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SOME MULTI-SUBLINEAR OPERATORS ON GENERALIZED
MORREY SPACES WITH NON-DOUBLING MEASURES

YANLONG SHI AND XIANGXING TAO

ABSTRACT. In this paper the boundedness for a large class of multi-
sublinear operators is established on product generalized Morrey spaces
with non-doubling measures. As special cases, the corresponding results
for multilinear Calderén-Zygmund operators, multilinear fractional inte-
grals and multi-sublinear maximal operators will be obtained.

1. Introduction

A Radon measure p on R? is called a doubling measure if it satisfies the
doubling condition, i.e., there is a constant C' > 0 such that ;(2Q) < Cu(Q)
for any cube @ C R?. This doubling condition on x seems to be a key assump-
tion in classical Fourier analysis, however, it has been shown recently that
many results also hold without the doubling assumption, see [4, 8, 9, 14, 15]
among other literatures. In this paper we will investigate a large class of multi-
sublinear operators, including multilinear Calderén-Zygmund operators, mul-
tilinear fractional integrals and multi-sublinear maximal operators, on product
generalized Morrey spaces with non-doubling measures.

In fact, for m € N and m-tuple (fi, f2,..., fm), we consider the multi-
sublinear operators 7 satisfying the following size condition,

(1.1)

Lfiya) - i (ym)| s .
T fmd@NSC [l o= gl Edu(yn

Received September 9, 2010; Revised December 26, 2011.

2010 Mathematics Subject Classification. 42B20, 42B25, 42B35.

Key words and phrases. multilinear Calderén-Zygmund operator, multilinear fraction-
al integral, multi-sublinear maximal function, generalized Morrey spaces, non-doubling
measure.

The research of the first author was supported by the Foundation of Zhejiang Pharma-
ceutical College under grant #ZPCSR2010013.

The research of the second author was partially supported by the National Nature Science
Foundation of China under grant #11171306 and #11071065, and sponsored by the Scientific
Project of Zhejiang Provincial Science Technology Department under grant #2011C33012
and the Scientific Research Fund of Zhejiang Provincial Education Department under grant
#7201017584.

(©2012 The Korean Mathematical Society
907



908 YANLONG SHI AND XTANGXING TAO

with 0 < a < mn, where the non-doubling measure y satisfies the growth
condition

(1.2) w@) < Colb(Q)]",  0<n<d,

for any cube Q C R? with its side length £(Q) > 0.
Recall the multilinear fractional integral, for 0 < a < mmn,

_ fiy1) - fm(ym) . _
Ia,m(fhm ,fm)(x) - [Rd)nb (‘JJ _ yl‘ 4+ |l‘ — ym|)mn—o¢ Z];[d'u'(yl)’

and the m-linear Calderén-Zygmund operator defined by
T b)) = [ K@) fin) o) T i)
i i=1

for functions f; with compact support and x ¢ ﬂ;’;l supp f;, where K is an m-
Calderén-Zygmund kernel defined away from the diagonal z =y = -+ = yp,
in (R?)™*+! satisfying the size condition

C
2o lz =)

and some smoothness condition, see [1, 15] for details.

When p is a doubling measure, i.e., n = d, Grafakos and Torres showed in
[1] that the m-linear Calderén-Zygmund operator T is bounded from LP*(u) x

- x LPm(p) into LP(p) with 0 < 1/p = 1/p1 + -+ + 1/pm < 1; Kenig and
Stein showed in [2] that I, ,, is a bounded operator from LP*(p) x -+ - x LPm ()
into LP(p) with 1/p = 1/p1 + -+ + 1/pm — a/n > 0 and pi,...,pm > 1.
These results had been extended to Herz spaces, Morrey spaces and generalized
Morrey spaces in [5, 6, 10, 11, 13], and also extended in [4] and [15] to Lebesgue
spaces with non-doubling measures.

On the other hand, Sawano and Tanaka [9] had studied the Calderén-
Zygmund operator and the fractional integral on Morrey spaces with non-
doubling measure. One purpose of this paper is to establish the boundedness
of the m-linear Calderén-Zygmund operator and the multilinear fractional in-
tegral on Morrey spaces with non-doubling measure.

Let us give some notations. The capital letter () always denotes a cube with
sides parallel to the coordinate axes and £(Q) stands for the side length of Q.
Besides, for ¢ > 0, ¢@ will mean the cube with the same center as () and with
2cQ) = c(Q), Q(x,r) will be the cube centered at = with side length r and
we denote by 2(u) the set of all doubling cubes with positive p-measure.

(13) |’C($»y17y2»~-~aym)| <

Definition 1.1 ([9]). For £ > 1 and 1 < p < g < oo, the Morrey space
M (K, ) is defined as

A3 ) = {F € L) 1 gy < 0}
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where the Morrey norm || f || g4, is given by

1
g = s k@35 ([ 1717 dn)
Qe2(n) Q

It’s worthy to point out that the parameter k£ > 1 does not affect the set of
AMI(k, ). More precisely, for ky > kg > 1, 4§ (k1, ) and A Z(k2, 1) coincide
as a set and their norms are mutually equivalent. See [9] for details. We will
denote #J(2, 1) by AJ(11).

Definition 1.2 ([8]). For £ > 1 and 1 < p < oo, and let ¢ be an increasing
function from Rt to R*, then the generalized Morrey space, L£P®(k,p), is
defined as

2k, 1) = { € L) : 1 oy < 0}

with the norm || f [|zs.¢(,,) that is given by

_ 1 pd 1/p
e = 52 (¢(u(kQ)) /Q 7 u) |

We remark that £7¢(k, p) = 3 (k,p) for ¢(t) = t'"?/9and 1 < p < g <
00. Thus, the generalized Morrey spaces is a generalization of Morrey spaces.
Similarly, it’s proved in [8] that, for ky > ko > 1, LP?(ky, n) and LP?(ka, 1)
coincide as a set and their norms are mutually equivalent. Thus we can write
LP% () instead of LP?(2, u) for simplicity. In 2008 Sawano [8] had shown the
boundedness of the Calderén-Zygmund operator and the fractional integral on
L7 ().

It’s interesting for us to ask whether the m-linear Calderén-Zygmund op-
erator 1" and the multilinear fractional integral I, ,, are bounded on product
generalized Morrey spaces with non-doubling measure.

In this paper, we will discuss more general multi-sublinear operators 7 sat-
isfying the condition (1.1), and prove the boundedness of 7 on product Morrey
spaces and generalized Morrey spaces with non-doubling measure, see Theo-
rems 2.3, 2.6, 3.1 and 3.2 below.

Particularly, we will give the following estimates for the m-linear Calderén-
Zygmund operator T', see Theorems 2.4 and 3.3,

1Ty Fod)ll g ) < CH 1fill g oy

i=1

and

1T F)ll ooy < CTLIEl conor
i=1
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for 1/p = 1/p1 + -+ 1/pm, 1/g = 1/q1 + - + 1/qm and ¢/? = [, ¢;/""
under the assumptions

(1.4) sup . /OO ¢i(t)? < 00

0<r<oco (bz(r) t
and
(1.5) ¢it(t) < C’qbi(s) for t>s
S
foreachi=1,2,...,m.

Simultaneously, we will show the following estimates for the multilinear frac-
tional integral I, ,,, see Theorems 2.7, 3.4 and 3.6,

(1.6) ”Ia,m(fla R fm)H///g(w < CH Hlel//z;fz (1)
i=1

and

HIa,m(fh AR fm)”gpwb(ﬂ) < CH ||fi||[:pi’¢i(u)
i=1
for 1/p = 1/pr + -+ 1/pm —a/n, /g = /g1 + --- + 1/gm — a/n and
otr =111, qﬁi/p", where ¢; satisfies (1.5) and

l1—ap;/mn o it dt
r [

(17) sup tl—api/mn 7

O<r<co  ®i (T)

In the paper we will also consider the generalization of Hardy-Littlewood
maximal operator, which is an important example of multi-sublinear opera-
tors. In 1994 Nakai [7] introduced the similar assumptions on ¢ to show the
boundedness of maximal operator in generalized Morrey space LP*¢(R"). In
2008 Sawano [8] studied modified maximal operator under similar assumptions
on ¢ in the case of non-doubling measure. Inspired by these works, we will also
consider the modified multi-sublinear maximal operator M, which defined by

oo, t1=1,2...,m.

m

Mulfrseos f)@) = sup H(;@/waindu(yn, R L

z€QE(p) ;1 M

This operator was defined in [3] when p is a Lebesgue measure. It is easy
to see that M, is a multi-version of the maximal operator M, introduced
by Tolsa [14], and it’s worthy to notice that M, is strictly smaller than the
m-fold produce of M,,. We will establish the boundedness of M, on product
generalized Morrey spaces, i.e., Theorems 2.9 and 3.5 below, which implies that

IMeCfrs s fodllazy < C T g

i=1
and

[MalFr e Sl gooqy < C TLIEl zonor

i=1
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for 1/p = 1/p1 + -+ 1/pms 1/a = 1/q1 + -+ + 1/gm and ¢/ = [T, 61/7",
where each ¢; satisfies (1.5). Here we point out that we do not postulate
anything on measure pu when we study the operator M, that is, here p is just
a Radon measure.

The paper is organized as follows. The Section 2 focuses on the boundedness
on generalized Morrey spaces LP*?(1). In Section 3, we devote to the bound-
edness on Morrey spaces . (1) . Throughout this paper, the letter C' always
remains to denote a positive constant that may varies at each occurrence but
is independent of the essential variable.

2. Boundedness on generalized Morrey spaces LP*?(pu)

The present section consists of three parts which are about the bounded
estimates on generalized Morrey spaces for the multilinear Calderén-Zygmund
operator, the multilinear fractional integral and the multi-sublinear maximal
operator, respectively.

2.1. Boundedness of multilinear Calderén-Zygmund operators

Let us begin with some requisite lemmas. Using integration by part, see
Lemma 2 in [7] or Lemma 5.3 in [11], we have that:

Lemma 2.1 ([7, 11]). Suppose that 1) : Rt — R* is an increasing function
satisfying

/ (s —<C”w() for allr >0

with the positive constant C'. Then we can take the constant C = C'/(1—C’¢)
for small real € > 0 such that

/ P(s s—<Cw()5 for all r > 0.

Lemma 2.2. Suppose that i is the same as in Lemma 2.1 and 0 < n < 1.
Then there is a constant C' > 0 so that

/ (s *<C¢() for all v > 0.

Proof. For any R > 0 and 0 < n < 1, the Holder inequality and Lemma 2.1
imply that

[ oo = [yt
<c</ st ([ L)
< CY(r)r </TR5_1—1n_1d8> -
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1-n
1 1 1 1
<(C M| ——— R T T 1 .
< ¢(r)r< = +1_nr )

Then, let R — oo, we get the conclusion of the lemma. [l

Let us state our main result of this subsection.

Theorem 2.3. Assume that T is a multi-sublinear operator satisfying (1.1)
with a« = 0. Let 1 < p; < 00 satisfy 1/p=1/p1+ -+ 1/pm < 1,

PP = ¢}/”1¢é/p2 e pLfom

where each function ¢; : RT — RT satisfies the assumptions (1.4) and (1.5).
If T is bounded from LP*(u) X -+ x LPm(u) to LP(u), then there is a constant
C > 0 independent of f; such that

HT(fla ) fm)Hﬁp@(,u) < CH HfiHLPNM(H) .
=1

Proof. Fix a cube Q € 2(u) and write f; = f? + f°, where f2 = fix2q and
e =fi— f2fori=1,...,m. Then along this decomposition, we get

IT(f1;--- 5 fm)(@)] < Yoo ATU ) (@)

T1yeersTm €{0,00}
=T (s f) @I+ YN T fr) @),

where each term in )’ contains at least one 7; # 0. This implies

1 » 1/p
<¢(/1'(462)) /Q ‘T(fl, ey fnt)(l')‘ du(x)) < C(Hl 4 HQ),
where /
J— # 0 0 P . 1/p
th= <¢<u<4cz))/Q'T(f“'“’fm)< NP dp( >)

and

Hy=Y (M /Q 7 fa...,fm<x>|pdu<x>)1/p.

Next we analyze each term separately. For Hp, by the L? boundedness of
T, it is easy to see that

||sz2Q||LPL
]:[¢1/p7 ) <CHHleLPt Pi(

For Hs, let us begin with the case 71 = --- = 7, = 00. Denoting by cq the
center of @), we have |y; — x| ~ |y; — cgl| for x € Q and y; € (2Q)°. Hence, by
the condition (1.1), we obtain the following point-wise estimate for z € @,

T ) (@)
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<C [f1(y1) - frn(ym)|

d o dp(ym).
(lyr = cql + -+ ym — cq))™ 1(y1) - - dpp(ym)

RANB(cq.£(Q))™

Then, the following equality

/°° dl 1
mn =
1 —cal+tum—cal I (1 = el + -+ 4 |ym — cq)™"
and Fubini theorem yield
T ) (@)

e 1
<cf g F102) ) () -+ ()l
4(®) B lyi—cql<l

1
< /E(Q) s (/B(CQJ) /B<CQ,1) [f1 (1) - fon(ym) | dpa(y) - - dpaly ))

By using the Holder inequality and the growth condition (1.2) of u, we get
T (2% ) (@)

m

1/P1:
= C/ WH 1(B(cq, 1) —HP V Ifz-(yi)l’”du(yi)} dl
“Q i=1 Bleq )

- 1 1/1%
<o <H¢ cQ,2z>>>||fi||Wi<m> a

* 1 1 m
¢1 COQ”Z" /p1. .. ¢m COinn /Pm di
¢ ( (@ ( | : ) 7 | TTill oo

{n/p 41

¢1(Co2"1m) /P G (Co2n M) /Pm 1\ 15
(/ ln/Pl X -0 X WT HHfiHLm,%(H)
i=1

" p/pi
7 6:(Co2n™)\ VP dl
CH [/ ((ZO")) 7 Hfi”[,pi,dai(u)

£Q)

n {(Co2nt o
H(W) [ fill Loi-oi (-

IN

IN

| /\

Here, we used Lemma 2.2 by taking (1) = % and n = 1/p < 1 in the
last relation.

Hence, applying the assumption (1.5), we obtain

L (Co2nd™l ny\ 1/pi
N RS I e e
=1
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(1(2dQ))\ 7
CH<¢ 2dQQ))> illzeso

Integrating this over @, by the assumption (1.5), we obtain

(d)(u(1462))/Q|T(ff°,...,f§f)(x)|pdu(m))1/p

1 1(Q) bi(n(2dQ))\ /7
< C’il;ll | fill Lo () (¢(M(4Q)) X 1(200)) )

< CH 1fill Loi-oi (1)

=1

What remains to be considered are the terms in Hy such that 7, = --- =
7i, = 0 for some {i1,...,is} C {1,...,m}, where 1 < ¢ < m. Applying partly
the technique used in the estimates for |7 (f5°,..., f2°) (x)| and the Holder
inequality, we get

T f) ()

i lin iy i (Yi))|dp(ys
<c / T 1l x [iggir,....i0y 1fi(i))ldpdys)

(XCig(ir,...iny 19 — cQ)™™

(2g)¢ 1€ {i1rmmvie} (R 2Q)™~*
¢ Q 1/pi
<o I (PW52) " wtQl e
1€{i1,0 i}
00 1 1/pi
« / [T o™ (uBleq. 20) | fill ooos g | i
i i n/p;+bn+1 g (#)
2(Q) 12ig i i} P (z‘e{z‘l,..i,u}
¢i<u<4cz>>>”’”
<c ( fill oo
Ze{}j[..,u} e} I fill oo (1)
o0 1 1/p;
y / IT 6" (u(Bleq, 20 fill oo )dl
Digin,.. iy M/Pit1 ! ")
Q) 1=t mich (ig{n, i}
ol 61(u(24Q)) /7
<o 1] il TT S il
/p i i 1/1)’ v ‘(/")
16{11 it} 4Q ig{in,.. 00} #(2dQ)
i (1(4Q)) /s
<CH i Milleei

4
= C¢((<Ql/p H | fill e Pi ()
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Then we obtain that

1 p 1/p m
- - T T ()P T < [P 7
<¢(u(4Q))/Q|T( 1 Sm ) (@)]Pdp( )> _CEWHL "

and so we have arrived at the expression considered in the previous case. Com-
bining the arguments above, we complete the proof of the theorem. (I

It is easy to see from (1.3) that the m-linear Calderén-Zygmund operator
T satisfy (1.1). Thus, by its LP boundedness, we get the following theorem
immediately.

Theorem 2.4. Let ¢, ¢;,p,p; be the same as in Theorem 2.3 for each i =
1,2,...,m. Then there is a constant C' > 0 independent of f; such that

||T(f17 L) fm)||£u¢(u) < OH ||fl||[:5’1‘b1(“) .
=1

2.2. Boundedness of multilinear fractional integrals operators
To prove our theorem we need a covering lemma.

Lemma 2.5 ([8]). Let b > a > 0 be fized positive numbers and p > 1. Suppose
that p is a Randon measure and 24, = {Q € 2(u) : a < u(p?Q) < b} # 0.
Then there exist N subfamilies 2(1)a,b,1,-- - 2(1)ap,N Such that

{PQ:Q € 2(wap;} is disjoint forallj=1,...,N
and for all Q@ € 2()q,p we can find Q' € U;yzl‘,@(u)a’b,j such that Q C pQ’.
Here N does not depend on a nor b.

Let us begin with our main conclusion in this part.

Theorem 2.6. Assume that 0 < o < mn and T is a multi-sublinear operator

satisfying (1.1). Let 1 < p; < mn/a satisfy 1/p=1/p1 + -+ 1/pm — a/n,
(bl/p — ¢%/P1¢§/P2 L. ¢1/pm

where each function ¢; : RT — RT satisfies the conditions (1.5) and (1.7). If

T is bounded from LP'(u) x --- x LPm(u) to LP(u), then there is a constant
C > 0 independent of f; such that

HT(fla ey fm)HLde(“) < CH HfiHLPi:%(u) .

i=1
Proof. Fix a cube Q € 2(u) as before and p > 1, decompose f; according to
2K Q. Namely, we split f; = f? + f°, where f = fixexo and f° = fi — f?
for i = 1,...,m, where K is large enough according to the value of p. Along
this decomposition, we get

T Fa) @] ST (oo f0) @1 DT (7 f) ()],

where each term in >’ contains at least one 7; # 0.
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Then we need show

1/p m
7 .
—_ Ty fom xpdux) <C Fill posves
(sramay |70 )@)Pd(a) ) (L
for {m1,...,7m} € {0,00}.
The estimate for the case 7y = --- = 7, = 0 is simple. By the LP bounded-

ness of T, we have

(m/Q|T(f?"'"fgz)(w)lpdu(@)l/p
pidu(a:)) 1/pi

" 1
=cll (saxay L)

< CH Hfi||£Pi=¢i(,,L) .
i=1

‘We now turn our attention to the estimate for 4 = --- = 7,,, = oo. For
r € Qand y; € (RY\ 2KQ), assume that z,y; € R € 2(u), then we can find
a constant L > K which is large enough such that pR C LQ for p > 1, these
facts imply L{(Q) > pl(R) > U(R) > |z —y;| > (K —1/2)¢(Q). Then, using
the growth condition (1.2) of measure p, we have a pointwise estimate

T (7% £ (@)
<C / sup ﬁ; ﬁ‘f(y)‘dﬂ(i‘/)
= u(pR)T—ermn | LLUGty:

z,y; ERE2(n) ;1

(Rd\QKQ)"L
m 1

<C | I sup  ——————|fi(ys)|dp(yi).
i=lga\req VYIEREZW) p(pR)!—e/mn

A geometric observation again shows that ,/pR engulfs 2Q), the center of
@ in its interior, provided K is large enough and R intersects both ) and
R?\ 2K Q. Therefore, we get

m

1
T fm) (@) <C / SUup ———s
T | 71;[1 re2() M(y/pR)L-a/mn
- RN\2KQ {y;}U2QCR

Let us set, foreach ¢ =1,2,...,;mand j > 1,

| fi(yi)|dp(yi)-

Dij = yi € RT\2KQ : 277 4(2Q) < inf = n(VPR) < 270(2Q) ¢,
{y:} U2QCInt(R)
where Int(R) denotes the interior of a set R. Applying Lemma 2.5, we can find

N € N depending only on p and d, and a collection of cube_s_ Qzﬂ ;j, ey E\][

which contain x such that D;; C \/,BQ? U \/ﬁQéj U---Uy/pQY and M(\/Z)Q;j) <
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27u(2Q) for all 1 <1 < N, j € Nand i € {1,...,m}. Thus, by the Holder
inequality, we obtain

T ) ()]

i,
i=1

M8

1
(27 u(2Q))1—a/mn /D | fi (i) dp(y:)

<.
Il
—_

M8
] =

ofi
i=1

1
(27 u(2Q))1—o/mn /ﬁQ;j | fi(ya) | dp(ys)

1/pi
1
(QjM(QQ))l/pifa/mn </\/5Ql | fi(ya) [P d/j,(yl)>

#i( 2\[@ ))1/1)1'
jli 2Q 1/pi—a/mn

<
Il

—_
Il

—_

M8
] =

ofi
=1

<
Il

—_
Il

—_

Mz

HfiHLPiv‘ﬁz‘(#)

eIl (X
=1

j=1

1

i 6.2 n(2Q))
=l 2 2 gy

o 0il2 Q))”’”
< CHHJ%HL:P'L d’t(p Z /,[/ 1/p1—a/mn
=1 J:l

for all x € Q.
By the assumption (1.7) and Lemma 2.2, we have

o hi(27p(2Q)) /e Gi(u(20)) V7
> waaamate < (Gagyarm)

Mg
] =

HfiH[;Piv%‘(M)

<.
Il

—
Il

A

Thus, we obtain

1 1/p m
(QWKQ))/QIT(ff",...,f,?f)(x)lpdu(a:)> SC’HHfiHU%%(M

At last, we have to consider the case 7;, = --- = 7;, = 0 for some {i1,...,i¢}
c {1,...,m}, where 1 < ¢ < m. Applying partly the technique used in the
estimate of [T (f{°,..., ) (z)] and the Holder inequality, we get

T (7 £2) (@)
<c [T 1hw)ldets) x

(2K Q)¢ Etiie) (R\2K Q)"

Hig{il,...,zj} | fi (i) ldp(y:)
(Eig{il,...,ig} |z — y;| )«

1/pi

<c I wexQ - / ()P dulws)
KQ

i€{i1,...,00}
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HiQ{il,.A.,iZ} | fi(ya))|dpe(y:)
. . _ . ln—a/(m—0)+nLl/(m—L)
(RN\2KQ)m—¢ Wigor,...i0y 1= = il

$i(n(4K Q)Y
<o | WOV,

X

1€{i1,...,%¢ }

X M(2Q)é H / < sup lla/(mf)n> |fl(yl))‘dﬂ(yz)

; R
i1, i) ga 9K O ayiere2(n) MPR)

i K 1/pi
<C H M“ft’”yﬁw%@)

1/pi

i€{i1,..yi0} ,[L(2Q) /p

$i(1(2Q))"/Pi

< 1l i 1 fill o
/pi—a)(m—L)n ()
igtin iy H2Q)
Gi(W(AKQ))/Pi

H wu(2Q)1/pi—a/mn HfiHLp,;,@;(M)

o (SEEQDN T
C( 1(20) ) E”ﬁ”m‘”“‘”

Hence, we get

1 1/p m
(gs(wm@)) /Q T fnl) <x>|Pdu<w>) < C T il o

If we combine this with the estimate for {71,...,7,} € {0, 00}, the proof of
this theorem is completed. (Il

As a corollary, we obtain the following theorem for the multilinear fractional
integral operator I, m,, 0 < a < mn.

Theorem 2.7. Let ¢, ¢;, 0, p,p; be the same as in Theorem 2.6 for each i =
1,2,...,m. Then there is a constant C' > 0 independent of f; such that

||Ia>m(fl7 IR fm)HLp,qb(u) < CH HfiHl)Pif% (1)
i=1

2.3. Boundedness of multi-sublinear maximal operator M,

In this part we investigate the maximal operator M, defined in Section 1.
Since M, is strictly smaller than the m-fold produce of the operator M,, then
the Holder inequality yields that:
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Lemma 2.8. Let k,p,p; > 1 and 1/p = 1/p1 + -+ + 1/pym. Then there is a
constant C' > 0 independent of f; such that

”Mﬁ(fla . ~afm)HLP(H) < CH ||fi||LPi(M) .
i=1

Now we prove the boundedness of M, on product generalized Morrey spaces.

Theorem 2.9. Let ¢,p,p; be the same as in Theorem 2.3, and let ¢; satisfy
the condition (1.5) for each i = 1,2,...,m. Then there is a constant C > 0
independent of f; such that

||Mn(f1» sty fm)”LP,«t(ﬂ) S CH ||fiHLPiv¢i(u) .
i=1

Proof. Fix Q € 2(u) be a cube with side length £(Q), let @* be the cube with
the same center of () and side length % times the side-length of Q). Obviously,
in order to prove the theorem, it suffices to establish the following inequality

1/p m
e [ Ml F) @) PG )) < CTT oozt
<¢( (2,;2 +17)Q / ! 11;[1 L (255 1)

Write f; as f + f£°, where f2 = fixg- and f* = f; — f? for each i =
1,...,m. Then, it is easy to see that

Mn(fla"',fm)(f) SM& (f?avf?n) (1')4’2/./\/1,{( {13~-.7f;—{'L)(x)a

where each term in >’ contains at least one 7; # 0.
For the case 71 = --- = 7, = 0, using the boundedness of M, from LP*(u) x
- X LPm(p) into LP(u), i.e., Theorem 2.8, we have

1/p
<<z><<<+> /e fl,...,f0)<x>|pdu<x>>

K2—1
1/pi
< OH <W+7)/ - | fi(z) pidﬂ(@)
KZ2—1 Q))
< CH Hfi”LPivd)i(N?fl ) "
i=1
Now, consider the case 7, = oo for each ¢ = 1,...,m. For every z € Q,

in order to let Rﬂ 547Q #  for cube R, suppose that y; € R € 2(u) and
((R) > 25 Z . A geometric observation shows

m

M (f5%5 - f) (k) = sup (yi)|du(ys)

rERGQ(/L) i 1
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m

< sup — 5 o
reREL(n i I n+1R

/ | fi(ya)ldp(ys).-

Then, the fact @ C R C ;25 R and the condition (1.5) yield that

1/p
(W/ M (3%, £22) (@) Pdu(a >>

1/p m
e su _ . '
(‘b(M(WQ))) Iegec%(“)il:[l (m2f1R)/ | fi(yi)|dp(ys)

w@ \?
< (3tuan)
Xreé%%wg( ﬂ(nzflR) ) 041 /'fz )

S T =T A
5:(@Q) " H(ZR)

IN

1/pi
)P du(yz)>

N

sup
TERE2(pn
QC R

1/pi
X (W/ | fi(ys) [P dM(lh))

1/pi
CH ((m (Z ) / | fi(y) [P dp yz)>

< CH 1fill goioi (2 ) -

i=1

IN

We are left now to consider the case 7;, = --- = 7, = 0 for some {i1,...,4} C
{1,...,m}, where 1 <[ < m. It is to see that

m

M (f7e e ST (@) = sup / 7 ()l )

wEREQ(u) i— 1

< sup D |dp(y;)

zERE2(p) .

6{117 711}

X sup H QHR /|fz i) |dp(ys)

IGZGCQI@%(#) i€{i1,...,iz} K,Jrl

< M, (21,..., Zol)(x)
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X sup I —= R / | fi(yi)ldp(ys).-

SEREQ0) gy, iy AT

Let l/hl = Zie{il,...,il}]‘/pi and ]./hg = Zi&{il,“.,iz} l/pl Then ]_/p =
1/h1 + 1/hs. Applying the Holder inequality and (1.5), we get

1/p
<¢( Qi(zﬂ+17)Q /|M m)(x)|pd/”($)>
1/hy
: <¢< (255Q) / Mo (i 8)<x>h1du(x>>
(@) e
"
B(u(ELED Q) - (y2)|dps(ys
% <¢( (22;+;>@)>> xESZ?;(M)ig{Zﬂ n szlR /lf o) ldp(y:)
QCR ’

m
<c]] I1fill gosoos (20, 0y -

i=1

Finally, a combination of the estimates above finishes the proof of the theo-
rem. O

3. Boundedness on Morrey spaces .7 (1)

It is easy to see that the function ¢;(t) = t'=Pi/% 1 < p; < ¢; < oo, satisfies
the assumptions (1.4), (1.5) and (1.7) for each ¢ = 1,2,...,m. Then we can
obtain the following three theorems from the theorems above.

Theorem 3.1. Assume that T is a multi-sublinear operator satisfying (1.1)
witha=0. Let 1 <p; < g <00, 1 <p<qg<oo, l/p=1/p1+ -+ 1/pm
and 1/q=1/q1 + -+ 1/qm. If T is bounded from LP'(u) X --- x LPm(u) to
LP(u), then there is a constant C > 0 independent of f; such that

||T(f17 .. ,fm)”//[g(y,) S CH Hfl”//lgl‘(,u,)

i=1

Theorem 3.2. Assume that 0 < o < mn and T is a multi-sublinear operator
satisfying (1.1). Let 0 < a < mn, 1 < p; < ¢ < mnjfa, 1 < p < g < oo,
/p=1/pr+-+1/pm—a/nand 1/¢ =1/ + -+ 1/¢m — a/n. If T is
bounded from LP*(p) X -+ x LPm(u) to LP(u), then there is a constant C > 0
independent of f; such that

T Fdllaea < C Tl

i=1
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Theorem 3.3. Assume that T is a m-linear Calderon-Zygmund operator, 1 <
pi<q<oo,1<p<qg<oo,l/p=1/pi+-+1/pm and1/g=1/q1 + -+
1/qm. Then there is a constant C > 0 independent of f; such that

ITCrs - )l ) < CH 1fill azgi oy -
i=1
Theorem 3.4. Assume that I, is a multilinear fractional integral operator.
Let 0 <a<mn, 1l <p;<gqg <mn/a,l<p<qg<oo, 1/p=1/p1+- -+
1/pm—a/nandl/q=1/q1+ - -+1/¢m —a/n. Then there is a constant C > 0
independent of f; such that

m
||Ia,m(f17 L) fm)”//{g(#) < CH Hsz//[;’Z (p) *
i=1

Theorem 3.5. Let k > 1, 1 < p; < ¢ <00, 1 <p < gq< oo, 1/p=
pi+---+1/pm and 1/q=1/q1 +---+1/qm. Then there is a constant C >0
independent of f; such that

[Me(fr,- s fm)”,/zg(u) < CH Hsz///gl ()
i=1

Here we point out that, in Theorem 3.4, we get the boundedness for I, n,
under the assumption 1 < p; < mn/a for each i = 1,2,...,m. But this
assumption is unnatural, we want to obtain the estimates for the operator
1o, m in the natural condition 1 < p; < co. The following theorem will arrive
at our desire.

Theorem 3.6. Suppose that 0 < a <mn, 1 <p; < ¢ < oo, 1 <p<gq<oo.
Let 1/l =1/p1+ - 4+ 1/pm, L/h=1/g1 + -+ 1/gm and p/q = 1/h, 1/q =
1/h —a/n > 0. Then there is a constant C > 0 independent of f; such that

HIa’m(fh AR fm)”//zg(”) < CH HfZH//(g: (w)
i=1

Proof. Obviously, for all z,1; € R%, x # y;, i = 1,2,...,m, there is
Ho,m(frs- ooy fmn) ()]
< / |f1(y1)||fm(ym>‘
e (

|z —y1| + -+ 2 — yml)

e d(y1) - dp(ym).-

Since 0 < o < mn, we can get

_—y .
(o =yl + -+ ]z —ym))™" " le—ya |+ +|z—yom|

Thus, applying Fubini theorem, we have, for any § > 0, that
‘Ia,m(fla R fm)(l')(l')l



MULTI-SUBLINEAR OPERATORS ON GENERALIZED MORREY SPACES 923

oo

<C / oo T i) ldp(yi)do
0 -
{o—yil+Flz—ym|<o} =t

“ (L (ldn() ) oo
<cf (1_1 vl fz(yz)ldu(yz)> d

2

1
5 oo m
< C{/O +[$ } (il:[lFi(U,fE)> 0% do =: C(I; + I),

1

o-n

where

Fi(o,a) = /B( ) fori=12

For I, by the growth condition of u, it is easy to see that

4
I < C/O Me(fis .y f) (@)oo < C3“My(fi, .., fn) ().

Meanwhile, for Io, let Q(z,0) be the cube whose center is « and side length
is o, by the Hdélder’s inequality and the growth condition, we obtain

1

Fi(o,a) < M@ T ( .. fi(yi>|pidu<yi>>

O-Tl

1

Pi
<Co wgu i (/ |fi(yi)|pidﬂ(yi)>
B(z,0)
1

< Co™ % u(Q(, 40)) % ( /Q y )|fi<yi>|mdu<yi>> 'L

< Co

Fill g -

Thus, by 1/g=1/q¢1 + -+ 1/qm — a/n, it follows that

I < 0/5 <H o ”fi“/lﬁf(u)) o~ do
1=1
SCHHfiH//zg;'(u)/é o 5 o
i=1

<cs i [ il sy -

=1

Summing the estimates for [; and I, we get

|Ia,m(f1,---,fm>(l‘>| S C

S M (frs o ) (@) + 677 [ ] Ifill iy | -
i=1
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Now we take § such that

S M (fro - ) (@) =677 [ il g -
i=1
This implies
(3.1)
1-h/q

|Ia,m(f1a s fm)@) S0 H HfiHJ/;gg(u) M(fi1,- -afm)(z)h/q
i=1

with a constant C' > 0 independent of f;.

Since 1 < p; < g <00, 1 <p<qg<oo I/l =1/p1+- -+ 1/pm,
1/h=1/¢1 4+ - -4+ 1/¢m and p/q = 1/h. For any Q € 2(u), using the Holder
inequality and Theorem 3.5, we obtain

ph

(2Q)5 ! /Q Molfrs- s fu)(@) 5 dpa()

l

2

_ Lot [ /Q M(frr- o ) (@) dpa(z)
!

m
<C H ||fi||//zg;(u)
i=1

Then, combine the above estimates with the inequality (3.1), we will imme-
diately get the desired inequality, i.e.,

1—hy L
m q P
Ham(f1,- -, fm)”j{g(m <C H Hfz”,//gz ()
i=1
m
=TT
i=1
The proof of Theorem 3.6 is completed. O
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