m d\mu(y_i)$$

Received September 9, 2010; Revised December 26, 2011.

2010 Mathematics Subject Classification. 42B20, 42B25, 42B35.

Key words and phrases. multilinear Calderón-Zygmund operator, multilinear fractional integral, multi-sublinear maximal function, generalized Morrey spaces, non-doubling measure.

The research of the first author was supported by the Foundation of Zhejiang Pharmaceutical College under grant #ZPCSR2010013.

The research of the second author was partially supported by the National Nature Science Foundation of China under grant #11171306 and #11071065, and sponsored by the Scientific Project of Zhejiang Provincial Science Technology Department under grant #2011C33012 and the Scientific Research Fund of Zhejiang Provincial Education Department under grant #Z201017584.

with $0 \le \alpha < mn$, where the non-doubling measure μ satisfies the growth condition

(1.2)
$$\mu(Q) \le C_0 [\ell(Q)]^n, \quad 0 < n \le d,$$

for any cube $Q \subset \mathbb{R}^d$ with its side length $\ell(Q) > 0$.

Recall the multilinear fractional integral, for $0 < \alpha < mn$,

$$I_{\alpha,m}(f_1,\ldots,f_m)(x) = \int_{(\mathbb{R}^d)^m} \frac{f_1(y_1)\cdots f_m(y_m)}{(|x-y_1|+\cdots+|x-y_m|)^{mn-\alpha}} \prod_{i=1}^m d\mu(y_i),$$

and the m-linear Calderón-Zygmund operator defined by

$$T(f_1, ..., f_m)(x) = \int_{(\mathbb{R}^d)^m} \mathcal{K}(x, y_1, ..., y_m) f_1(y_1) \cdots f_m(y_m) \prod_{i=1}^m d\mu(y_i)$$

for functions f_i with compact support and $x \notin \bigcap_{i=1}^m$ supp f_i , where \mathcal{K} is an m-Calderón-Zygmund kernel defined away from the diagonal $x = y_1 = \cdots = y_m$ in $(\mathbb{R}^d)^{m+1}$ satisfying the size condition

(1.3)
$$|\mathcal{K}(x, y_1, y_2, \dots, y_m)| \le \frac{C}{(\sum_{l=0}^m |x - y_l|)^{mn}}$$

and some smoothness condition, see [1, 15] for details.

When μ is a doubling measure, i.e., n=d, Grafakos and Torres showed in [1] that the m-linear Calderón-Zygmund operator T is bounded from $L^{p_1}(\mu) \times \cdots \times L^{p_m}(\mu)$ into $L^p(\mu)$ with $0 < 1/p = 1/p_1 + \cdots + 1/p_m < 1$; Kenig and Stein showed in [2] that $I_{\alpha,m}$ is a bounded operator from $L^{p_1}(\mu) \times \cdots \times L^{p_m}(\mu)$ into $L^p(\mu)$ with $1/p = 1/p_1 + \cdots + 1/p_m - \alpha/n > 0$ and $p_1, \ldots, p_m > 1$. These results had been extended to Herz spaces, Morrey spaces and generalized Morrey spaces in [5, 6, 10, 11, 13], and also extended in [4] and [15] to Lebesgue spaces with non-doubling measures.

On the other hand, Sawano and Tanaka [9] had studied the Calderón-Zygmund operator and the fractional integral on Morrey spaces with non-doubling measure. One purpose of this paper is to establish the boundedness of the *m*-linear Calderón-Zygmund operator and the multilinear fractional integral on Morrey spaces with non-doubling measure.

Let us give some notations. The capital letter Q always denotes a cube with sides parallel to the coordinate axes and $\ell(Q)$ stands for the side length of Q. Besides, for c > 0, cQ will mean the cube with the same center as Q and with $\ell(cQ) = c\ell(Q)$, Q(x,r) will be the cube centered at x with side length r and we denote by $\mathcal{Q}(\mu)$ the set of all doubling cubes with positive μ -measure.

Definition 1.1 ([9]). For k>1 and $1\leq p\leq q<\infty$, the Morrey space $\mathscr{M}_{p}^{q}(k,\mu)$ is defined as

$$\mathscr{M}_p^q(k,\mu) := \left\{ f \in L^p_{loc}(\mu) : \|f\|_{\mathscr{M}_p^q(k,\mu)} < \infty \right\},$$

where the Morrey norm $||f||_{\mathscr{M}_{p}^{q}(k,\mu)}$ is given by

$$||f||_{\mathscr{M}_{p}^{q}(k,\mu)} = \sup_{Q \in \mathscr{Q}(\mu)} \mu(kQ)^{\frac{1}{q} - \frac{1}{p}} \left(\int_{Q} |f|^{p} d\mu \right)^{\frac{1}{p}}.$$

It's worthy to point out that the parameter k>1 does not affect the set of $\mathscr{M}_p^q(k,\mu)$. More precisely, for $k_1>k_2>1$, $\mathscr{M}_p^q(k_1,\mu)$ and $\mathscr{M}_p^q(k_2,\mu)$ coincide as a set and their norms are mutually equivalent. See [9] for details. We will denote $\mathscr{M}_p^q(2,\mu)$ by $\mathscr{M}_p^q(\mu)$.

Definition 1.2 ([8]). For k > 1 and $1 \le p < \infty$, and let ϕ be an increasing function from \mathbb{R}^+ to \mathbb{R}^+ , then the generalized Morrey space, $\mathcal{L}^{p,\phi}(k,\mu)$, is defined as

$$\mathcal{L}^{p,\phi}(k,\mu) := \left\{ f \in L^p_{loc}(\mu) : \|f\|_{\mathcal{L}^{p,\phi}(k,\mu)} < \infty \right\}$$

with the norm $|| f ||_{\mathcal{L}^{p,\phi}(k,\mu)}$ that is given by

$$||f||_{\mathcal{L}^{p,\phi}(k,\mu)} = \sup_{Q \in \mathcal{Q}(\mu)} \left(\frac{1}{\phi(\mu(kQ))} \int_{Q} |f|^{p} d\mu \right)^{1/p}.$$

We remark that $\mathcal{L}^{p,\phi}(k,\mu) = \mathcal{M}_p^q(k,\mu)$ for $\phi(t) = t^{1-p/q}$ and $1 \le p \le q < \infty$. Thus, the generalized Morrey spaces is a generalization of Morrey spaces. Similarly, it's proved in [8] that, for $k_1 > k_2 > 1$, $\mathcal{L}^{p,\phi}(k_1,\mu)$ and $\mathcal{L}^{p,\phi}(k_2,\mu)$ coincide as a set and their norms are mutually equivalent. Thus we can write $\mathcal{L}^{p,\phi}(\mu)$ instead of $\mathcal{L}^{p,\phi}(2,\mu)$ for simplicity. In 2008 Sawano [8] had shown the boundedness of the Calderón-Zygmund operator and the fractional integral on $\mathcal{L}^{p,\phi}(\mu)$.

It's interesting for us to ask whether the m-linear Calderón-Zygmund operator T and the multilinear fractional integral $I_{\alpha,m}$ are bounded on product generalized Morrey spaces with non-doubling measure.

In this paper, we will discuss more general multi-sublinear operators \mathcal{T} satisfying the condition (1.1), and prove the boundedness of \mathcal{T} on product Morrey spaces and generalized Morrey spaces with non-doubling measure, see Theorems 2.3, 2.6, 3.1 and 3.2 below.

Particularly, we will give the following estimates for the m-linear Calderón-Zygmund operator T, see Theorems 2.4 and 3.3,

$$||T(f_1,\ldots,f_m)||_{\mathcal{M}_p^q(\mu)} \le C \prod_{i=1}^m ||f_i||_{\mathcal{M}_{p_i}^{q_i}(\mu)}$$

and

$$||T(f_1,\ldots,f_m)||_{\mathcal{L}^{p,\phi}(\mu)} \le C \prod_{i=1}^m ||f_i||_{\mathcal{L}^{p_i,\phi_i}(\mu)}$$

for $1/p = 1/p_1 + \cdots + 1/p_m$, $1/q = 1/q_1 + \cdots + 1/q_m$ and $\phi^{1/p} = \prod_{i=1}^m \phi_i^{1/p_i}$ under the assumptions

(1.4)
$$\sup_{0 < r < \infty} \frac{r}{\phi_i(r)} \int_{-\infty}^{\infty} \frac{\phi_i(t)}{t} \frac{dt}{t} < \infty$$

and

(1.5)
$$\frac{\phi_i(t)}{t} \le C \frac{\phi_i(s)}{s} \quad \text{for} \quad t \ge s$$

for each i = 1, 2, ..., m.

Simultaneously, we will show the following estimates for the multilinear fractional integral $I_{\alpha,m}$, see Theorems 2.7, 3.4 and 3.6,

(1.6)
$$||I_{\alpha,m}(f_1,\ldots,f_m)||_{\mathcal{M}_p^q(\mu)} \le C \prod_{i=1}^m ||f_i||_{\mathcal{M}_{p_i}^{q_i}(\mu)}$$

and

$$||I_{\alpha,m}(f_1,\ldots,f_m)||_{\mathcal{L}^{p,\phi}(\mu)} \le C \prod_{i=1}^m ||f_i||_{\mathcal{L}^{p_i,\phi_i}(\mu)}$$

for $1/p = 1/p_1 + \cdots + 1/p_m - \alpha/n$, $1/q = 1/q_1 + \cdots + 1/q_m - \alpha/n$ and $\phi^{1/p} = \prod_{i=1}^m \phi_i^{1/p_i}$, where ϕ_i satisfies (1.5) and

(1.7)
$$\sup_{0 < r < \infty} \frac{r^{1 - \alpha p_i/mn}}{\phi_i(r)} \int_r^{\infty} \frac{\phi_i(t)}{t^{1 - \alpha p_i/mn}} \frac{dt}{t} < \infty, \quad i = 1, 2, \dots, m.$$

In the paper we will also consider the generalization of Hardy-Littlewood maximal operator, which is an important example of multi-sublinear operators. In 1994 Nakai [7] introduced the similar assumptions on ϕ to show the boundedness of maximal operator in generalized Morrey space $L^{p,\phi}(\mathbb{R}^n)$. In 2008 Sawano [8] studied modified maximal operator under similar assumptions on ϕ in the case of non-doubling measure. Inspired by these works, we will also consider the modified multi-sublinear maximal operator \mathcal{M}_{κ} , which defined by

$$\mathcal{M}_{\kappa}(f_1,\ldots,f_m)(x) = \sup_{x \in Q \in \mathcal{Q}(\mu)} \prod_{i=1}^m \frac{1}{\mu(\kappa Q)} \int_Q |f_i(y_i)| d\mu(y_i), \quad \kappa > 1.$$

This operator was defined in [3] when μ is a Lebesgue measure. It is easy to see that \mathcal{M}_{κ} is a multi-version of the maximal operator M_{κ} introduced by Tolsa [14], and it's worthy to notice that \mathcal{M}_{κ} is strictly smaller than the m-fold produce of M_{κ} . We will establish the boundedness of \mathcal{M}_{κ} on product generalized Morrey spaces, i.e., Theorems 2.9 and 3.5 below, which implies that

$$\|\mathcal{M}_{\kappa}(f_1,\ldots,f_m)\|_{\mathscr{M}_{p}^{q}(\mu)} \le C \prod_{i=1}^{m} \|f_i\|_{\mathscr{M}_{p_i}^{q_i}(\mu)}$$

and

$$\|\mathcal{M}_{\kappa}(f_1,\ldots,f_m)\|_{\mathcal{L}^{p,\phi}(\mu)} \le C \prod_{i=1}^m \|f_i\|_{\mathcal{L}^{p_i,\phi_i}(\mu)}$$

for $1/p = 1/p_1 + \cdots + 1/p_m$, $1/q = 1/q_1 + \cdots + 1/q_m$ and $\phi^{1/p} = \prod_{i=1}^m \phi_i^{1/p_i}$, where each ϕ_i satisfies (1.5). Here we point out that we do not postulate anything on measure μ when we study the operator \mathcal{M}_{κ} , that is, here μ is just a Radon measure.

The paper is organized as follows. The Section 2 focuses on the boundedness on generalized Morrey spaces $L^{p,\phi}(\mu)$. In Section 3, we devote to the boundedness on Morrey spaces $\mathcal{M}_p^q(\mu)$. Throughout this paper, the letter C always remains to denote a positive constant that may varies at each occurrence but is independent of the essential variable.

2. Boundedness on generalized Morrey spaces $L^{p,\phi}(\mu)$

The present section consists of three parts which are about the bounded estimates on generalized Morrey spaces for the multilinear Calderón-Zygmund operator, the multilinear fractional integral and the multi-sublinear maximal operator, respectively.

2.1. Boundedness of multilinear Calderón-Zygmund operators

Let us begin with some requisite lemmas. Using integration by part, see Lemma 2 in [7] or Lemma 5.3 in [11], we have that:

Lemma 2.1 ([7, 11]). Suppose that $\psi : \mathbb{R}^+ \to \mathbb{R}^+$ is an increasing function satisfying

$$\int_{r}^{\infty} \psi(s) \frac{ds}{s} \le C' \psi(r) \quad \text{for all } r > 0$$

with the positive constant C'. Then we can take the constant $C = C'/(1 - C'\varepsilon)$ for small real $\varepsilon > 0$ such that

$$\int_{r}^{\infty} \psi(s) s^{\varepsilon} \frac{ds}{s} \leq C \psi(r) r^{\varepsilon} \quad \text{for all } r > 0.$$

Lemma 2.2. Suppose that ψ is the same as in Lemma 2.1 and $0 < \eta \le 1$. Then there is a constant C > 0 so that

$$\int_{r}^{\infty} \psi(s)^{\eta} \frac{ds}{s} \le C\psi(r)^{\eta} \quad \text{for all } r > 0.$$

Proof. For any R>0 and $0<\eta\leq 1,$ the Hölder inequality and Lemma 2.1 imply that

$$\int_{r}^{R} \psi(s)^{\eta} \frac{ds}{s} = \int_{r}^{R} [\psi(s)^{\eta} s] \frac{1}{s} \frac{ds}{s}$$

$$\leq C \left(\int_{r}^{R} \psi(s) s^{\frac{1}{\eta}} \frac{ds}{s} \right)^{\eta} \left(\int_{r}^{R} \frac{1}{s^{\frac{1}{1-\eta}+1}} ds \right)^{1-\eta}$$

$$\leq C \psi(r)^{\eta} r \left(\int_{r}^{R} s^{-\frac{1}{1-\eta}-1} ds \right)^{1-\eta}$$

$$\leq C\psi(r)^{\eta}r\left(-\frac{1}{1-\eta}R^{-\frac{1}{1-\eta}} + \frac{1}{1-\eta}r^{-\frac{1}{1-\eta}}\right)^{1-\eta}.$$

Then, let $R \to \infty$, we get the conclusion of the lemma.

Let us state our main result of this subsection.

Theorem 2.3. Assume that \mathcal{T} is a multi-sublinear operator satisfying (1.1) with $\alpha = 0$. Let $1 < p_i < \infty$ satisfy $1/p = 1/p_1 + \cdots + 1/p_m < 1$,

$$\phi^{1/p} = \phi_1^{1/p_1} \phi_2^{1/p_2} \cdots \phi_m^{1/p_m},$$

where each function $\phi_i : \mathbb{R}^+ \to \mathbb{R}^+$ satisfies the assumptions (1.4) and (1.5). If \mathcal{T} is bounded from $L^{p_1}(\mu) \times \cdots \times L^{p_m}(\mu)$ to $L^p(\mu)$, then there is a constant C > 0 independent of f_i such that

$$\|\mathcal{T}(f_1,\ldots,f_m)\|_{\mathcal{L}^{p,\phi}(\mu)} \le C \prod_{i=1}^m \|f_i\|_{\mathcal{L}^{p_i,\phi_i}(\mu)}.$$

Proof. Fix a cube $Q \in \mathcal{Q}(\mu)$ and write $f_i = f_i^0 + f_i^\infty$, where $f_i^0 = f_i \chi_{2Q}$ and $f_i^\infty = f_i - f_i^0$ for i = 1, ..., m. Then along this decomposition, we get

$$|\mathcal{T}(f_{1},...,f_{m})(x)| \leq \sum_{\tau_{1},...,\tau_{m}\in\{0,\infty\}} |\mathcal{T}(f_{1}^{\tau_{1}},...,f_{m}^{\tau_{m}})(x)|$$

$$= |\mathcal{T}(f_{1}^{0},...,f_{m}^{0})(x)| + \sum_{\tau_{1}}'|\mathcal{T}(f_{1}^{\tau_{1}},...,f_{m}^{\tau_{m}})(x)|,$$

where each term in \sum' contains at least one $\tau_i \neq 0$. This implies

$$\left(\frac{1}{\phi(\mu(4Q))}\int_{Q} |\mathcal{T}(f_{1},\ldots,f_{m})(x)|^{p} d\mu(x)\right)^{1/p} \leq C(H_{1}+H_{2}),$$

where

$$H_1 := \left(\frac{1}{\phi(\mu(4Q))} \int_{O} |\mathcal{T}(f_1^0, \dots, f_m^0)(x)|^p d\mu(x)\right)^{1/p}$$

and

$$H_2 := \sum' \left(\frac{1}{\phi(\mu(4Q))} \int_{O} |\mathcal{T}(f_1^{\tau_1}, \dots, f_m^{\tau_m})(x)|^p d\mu(x) \right)^{1/p}.$$

Next we analyze each term separately. For H_1 , by the L^p boundedness of \mathcal{T} , it is easy to see that

$$H_1 \le C \prod_{i=1}^m \frac{\|f_i \chi_{2Q}\|_{L^{p_i}}}{\phi_i^{1/p_i}(\mu(4Q))} \le C \prod_{i=1}^m \|f_i\|_{L^{p_i,\phi_i}(\mu)}.$$

For H_2 , let us begin with the case $\tau_1 = \cdots = \tau_m = \infty$. Denoting by c_Q the center of Q, we have $|y_i - x| \sim |y_i - c_Q|$ for $x \in Q$ and $y_i \in (2Q)^c$. Hence, by the condition (1.1), we obtain the following point-wise estimate for $x \in Q$,

$$|\mathcal{T}(f_1^{\infty},\ldots,f_m^{\infty})(x)|$$

$$\leq C \int\limits_{(\mathbb{R}^d \setminus B(c_Q, \ell(Q)))^m} \frac{|f_1(y_1) \cdots f_m(y_m)|}{(|y_1 - c_Q| + \cdots + |y_m - c_Q|)^{mn}} d\mu(y_1) \cdots d\mu(y_m).$$

Then, the following equality

$$mn \int_{|y_1 - c_Q| + \dots + |y_m - c_Q|}^{\infty} \frac{dl}{l^{mn+1}} = \frac{1}{(|y_1 - c_Q| + \dots + |y_m - c_Q|)^{mn}}$$

and Fubini theorem yield

$$\begin{split} &|\mathcal{T}\left(f_{1}^{\infty},\ldots,f_{m}^{\infty}\right)(x)|\\ &\leq C\int_{\ell(Q)}^{\infty}\frac{1}{l^{mn+1}}\int_{\Sigma_{i=1}^{m}|y_{i}-c_{Q}|< l}|f_{1}(y_{1})\cdots f_{m}(y_{m})|d\mu(y_{1})\cdots d\mu(y_{m})dl\\ &\leq C\int_{\ell(Q)}^{\infty}\frac{1}{l^{mn+1}}\left(\int_{B(c_{Q},l)}\cdots\int_{B(c_{Q},l)}|f_{1}(y_{1})\cdots f_{m}(y_{m})|d\mu(y_{1})\cdots d\mu(y_{m})\right)dl. \end{split}$$

By using the Hölder inequality and the growth condition (1.2) of μ , we get

$$\begin{split} &|\mathcal{T}\left(f_{1}^{\infty},\ldots,f_{m}^{\infty}\right)(x)|\\ &\leq C\int_{\ell(Q)}^{\infty}\frac{1}{l^{mn+1}}\prod_{i=1}^{m}\left(\mu(B(c_{Q},l))^{1-1/p_{i}}\left[\int_{B(c_{Q},l)}|f_{i}(y_{i})|^{p_{i}}d\mu(y_{i})\right]^{1/p_{i}}\right)dl\\ &\leq C\int_{\ell(Q)}^{\infty}\frac{1}{l^{n/p+1}}\left(\prod_{i=1}^{m}\phi_{i}^{1/p_{i}}(\mu(B(c_{Q},2l)))\|f_{i}\|_{L^{p_{i},\phi_{i}}(\mu)}\right)dl\\ &\leq C\left(\int_{\ell(Q)}^{\infty}\frac{\phi_{1}(C_{0}2^{n}l^{n})^{1/p_{1}}\cdots\phi_{m}(C_{0}2^{n}l^{n})^{1/p_{m}}}{l^{n/p}}\frac{dl}{l}\right)\prod_{i=1}^{m}\|f_{i}\|_{L^{p_{i},\phi_{i}}(\mu)}\\ &=C\left(\int_{\ell(Q)}^{\infty}\frac{\phi_{1}(C_{0}2^{n}l^{n})^{1/p_{1}}}{l^{n/p_{1}}}\times\cdots\times\frac{\phi_{m}(C_{0}2^{n}l^{n})^{1/p_{m}}}{l^{n/p_{m}}}\frac{dl}{l}\right)\prod_{i=1}^{m}\|f_{i}\|_{L^{p_{i},\phi_{i}}(\mu)}\\ &\leq C\prod_{i=1}^{m}\left[\int_{\ell(Q)}^{\infty}\left(\frac{\phi_{i}(C_{0}2^{n}l^{n})}{l^{n}}\right)^{1/p_{i}}\frac{dl}{l}\right]^{p/p_{i}}\|f_{i}\|_{L^{p_{i},\phi_{i}}(\mu)}\\ &\leq C\prod_{i=1}^{m}\left(\frac{\phi_{i}(C_{0}2^{n}\ell(Q)^{n})}{\ell(Q)^{n}}\right)^{1/p_{i}}\|f_{i}\|_{L^{p_{i},\phi_{i}}(\mu)}. \end{split}$$

Here, we used Lemma 2.2 by taking $\psi(l)=\frac{\phi_i(C_02^nl^n)}{C_02^nl^n}$ and $\eta=1/p<1$ in the last relation.

Hence, applying the assumption (1.5), we obtain

$$|\mathcal{T}(f_1^{\infty}, \dots, f_m^{\infty})(x)| \le C \prod_{i=1}^m \left(\frac{\phi_i(C_0 2^n d^n \ell(Q)^n)}{\ell(Q)^n}\right)^{1/p_i} ||f_i||_{L^{p_i, \phi_i}(\mu)}$$

$$\leq C \prod_{i=1}^{m} \left(\frac{\phi_i(\mu(2dQ))}{\mu(2dQ)} \right)^{1/p_i} \|f_i\|_{L^{p_i,\phi_i}(\mu)}.$$

Integrating this over Q, by the assumption (1.5), we obtain

$$\left(\frac{1}{\phi(\mu(4Q))} \int_{Q} |T(f_{1}^{\infty}, \dots, f_{m}^{\infty})(x)|^{p} d\mu(x)\right)^{1/p}$$

$$\leq C \prod_{i=1}^{m} ||f_{i}||_{L^{p_{i}, \phi_{i}}(\mu)} \left(\frac{\mu(Q)}{\phi(\mu(4Q))} \times \frac{\phi_{i}(\mu(2dQ))}{\mu(2dQ))}\right)^{1/p_{i}}$$

$$\leq C \prod_{i=1}^{m} ||f_{i}||_{L^{p_{i}, \phi_{i}}(\mu)}.$$

What remains to be considered are the terms in H_2 such that $\tau_{i_1} = \cdots = \tau_{i_\ell} = 0$ for some $\{i_1, \ldots, i_\ell\} \subset \{1, \ldots, m\}$, where $1 \leq \ell < m$. Applying partly the technique used in the estimates for $|\mathcal{T}(f_1^{\infty}, \ldots, f_m^{\infty})(x)|$ and the Hölder inequality, we get

$$\begin{split} &|\mathcal{T}(f_1^{\tau_1},\dots,f_m^{\tau_1})(x)|\\ &\leq C\int\limits_{(2Q)^\ell}\prod_{i\in\{i_1,\dots,i_\ell\}}|f_i(y_i)|d\mu(y_i)\times\int\limits_{(\mathbb{R}^d\backslash 2Q)^{m-\ell}}\frac{\prod_{i\not\in\{i_1,\dots,i_\ell\}}|f_i(y_i))|d\mu(y_i)}{(\sum_{i\not\in\{i_1,\dots,i_\ell\}}|y_i-c_Q|)^{mn}}\\ &\leq C\prod\limits_{i\in\{i_1,\dots,i_\ell\}}\left(\frac{\phi_i(\mu(4Q))}{\mu(4Q)}\right)^{1/p_i}\mu(4Q)\|f_i\|_{L^{p_i,\phi_i}(\mu)}\\ &\times\int_{\ell(Q)}^\infty\frac{1}{l^{\sum_{i\not\in\{i_1,\dots,i_\ell\}}n/p_i+\ell n+1}}\left(\prod_{i\not\in\{i_1,\dots,i_\ell\}}\phi_i^{1/p_i}(\mu(B(c_Q,2l))\|f_i\|_{L^{p_i,\phi_i}(\mu)}\right)dl\\ &\leq C\prod\limits_{i\in\{i_1,\dots,i_\ell\}}\left(\frac{\phi_i(\mu(4Q))}{\mu(4Q)}\right)^{1/p_i}\|f_i\|_{L^{p_i,\phi_i}(\mu)}\\ &\times\int_{\ell(Q)}^\infty\frac{1}{l^{\sum_{i\not\in\{i_1,\dots,i_\ell\}}n/p_i+1}}\left(\prod_{i\not\in\{i_1,\dots,i_\ell\}}\phi_i^{1/p_i}(\mu(B(c_Q,2l))\|f_i\|_{L^{p_i,\phi_i}(\mu)}\right)dl\\ &\leq C\prod\limits_{i\in\{i_1,\dots,i_\ell\}}\frac{\phi_i(\mu(4Q))^{1/p_i}}{\mu(4Q)^{1/p_i}}\|f_i\|_{L^{p_i,\phi_i}(\mu)}\times\prod_{i\not\in\{i_1,\dots,i_\ell\}}\frac{\phi_i(\mu(2dQ))^{1/p_i}}{\mu(2dQ)^{1/p_i}}\|f_i\|_{L^{p_i,\phi_i}(\mu)}\\ &\leq C\prod\limits_{i=1}^m\frac{\phi_i(\mu(4Q))^{1/p_i}}{\mu(4Q)^{1/p_i}}\|f_i\|_{L^{p_i,\phi_i}(\mu)}\\ &\leq C\prod_{i=1}^m\frac{\phi_i(\mu(4Q))^{1/p_i}}{\mu(4Q)^{1/p_i}}\|f_i\|_{L^{p_i,\phi_i}(\mu)}\\ &=C\frac{\phi(\mu(4Q))^{1/p}}{\mu(4Q)^{1/p}}\prod_{i=1}^m\|f_i\|_{L^{p_i,\phi_i}(\mu)}. \end{split}$$

Then we obtain that

$$\left(\frac{1}{\phi(\mu(4Q))}\int_{Q}|\mathcal{T}\left(f_{1}^{\tau_{1}},\ldots,f_{m}^{\tau_{1}}\right)(x)|^{p}d\mu(x)\right)^{1/p}\leq C\prod_{i=1}^{m}\|f_{i}\|_{L^{p_{i},\phi_{i}}(\mu)},$$

and so we have arrived at the expression considered in the previous case. Combining the arguments above, we complete the proof of the theorem. \Box

It is easy to see from (1.3) that the m-linear Calderón-Zygmund operator T satisfy (1.1). Thus, by its L^p boundedness, we get the following theorem immediately.

Theorem 2.4. Let ϕ, ϕ_i, p, p_i be the same as in Theorem 2.3 for each i = 1, 2, ..., m. Then there is a constant C > 0 independent of f_i such that

$$||T(f_1,\ldots,f_m)||_{\mathcal{L}^{p,\phi}(\mu)} \le C \prod_{i=1}^m ||f_i||_{\mathcal{L}^{p_i,\phi_i}(\mu)}.$$

2.2. Boundedness of multilinear fractional integrals operators

To prove our theorem we need a covering lemma.

Lemma 2.5 ([8]). Let b > a > 0 be fixed positive numbers and $\rho > 1$. Suppose that μ is a Randon measure and $\mathcal{Q}_{a,b} = \{Q \in \mathcal{Q}(\mu) : a \leq \mu(\rho^2 Q) \leq b\} \neq \emptyset$. Then there exist N subfamilies $\mathcal{Q}(\mu)_{a,b,1}, \ldots, \mathcal{Q}(\mu)_{a,b,N}$ such that

$$\{\rho Q: Q \in \mathcal{Q}(\mu)_{a,b,j}\}$$
 is disjoint for all $j = 1, \dots, N$

and for all $Q \in \mathcal{Q}(\mu)_{a,b}$ we can find $Q' \in \bigcup_{j=1}^N \mathcal{Q}(\mu)_{a,b,j}$ such that $Q \subset \rho Q'$. Here N does not depend on a nor b.

Let us begin with our main conclusion in this part.

Theorem 2.6. Assume that $0 < \alpha < mn$ and \mathcal{T} is a multi-sublinear operator satisfying (1.1). Let $1 < p_i < mn/\alpha$ satisfy $1/p = 1/p_1 + \cdots + 1/p_m - \alpha/n$,

$$\phi^{1/p} = \phi_1^{1/p_1} \phi_2^{1/p_2} \cdots \phi_m^{1/p_m},$$

where each function $\phi_i : \mathbb{R}^+ \to \mathbb{R}^+$ satisfies the conditions (1.5) and (1.7). If \mathcal{T} is bounded from $L^{p_1}(\mu) \times \cdots \times L^{p_m}(\mu)$ to $L^p(\mu)$, then there is a constant C > 0 independent of f_i such that

$$\|\mathcal{T}(f_1,\ldots,f_m)\|_{\mathcal{L}^{p,\phi}(\mu)} \le C \prod_{i=1}^m \|f_i\|_{\mathcal{L}^{p_i,\phi_i}(\mu)}.$$

Proof. Fix a cube $Q \in \mathcal{Q}(\mu)$ as before and $\rho > 1$, decompose f_i according to 2KQ. Namely, we split $f_i = f_i^0 + f_i^\infty$, where $f_i^0 = f_i \chi_{2KQ}$ and $f_i^\infty = f_i - f_i^0$ for $i = 1, \ldots, m$, where K is large enough according to the value of ρ . Along this decomposition, we get

$$|\mathcal{T}(f_1,\ldots,f_m)(x)| \le |\mathcal{T}(f_1^0,\ldots,f_m^0)(x)| + \sum_{m} |\mathcal{T}(f_1^{\tau_1},\ldots,f_m^{\tau_m})(x)|,$$

where each term in \sum' contains at least one $\tau_i \neq 0$.

Then we need show

$$\left(\frac{1}{\phi(\mu(4KQ))}\int_{Q} |\mathcal{T}(f_{1}^{\tau_{1}},\ldots,f_{m}^{\tau_{m}})(x)|^{p} d\mu(x)\right)^{1/p} \leq C \prod_{i=1}^{m} ||f_{i}||_{\mathcal{L}^{p_{i},\phi_{i}}(\mu)}$$

for $\{\tau_1, ..., \tau_m\} \in \{0, \infty\}$.

The estimate for the case $\tau_1 = \cdots = \tau_m = 0$ is simple. By the L^p boundedness of \mathcal{T} , we have

$$\left(\frac{1}{\phi(\mu(4KQ))} \int_{Q} |\mathcal{T}(f_{1}^{0}, \dots, f_{m}^{0})(x)|^{p} d\mu(x)\right)^{1/p}$$

$$\leq C \prod_{i=1}^{m} \left(\frac{1}{\phi_{i}(\mu(4KQ))} \int_{2KQ} |f_{i}(x)|^{p_{i}} d\mu(x)\right)^{1/p_{i}}$$

$$\leq C \prod_{i=1}^{m} ||f_{i}||_{\mathcal{L}^{p_{i}, \phi_{i}}(\mu)}.$$

We now turn our attention to the estimate for $\tau_1 = \cdots = \tau_m = \infty$. For $x \in Q$ and $y_i \in (\mathbb{R}^d \setminus 2KQ)$, assume that $x, y_i \in R \in \mathcal{Q}(\mu)$, then we can find a constant L > K which is large enough such that $\rho R \subset LQ$ for $\rho > 1$, these facts imply $L\ell(Q) \geq \rho\ell(R) > \ell(R) \geq |x - y_i| \geq (K - 1/2)\ell(Q)$. Then, using the growth condition (1.2) of measure μ , we have a pointwise estimate

$$|\mathcal{T}(f_1^{\infty}, \dots, f_m^{\infty})(x)|$$

$$\leq C \int_{(\mathbb{R}^d \setminus 2KQ)^m} \left(\sup_{x, y_i \in R \in \mathcal{Q}(\mu)} \prod_{i=1}^m \frac{1}{\mu(\rho R)^{1-\alpha/mn}} \right) \prod_{i=1}^m |f_i(y_i)| d\mu(y_i)$$

$$\leq C \prod_{i=1_{\mathbb{R}^d \setminus 2KQ}} \int_{x, y_i \in R \in \mathcal{Q}(\mu)} \frac{1}{\mu(\rho R)^{1-\alpha/mn}} |f_i(y_i)| d\mu(y_i).$$

A geometric observation again shows that $\sqrt{\rho}R$ engulfs 2Q, the center of Q in its interior, provided K is large enough and R intersects both Q and $\mathbb{R}^d \setminus 2KQ$. Therefore, we get

$$|\mathcal{T}(f_1^{\infty},\ldots,f_m^{\infty})(x)| \leq C \prod_{i=1}^m \int_{\mathbb{R}^d \setminus 2KQ} \sup_{\{y_i\} \bigcup 2Q \subset R} \frac{1}{\mu(\sqrt{\rho}R)^{1-\alpha/mn}} |f_i(y_i)| d\mu(y_i).$$

Let us set, for each i = 1, 2, ..., m and $j \ge 1$,

$$\mathcal{D}_{ij} := \left\{ y_i \in \mathbb{R}^d \setminus 2KQ : 2^{j-1}\mu(2Q) \le \inf_{\substack{R \in \mathcal{Q}(\mu) \\ \{y_i\} \bigcup 2Q \subset \operatorname{Int}(R)}} \mu(\sqrt{\rho}R) \le 2^j \mu(2Q) \right\},\,$$

where $\operatorname{Int}(R)$ denotes the interior of a set R. Applying Lemma 2.5, we can find $N \in \mathbb{N}$ depending only on ρ and d, and a collection of cubes $Q_1^{ij}, Q_2^{ij}, \dots, Q_N^{ij}$ which contain x such that $\mathcal{D}_{ij} \subset \sqrt{\rho}Q_1^{ij} \cup \sqrt{\rho}Q_2^{ij} \cup \dots \cup \sqrt{\rho}Q_N^{ij}$ and $\mu(\sqrt{\rho}Q_l^{ij}) \leq$

 $2^{j}\mu(2Q)$ for all $1 \leq l \leq N, j \in \mathbb{N}$ and $i \in \{1, \ldots, m\}$. Thus, by the Hölder inequality, we obtain

$$\begin{split} &|\mathcal{T}\left(f_{1}^{\infty},\ldots,f_{m}^{\infty}\right)(x)|\\ &\leq C\prod_{i=1}^{m}\left(\sum_{j=1}^{\infty}\frac{1}{(2^{j}\mu(2Q))^{1-\alpha/mn}}\int_{\mathcal{D}_{ij}}|f_{i}(y_{i})|d\mu(y_{i})\right)\\ &\leq C\prod_{i=1}^{m}\left(\sum_{j=1}^{\infty}\sum_{l=1}^{N}\frac{1}{(2^{j}\mu(2Q))^{1-\alpha/mn}}\int_{\sqrt{\rho}Q_{l}^{ij}}|f_{i}(y_{i})|d\mu(y_{i})\right)\\ &\leq C\prod_{i=1}^{m}\left(\sum_{j=1}^{\infty}\sum_{l=1}^{N}\frac{1}{(2^{j}\mu(2Q))^{1/p_{i}-\alpha/mn}}\left(\int_{\sqrt{\rho}Q_{l}^{ij}}|f_{i}(y_{i})|^{p_{i}}d\mu(y_{i})\right)^{1/p_{i}}\right)\\ &\leq C\prod_{i=1}^{m}\left(\sum_{j=1}^{\infty}\sum_{l=1}^{N}\frac{\phi_{i}(\mu(2\sqrt{\rho}Q_{l}^{ij}))^{1/p_{i}}}{(2^{j}\mu(2Q))^{1/p_{i}-\alpha/mn}}\left\|f_{i}\right\|_{\mathcal{L}^{p_{i},\phi_{i}}(\mu)}\right)\\ &\leq C\prod_{i=1}^{m}\left(\sum_{j=1}^{\infty}\sum_{l=1}^{N}\frac{\phi_{i}(2^{j}\mu(2Q))^{1/p_{i}}}{(2^{j}\mu(2Q))^{1/p_{i}-\alpha/mn}}\left\|f_{i}\right\|_{\mathcal{L}^{p_{i},\phi_{i}}(\mu)}\right)\\ &\leq C\prod_{i=1}^{m}\left\|f_{i}\right\|_{\mathcal{L}^{p_{i},\phi_{i}}(\mu)}\sum_{j=1}^{\infty}\frac{\phi_{i}(2^{j}\mu(2Q))^{1/p_{i}-\alpha/mn}}{(2^{j}\mu(2Q))^{1/p_{i}-\alpha/mn}}\end{split}$$

for all $x \in Q$.

By the assumption (1.7) and Lemma 2.2, we have

$$\sum_{i=1}^{\infty} \frac{\phi_i(2^j \mu(2Q))^{1/p_i}}{(2^j \mu(2Q))^{1/p_i - \alpha/mn}} \le C \left(\frac{\phi_i(\mu(2Q))}{(\mu(2Q))^{1-\alpha p_i/mn}} \right)^{1/p_i}.$$

Thus, we obtain

$$\left(\frac{1}{\phi(\mu(4KQ))}\int_{Q} |\mathcal{T}(f_{1}^{\infty},\dots,f_{m}^{\infty})(x)|^{p} d\mu(x)\right)^{1/p} \leq C \prod_{i=1}^{m} ||f_{i}||_{\mathcal{L}^{p_{i},\phi_{i}}(\mu)}.$$

At last, we have to consider the case $\tau_{i_1} = \cdots = \tau_{i_\ell} = 0$ for some $\{i_1, \ldots, i_\ell\}$ $\subset \{1, \ldots, m\}$, where $1 \leq \ell < m$. Applying partly the technique used in the estimate of $|\mathcal{T}(f_1^{\infty}, \ldots, f_m^{\infty})(x)|$ and the Hölder inequality, we get

$$|\mathcal{T}\left(f_1^{\tau_1},\ldots,f_m^{\tau_1}\right)(x)|$$

$$\leq C\int\limits_{(2KQ)^{\ell}}\prod_{i\in\{i_{1},...,i_{\ell}\}}|f_{i}(y_{i})|d\mu(y_{i})\times\int\limits_{(\mathbb{R}^{d}\backslash2KQ)^{m-\ell}}\frac{\prod_{i\not\in\{i_{1},...,i_{\ell}\}}|f_{i}(y_{i}))|d\mu(y_{i})}{(\sum_{i\not\in\{i_{1},...,i_{\ell}\}}|x-y_{i}|)^{mn-\alpha}}$$

$$\leq C \prod_{i \in \{i_1, \dots, i_\ell\}} \mu(2KQ)^{1-1/p_i} \left(\int_{2KQ} |f_i(y_i)|^{p_i} d\mu(y_i) \right)^{1/p_i}$$

$$\begin{split} &\times \int\limits_{(\mathbb{R}^d \backslash 2KQ)^{m-\ell}} \frac{\prod_{i \not\in \{i_1, \dots, i_\ell\}} |f_i(y_i)| |d\mu(y_i)}{\prod_{i \not\in \{i_1, \dots, i_\ell\}} |x - y_i|^{n-\alpha/(m-\ell) + n\ell/(m-\ell)}} \\ &\leq C \prod_{i \in \{i_1, \dots, i_\ell\}} \frac{\phi_i(\mu(4KQ))^{1/p_i}}{\mu(2Q)^{1/p_i - 1}} \|f_i\|_{L^{p_i, \phi_i}(\mu)} \\ &\times \mu(2Q)^\ell \prod_{i \not\in \{i_1, \dots, i_\ell\}} \int\limits_{\mathbb{R}^d \backslash 2KQ} \left(\sup_{x, y_i \in R \in \mathcal{Q}(\mu)} \frac{1}{\mu(\rho R)^{1-\alpha/(m-\ell)n}} \right) |f_i(y_i)| |d\mu(y_i) \\ &\leq C \prod_{i \in \{i_1, \dots, i_\ell\}} \frac{\phi_i(\mu(4KQ))^{1/p_i}}{\mu(2Q)^{1/p_i}} \|f_i\|_{L^{p_i, \phi_i}(\mu)} \\ &\times \prod_{i \not\in \{i_1, \dots, i_\ell\}} \frac{\phi_i(\mu(2Q))^{1/p_i}}{\mu(2Q)^{1/p_i - \alpha/(m-\ell)n}} \|f_i\|_{L^{p_i, \phi_i}(\mu)} \\ &\leq C \prod_{i = 1}^m \frac{\phi_i(\mu(4KQ))^{1/p_i}}{\mu(2Q)^{1/p_i - \alpha/mn}} \|f_i\|_{L^{p_i, \phi_i}(\mu)} \\ &= C \left(\frac{\phi(\mu(4KQ))}{\mu(2Q)} \right)^{1/p} \prod_{i = 1}^m \|f_i\|_{L^{p_i, \phi_i}(\mu)}. \end{split}$$

Hence, we get

$$\left(\frac{1}{\phi(\mu(4KQ))}\int_{Q} |\mathcal{T}(f_{1}^{\tau_{1}},\ldots,f_{m}^{\tau_{1}})(x)|^{p} d\mu(x)\right)^{1/p} \leq C \prod_{i=1}^{m} ||f_{i}||_{L^{p_{i},\phi_{i}}(\mu)}.$$

If we combine this with the estimate for $\{\tau_1, \dots, \tau_m\} \in \{0, \infty\}$, the proof of this theorem is completed.

As a corollary, we obtain the following theorem for the multilinear fractional integral operator $I_{\alpha,m},\ 0<\alpha< mn.$

Theorem 2.7. Let $\phi, \phi_i, \alpha, p, p_i$ be the same as in Theorem 2.6 for each i = 1, 2, ..., m. Then there is a constant C > 0 independent of f_i such that

$$||I_{\alpha,m}(f_1,\ldots,f_m)||_{\mathcal{L}^{p,\phi}(\mu)} \le C \prod_{i=1}^m ||f_i||_{\mathcal{L}^{p_i,\phi_i}(\mu)}.$$

2.3. Boundedness of multi-sublinear maximal operator \mathcal{M}_{κ}

In this part we investigate the maximal operator \mathcal{M}_{κ} defined in Section 1. Since \mathcal{M}_{κ} is strictly smaller than the *m*-fold produce of the operator M_{κ} , then the Hölder inequality yields that:

Lemma 2.8. Let $\kappa, p, p_i > 1$ and $1/p = 1/p_1 + \cdots + 1/p_m$. Then there is a constant C > 0 independent of f_i such that

$$\|\mathcal{M}_{\kappa}(f_1,\ldots,f_m)\|_{L^p(\mu)} \leq C \prod_{i=1}^m \|f_i\|_{L^{p_i}(\mu)}.$$

Now we prove the boundedness of \mathcal{M}_{κ} on product generalized Morrey spaces.

Theorem 2.9. Let ϕ, p, p_i be the same as in Theorem 2.3, and let ϕ_i satisfy the condition (1.5) for each i = 1, 2, ..., m. Then there is a constant C > 0 independent of f_i such that

$$\|\mathcal{M}_{\kappa}(f_1,\ldots,f_m)\|_{\mathcal{L}^{p,\phi}(\mu)} \le C \prod_{i=1}^m \|f_i\|_{\mathcal{L}^{p_i,\phi_i}(\mu)}.$$

Proof. Fix $Q \in \mathcal{Q}(\mu)$ be a cube with side length $\ell(Q)$, let Q^* be the cube with the same center of Q and side length $\frac{\kappa+7}{\kappa-1}$ times the side-length of Q. Obviously, in order to prove the theorem, it suffices to establish the following inequality

$$\left(\frac{1}{\phi(\mu(\frac{2\kappa(\kappa+7)}{\kappa^2-1}Q))}\int_Q |\mathcal{M}_{\kappa}(f_1,\ldots,f_m)(x)|^p d\mu(x)\right)^{1/p} \leq C \prod_{i=1}^m ||f_i||_{\mathcal{L}^{p_i,\phi_i}(\frac{2\kappa}{\kappa+1},\mu)}.$$

Write f_i as $f_i^0 + f_i^\infty$, where $f_i^0 = f_i \chi_{Q^*}$ and $f_i^\infty = f_i - f_i^0$ for each $i = 1, \ldots, m$. Then, it is easy to see that

$$\mathcal{M}_{\kappa}(f_1,\ldots,f_m)(x) \leq \mathcal{M}_{\kappa}\left(f_1^0,\ldots,f_m^0\right)(x) + \sum{}'\mathcal{M}_{\kappa}\left(f_1^{\tau_1},\ldots,f_m^{\tau_m}\right)(x),$$

where each term in \sum' contains at least one $\tau_i \neq 0$.

For the case $\tau_1 = \cdots = \tau_k = 0$, using the boundedness of \mathcal{M}_{κ} from $L^{p_1}(\mu) \times \cdots \times L^{p_m}(\mu)$ into $L^p(\mu)$, i.e., Theorem 2.8, we have

$$\left(\frac{1}{\phi(\mu(\frac{2\kappa(\kappa+7)}{\kappa^2-1}Q))}\int_{Q}|\mathcal{M}_{\kappa}\left(f_1^0,\ldots,f_m^0\right)(x)|^pd\mu(x)\right)^{1/p}$$

$$\leq C\prod_{i=1}^{m}\left(\frac{1}{\phi_i(\mu(\frac{2\kappa(\kappa+7)}{\kappa^2-1}Q))}\int_{\frac{\kappa+7}{\kappa-1}Q}|f_i(x)|^{p_i}d\mu(x)\right)^{1/p_i}$$

$$\leq C\prod_{i=1}^{m}\|f_i\|_{\mathcal{L}^{p_i,\phi_i}(\frac{2\kappa}{\kappa+1},\mu)}.$$

Now, consider the case $\tau_i = \infty$ for each i = 1, ..., m. For every $x \in Q$, in order to let $R \cap \frac{\kappa+7}{\kappa-1}Q \neq \emptyset$ for cube R, suppose that $y_i \in R \in \mathcal{Q}(\mu)$ and $\ell(R) \geq \frac{8}{\kappa-1} \frac{\ell(Q)}{2}$. A geometric observation shows

$$\mathcal{M}_{\kappa}\left(f_{1}^{\infty},\ldots,f_{m}^{\infty}\right)(x) = \sup_{x \in R \in \mathscr{Q}(\mu)} \prod_{i=1}^{m} \frac{1}{\mu(\kappa R)} \int_{R} |f_{i}^{\infty}(y_{i})| d\mu(y_{i})$$

$$\leq \sup_{\substack{x \in R \in \mathcal{Q}(\mu) \\ O \subset R}} \prod_{i=1}^{m} \frac{1}{\mu(\frac{2\kappa}{\kappa+1}R)} \int_{R} |f_i(y_i)| d\mu(y_i).$$

Then, the fact $Q \subset R \subset \frac{2\kappa}{\kappa+1}R$ and the condition (1.5) yield that

$$\begin{split} &\left(\frac{1}{\phi(\mu(\frac{2\kappa(\kappa+7)}{\kappa^2-1}Q))}\int_{Q}|\mathcal{M}_{\kappa}\left(f_{1}^{\infty},\ldots,f_{m}^{\infty}\right)(x)|^{p}d\mu(x)\right)^{1/p} \\ &\leq \left(\frac{\mu(Q)}{\phi(\mu(\frac{2\kappa(\kappa+7)}{\kappa^2-1}Q))}\right)^{1/p}\sup_{x\in R\in\mathcal{Q}(\mu)}\prod_{i=1}^{m}\frac{1}{\mu(\frac{2\kappa}{\kappa+1}R)}\int_{R}|f_{i}(y_{i})|d\mu(y_{i}) \\ &\leq \left(\frac{\mu(Q)}{\phi(\mu(Q))}\right)^{1/p} \\ &\times \sup_{x\in R\in\mathcal{Q}(\mu)}\prod_{i=1}^{m}\left(\frac{\phi_{i}(\mu(\frac{2\kappa}{\kappa+1}R))}{\mu(\frac{2\kappa}{\kappa+1}R)}\right)^{1/p_{i}}\left(\frac{1}{\phi_{i}(\mu(\frac{2\kappa}{\kappa+1}R))}\int_{R}|f_{i}(y_{i})|^{p_{i}}d\mu(y_{i})\right)^{1/p_{i}} \\ &\leq \sup_{x\in R\in\mathcal{Q}(\mu)}\prod_{i=1}^{m}\left(\frac{\mu(Q)}{\phi_{i}(\mu(Q))}\times\frac{\phi_{i}(\mu(\frac{2\kappa}{\kappa+1}R))}{\mu(\frac{2\kappa}{\kappa+1}R)}\right)^{1/p_{i}} \\ &\times\left(\frac{1}{\phi_{i}(\mu(\frac{2\kappa}{\kappa+1}R))}\int_{R}|f_{i}(y_{i})|^{p_{i}}d\mu(y_{i})\right)^{1/p_{i}} \\ &\leq C\prod_{i=1}^{m}\left(\frac{1}{\phi_{i}(\mu(\frac{2\kappa}{\kappa+1}R))}\int_{R}|f_{i}(y_{i})|^{p_{i}}d\mu(y_{i})\right)^{1/p_{i}} \\ &\leq C\prod_{i=1}^{m}\left(\frac{1}{\phi_{i}(\mu(\frac{2\kappa}{\kappa+1}R))}\int_{R}|f_{i}(y_{i})|^{p_{i}}d\mu(y_{i})\right)^{1/p_{i}} \end{split}$$

We are left now to consider the case $\tau_{i_1} = \cdots = \tau_{i_l} = 0$ for some $\{i_1, \ldots, i_l\} \subset \{1, \ldots, m\}$, where $1 \leq l < m$. It is to see that

$$\mathcal{M}_{\kappa} (f_{1}^{\tau_{1}}, \dots, f_{m}^{\tau_{m}}) (x) = \sup_{x \in R \in \mathcal{Q}(\mu)} \prod_{i=1}^{m} \frac{1}{\mu(\kappa R)} \int_{R} |f_{i}^{\tau_{i}}(y_{i})| d\mu(y_{i})$$

$$\leq \sup_{x \in R \in \mathcal{Q}(\mu)} \prod_{i \in \{i_{1}, \dots, i_{l}\}} \frac{1}{\mu(\kappa R)} \int_{R} |f_{i}^{0}(y_{i})| d\mu(y_{i})$$

$$\times \sup_{x \in R \in \mathcal{Q}(\mu)} \prod_{i \notin \{i_{1}, \dots, i_{l}\}} \frac{1}{\mu(\frac{2\kappa}{\kappa + 1}R)} \int_{R} |f_{i}^{\infty}(y_{i})| d\mu(y_{i})$$

$$\leq \mathcal{M}_{\kappa} (f_{i_{1}}^{0}, \dots, f_{i_{l}}^{0}) (x)$$

$$\times \sup_{\substack{x \in R \in \mathcal{Q}(\mu) \\ Q \subset R}} \prod_{i \notin \{i_1, \dots, i_l\}} \frac{1}{\mu(\frac{2\kappa}{\kappa + 1}R)} \int_R |f_i(y_i)| d\mu(y_i).$$

Let $1/h_1 = \sum_{i \in \{i_1, \dots, i_l\}} 1/p_i$ and $1/h_2 = \sum_{i \notin \{i_1, \dots, i_l\}} 1/p_i$. Then $1/p = 1/h_1 + 1/h_2$. Applying the Hölder inequality and (1.5), we get

$$\left(\frac{1}{\phi(\mu(\frac{2\kappa(\kappa+7)}{\kappa^{2}-1}Q))}\int_{Q}|\mathcal{M}_{\kappa}\left(f_{1}^{\tau_{1}},\ldots,f_{m}^{\tau_{m}}\right)(x)|^{p}d\mu(x)\right)^{1/p} \\
\leq \left(\frac{1}{\phi(\mu(\frac{2\kappa(\kappa+7)}{\kappa^{2}-1}Q))}\int_{Q}|\mathcal{M}_{\kappa}\left(f_{i_{1}}^{0},\ldots,f_{i_{l}}^{0}\right)(x)|^{h_{1}}d\mu(x)\right)^{1/h_{1}} \\
\times \left(\frac{\mu(Q)}{\phi(\mu(\frac{2\kappa(\kappa+7)}{\kappa^{2}-1}Q))}\right)^{1/h_{2}}\sup_{x\in R\in\mathcal{Q}(\mu)}\prod_{i\notin\{i_{1},\ldots,i_{l}\}}\frac{1}{\mu(\frac{2\kappa}{\kappa+1}R)}\int_{R}|f_{i}(y_{i})|d\mu(y_{i}) \\
\leq C\prod_{i=1}^{m}||f_{i}||_{\mathcal{L}^{p_{i},\phi_{i}}(\frac{2\kappa}{\kappa+1},\mu)}.$$

Finally, a combination of the estimates above finishes the proof of the theorem. \Box

3. Boundedness on Morrey spaces $\mathcal{M}_{p}^{q}(\mu)$

It is easy to see that the function $\phi_i(t) = t^{1-p_i/q_i}$, $1 < p_i \le q_i < \infty$, satisfies the assumptions (1.4), (1.5) and (1.7) for each i = 1, 2, ..., m. Then we can obtain the following three theorems from the theorems above.

Theorem 3.1. Assume that \mathcal{T} is a multi-sublinear operator satisfying (1.1) with $\alpha = 0$. Let $1 < p_i \le q_i < \infty$, $1 , <math>1/p = 1/p_1 + \cdots + 1/p_m$ and $1/q = 1/q_1 + \cdots + 1/q_m$. If \mathcal{T} is bounded from $L^{p_1}(\mu) \times \cdots \times L^{p_m}(\mu)$ to $L^p(\mu)$, then there is a constant C > 0 independent of f_i such that

$$\|\mathcal{T}(f_1,\ldots,f_m)\|_{\mathcal{M}_p^{q_i}(\mu)} \leq C \prod_{i=1}^m \|f_i\|_{\mathcal{M}_{p_i}^{q_i}(\mu)}.$$

Theorem 3.2. Assume that $0 < \alpha < mn$ and \mathcal{T} is a multi-sublinear operator satisfying (1.1). Let $0 < \alpha < mn$, $1 < p_i \le q_i < mn/\alpha$, $1 , <math>1/p = 1/p_1 + \cdots + 1/p_m - \alpha/n$ and $1/q = 1/q_1 + \cdots + 1/q_m - \alpha/n$. If \mathcal{T} is bounded from $L^{p_1}(\mu) \times \cdots \times L^{p_m}(\mu)$ to $L^p(\mu)$, then there is a constant C > 0 independent of f_i such that

$$\|\mathcal{T}(f_1,\ldots,f_m)\|_{\mathcal{M}_p^q(\mu)} \le C \prod_{i=1}^m \|f_i\|_{\mathcal{M}_{p_i}^{q_i}(\mu)}.$$

Theorem 3.3. Assume that T is a m-linear Calderón-Zygmund operator, $1 < p_i \le q_i < \infty$, $1 , <math>1/p = 1/p_1 + \cdots + 1/p_m$ and $1/q = 1/q_1 + \cdots + 1/q_m$. Then there is a constant C > 0 independent of f_i such that

$$||T(f_1,\ldots,f_m)||_{\mathcal{M}_p^q(\mu)} \leq C \prod_{i=1}^m ||f_i||_{\mathcal{M}_{p_i}^{q_i}(\mu)}.$$

Theorem 3.4. Assume that $I_{\alpha,m}$ is a multilinear fractional integral operator. Let $0 < \alpha < mn$, $1 < p_i \le q_i < mn/\alpha$, $1 , <math>1/p = 1/p_1 + \cdots + 1/p_m - \alpha/n$ and $1/q = 1/q_1 + \cdots + 1/q_m - \alpha/n$. Then there is a constant C > 0 independent of f_i such that

$$||I_{\alpha,m}(f_1,\ldots,f_m)||_{\mathcal{M}_p^q(\mu)} \le C \prod_{i=1}^m ||f_i||_{\mathcal{M}_{p_i}^{q_i}(\mu)}.$$

Theorem 3.5. Let $\kappa > 1$, $1 < p_i \le q_i < \infty$, $1 , <math>1/p = 1/p_1 + \cdots + 1/p_m$ and $1/q = 1/q_1 + \cdots + 1/q_m$. Then there is a constant C > 0 independent of f_i such that

$$\|\mathcal{M}_{\kappa}(f_1,\ldots,f_m)\|_{\mathcal{M}_{p}^{q}(\mu)} \leq C \prod_{i=1}^{m} \|f_i\|_{\mathcal{M}_{p_i}^{q_i}(\mu)}.$$

Here we point out that, in Theorem 3.4, we get the boundedness for $I_{\alpha,m}$ under the assumption $1 < p_i < mn/\alpha$ for each i = 1, 2, ..., m. But this assumption is unnatural, we want to obtain the estimates for the operator $I_{\alpha,m}$ in the natural condition $1 < p_i < \infty$. The following theorem will arrive at our desire.

Theorem 3.6. Suppose that $0 < \alpha < mn$, $1 < p_i \le q_i < \infty$, $1 . Let <math>1/l = 1/p_1 + \cdots + 1/p_m$, $1/h = 1/q_1 + \cdots + 1/q_m$ and p/q = l/h, $1/q = 1/h - \alpha/n > 0$. Then there is a constant C > 0 independent of f_i such that

$$||I_{\alpha,m}(f_1,\ldots,f_m)||_{\mathcal{M}_p^q(\mu)} \le C \prod_{i=1}^m ||f_i||_{\mathcal{M}_{p_i}^{q_i}(\mu)}.$$

Proof. Obviously, for all $x, y_i \in \mathbb{R}^d$, $x \neq y_i$, i = 1, 2, ..., m, there is

$$|I_{\alpha,m}(f_1,\ldots,f_m)(x)| \le \int_{(\mathbb{R}^d)^m} \frac{|f_1(y_1)|\cdots|f_m(y_m)|}{(|x-y_1|+\cdots+|x-y_m|)^{mn-\alpha}} d\mu(y_1)\cdots d\mu(y_m).$$

Since $0 < \alpha < mn$, we can get

$$\frac{1}{\left(\left|x-y_{1}\right|+\cdots+\left|x-y_{m}\right|\right)^{mn-\alpha}}=C\int_{\left|x-y_{1}\right|+\cdots+\left|x-y_{m}\right|}^{\infty}\sigma^{\alpha-mn-1}d\sigma.$$

Thus, applying Fubini theorem, we have, for any $\delta > 0$, that

$$|I_{\alpha,m}(f_1,\ldots,f_m)(x)(x)|$$

$$\leq C \int_{0}^{\infty} \int_{\{|x-y_{1}|+\dots+|x-y_{m}|<\sigma\}} \sigma^{\alpha-mn-1} \prod_{i=1}^{m} |f_{i}(y_{i})| d\mu(y_{i}) d\sigma$$

$$\leq C \int_{0}^{\infty} \left(\prod_{i=1}^{m} \frac{1}{\sigma^{n}} \int_{B(x,\sigma)} |f_{i}(y_{i})| d\mu(y_{i}) \right) \sigma^{\alpha-1} d\sigma$$

$$\leq C \left\{ \int_{0}^{\delta} + \int_{\delta}^{\infty} \right\} \left(\prod_{i=1}^{m} F_{i}(\sigma,x) \right) \sigma^{\alpha-1} d\sigma =: C(I_{1} + I_{2}),$$

where

$$F_i(\sigma, x) := \frac{1}{\sigma^n} \int_{B(x,\sigma)} |f_i(y_i)| d\mu(y_i) \quad \text{for } i = 1, 2, \dots, m.$$

For I_1 , by the growth condition of μ , it is easy to see that

$$I_1 \leq C \int_0^{\delta} \mathcal{M}_{\kappa}(f_1, \dots, f_m)(x) \sigma^{\alpha - 1} d\sigma \leq C \delta^{\alpha} \mathcal{M}_{\kappa}(f_1, \dots, f_m)(x).$$

Meanwhile, for I_2 , let $Q(x, \sigma)$ be the cube whose center is x and side length is σ , by the Hölder's inequality and the growth condition, we obtain

$$\begin{split} F_{i}(\sigma,x) & \leq \frac{\mu(B(x,\sigma))^{1-\frac{1}{p_{i}}}}{\sigma^{n}} \left(\int_{B(x,\sigma)} |f_{i}(y_{i})|^{p_{i}} d\mu(y_{i}) \right)^{\frac{1}{p_{i}}} \\ & \leq C\sigma^{-\frac{n}{q_{i}}} \sigma^{\frac{n}{q_{i}} - \frac{n}{p_{i}}} \left(\int_{B(x,\sigma)} |f_{i}(y_{i})|^{p_{i}} d\mu(y_{i}) \right)^{\frac{1}{p_{i}}} \\ & \leq C\sigma^{-\frac{n}{q_{i}}} \mu(Q(x,4\sigma))^{\frac{1}{q_{i}} - \frac{1}{p_{i}}} \left(\int_{Q(x,2\sigma)} |f_{i}(y_{i})|^{p_{i}} d\mu(y_{i}) \right)^{\frac{1}{p_{i}}} \\ & \leq C\sigma^{-\frac{n}{q_{i}}} \|f_{i}\|_{\mathscr{M}^{q_{i}}_{p_{i}}(\mu)} \,. \end{split}$$

Thus, by $1/q = 1/q_1 + \cdots + 1/q_m - \alpha/n$, it follows that

$$I_{2} \leq C \int_{\delta}^{\infty} \left(\prod_{i=1}^{m} \sigma^{-\frac{n}{q_{i}}} \|f_{i}\|_{\mathcal{M}_{p_{i}}^{q_{i}}(\mu)} \right) \sigma^{\alpha-1} d\sigma$$

$$\leq C \prod_{i=1}^{m} \|f_{i}\|_{\mathcal{M}_{p_{i}}^{q_{i}}(\mu)} \int_{\delta}^{\infty} \sigma^{-\frac{n}{q}-1} d\sigma$$

$$\leq C \delta^{-\frac{n}{q}} \prod_{i=1}^{m} \|f_{i}\|_{\mathcal{M}_{p_{i}}^{q_{i}}(\mu)}.$$

Summing the estimates for I_1 and I_2 , we get

$$|I_{\alpha,m}(f_1,\ldots,f_m)(x)| \leq C \left[\delta^{\alpha} \mathcal{M}_{\kappa}(f_1,\ldots,f_m)(x) + \delta^{-\frac{n}{q}} \prod_{i=1}^m ||f_i||_{\mathscr{M}_{p_i}^{q_i}(\mu)} \right].$$

Now we take δ such that

$$\delta^{\alpha} \mathcal{M}_{\kappa}(f_1, \dots, f_m)(x) = \delta^{-\frac{n}{q}} \prod_{i=1}^{m} \|f_i\|_{\mathscr{M}_{p_i}^{q_i}(\mu)}.$$

This implies

(3.1)

$$|I_{\alpha,m}(f_1,\ldots,f_m)(x)| \le C \left(\prod_{i=1}^m ||f_i||_{\mathcal{M}_{p_i}^{q_i}(\mu)} \right)^{1-h/q} \mathcal{M}_{\kappa}(f_1,\ldots,f_m)(x)^{h/q}$$

with a constant C > 0 independent of f_i .

Since $1 < p_i \le q_i < \infty$, $1 , <math>1/l = 1/p_1 + \cdots + 1/p_m$, $1/h = 1/q_1 + \cdots + 1/q_m$ and p/q = l/h. For any $Q \in \mathcal{Q}(\mu)$, using the Hölder inequality and Theorem 3.5, we obtain

$$\mu(2Q)^{\frac{p}{q}-1} \int_{Q} \mathcal{M}_{\kappa}(f_{1},\ldots,f_{m})(x)^{\frac{ph}{q}} d\mu(x)$$

$$= \left\{ \mu(2Q)^{\frac{1}{h}-\frac{1}{l}} \left[\int_{Q} \mathcal{M}_{\kappa}(f_{1},\ldots,f_{m})(x)^{l} d\mu(x) \right]^{\frac{1}{l}} \right\}^{l}$$

$$\leq C \left(\prod_{i=1}^{m} \|f_{i}\|_{\mathcal{M}_{p_{i}}^{q_{i}}(\mu)} \right)^{l}.$$

Then, combine the above estimates with the inequality (3.1), we will immediately get the desired inequality, i.e.,

$$||I_{\alpha,m}(f_1,\ldots,f_m)||_{\mathcal{M}_p^q(\mu)} \le C \left(\prod_{i=1}^m ||f_i||_{\mathcal{M}_{p_i}^{q_i}(\mu)}\right)^{1-\frac{h}{q}+\frac{1}{p}}$$

$$= C \prod_{i=1}^m ||f_i||_{\mathcal{M}_{p_i}^{q_i}(\mu)}.$$

The proof of Theorem 3.6 is completed.

References

- L. Grafakos and R. Torres, Multilinear Calderón-Zygmund theory, Adv. Math. 165 (2002), no. 1, 124–164.
- [2] C. E. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett. 6 (1999), no. 1, 1–15.
- [3] A. K. Lerner, S. Ombrosi, C. Pérze, R. H. Torres, and R. R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math. 220 (2009), no. 4, 1222–1264.
- [4] J. Lian and H. Wu, A class of commutators for multilinear fractional integrals in non-homogeneous spaces, J. Inequal. Appl. 2008 (2008), Article ID 373050, 17 pages.
- [5] Y. Lin and S. Lu, Multilinear Calderón-Zygmund operator on Morrey type spaces, Anal. Theory Appl. 22 (2006), no. 4, 387–400.
- [6] _____, Boundedness of multilinear singular integral operators on Hardy and Herz-type spaces, Hokkaido Math. J. 36 (2007), no. 3, 585–613.

- [7] E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr. 166 (1994), no. 1, 95–103.
- [8] Y. Sawano, Generalized Morrey spaces for non-doubling measures, Nonlinear Differential Equations Appl. 15 (2008), no. 4-5, 413–425.
- [9] Y. Sawano and H. Tanaka, Morrey spaces for non-doubling measures, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 6, 1535–1544.
- [10] Y. Shi and X. Tao, Boundedness for multilinear fractional integral operators on Herz type spaces, Appl. Math. J. Chinese Univ. Ser. B 23 (2008), no. 4, 437–446.
- [11] ______, Multilinear Riesz potential operators on Herz-type spaces and generalized Morrey spaces, Hokkaido Math. J. 38 (2009), no. 4, 635–662.
- [12] E. M. Stein, Harmonic Analysis: Real-Variable methods, Orthogonality, and Oscillatory Integrals, Princeton N. J. Princeton Univ Press, 1993.
- [13] X. Tao, Y. Shi, and S. Zhang, Boundedness of multilinear Riesz potential on the product of Morrey and Herz-Morrey spaces, Acta Math. Sinica (Chin. Ser.) 52 (2009), no. 3, 535–548.
- [14] X. Tolsa, BMO, H^1 , and Calderón-Zygmund operators for nondoubling measures, Math. Ann. **319** (2001), no. 1, 89–149.
- [15] J. Xu, Boundedness of multilinear singular integrals for non-doubling measures, J. Math. Anal. Appl. 327 (2007), no. 1, 471–480.

Yanlong Shi

DEPARTMENT OF FUNDAMENTAL COURSES ZHEJIANG PHARMACEUTICAL COLLEGE NINGBO, ZHEJIANG 315100, P. R. CHINA E-mail address: shiyan-long@hotmail.com

XIANGXING TAO
DEPARTMENT OF MATHEMATICS
ZHEJIANG UNIVERSITY OF SCIENCE & TECHNOLOGY
HANGZHOU, ZHEJIANG 310023, P. R. CHINA
E-mail address: xxtao@hotmail.com