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HIGHER ORDER NONLOCAL NONLINEAR BOUNDARY

VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL

EQUATIONS

Rahmat Ali Khan

Abstract. In this paper, we study the method of upper and lower so-
lutions and develop the generalized quasilinearization technique for the
existence and approximation of solutions to some three-point nonlocal
boundary value problems associated with higher order fractional differ-
ential equations of the type

cD
q

0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1)

u′(0) = γu′(η), u′′(0) = 0, u′′′(0) = 0, . . . , u(n−1)(0) = 0, u(1) = δu(η),

where, n−1 < q < n, n(≥ 3) ∈ N, 0 < η, γ, δ < 1 and cD
q

0+ is the Caputo
fractional derivative of order q. The nonlinear function f is assumed to
be continuous.

1. Introduction

The theory of boundary value problems (BVPs in short) for ordinary dif-
ferential equations is well studied and numerous results can be found in the
literature dealing with the solvability of boundary value problems. In contrast,
the theory of BVPs corresponding to nonlinear fractional differential equations
is in the initial stage of development and many aspects of the theory need to be
investigated. For the recent development in the theory of existence of solutions
to BVPs associated with fractional differential equations, we refer the readers
to [2, 3, 4, 6, 9, 12, 13, 15, 18, 19, 20, 21, 22, 25] and the references therein. In
the above cited references, the classical tools of functional analysis have been
used to establish sufficient conditions for existence results. However, the theory
of upper and lower solutions and comparison results corresponding to BVPs
associated with fractional differential equations is in the initial stage and as
far as I know, only few results can be found in the literature dealing with the
upper and lower solutions method [1, 5, 16, 23, 24]. In these references, bound-
ary value problems corresponding to fractional differential equations of order
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1 ≤ q < 2 subject to two point boundary conditions are studied. Some of them
study BVPs with impulses as well. Our problem is different from the previously
studied problems in the sense that we study more general higher order BVPs
corresponding to fractional differential equations of order n− 1 ≤ q < n, n ≥ 3
subject to multi-point boundary conditions of the type u′(0) = γu′(η), u′′(0) =
0, u′′′(0) = 0, . . . , u(n−1)(0) = 0, u(1) = δu(η). The method of quasilineariza-
tion has already been developed for some initial value problems associated with
fractional differential equations [7, 8, 14, 17] but results dealing with quasilin-
earization to boundary value problems for fractional differential equations can
hardly be seen in the literature [10, 11]. In [10], BVPs corresponding to frac-
tional differential equation of order 1 < q < 2 subject to boundary conditions
u′(0) = 0, u(1) = ξu(η) are studied while in [11], the problem with 2 < q < 3

subject to boundary conditions u(0) = u′(0) = 0, u(1) =
∑n−2

i=1 ξiu(ηi) is stud-
ied. The purpose of this paper is to develop comparison results and upper and
lower solutions method for the existence of solution to boundary value problem
(BVP) for higher order fractional differential equations of the type
(1.1)

cDq
0+u(t) + f(t, u(t)) = 0, q ∈ (n− 1, n], n ≥ 3, t ∈ (0, 1),

u′(0) = γu′(η), u′′(0) = 0, u′′′(0) = 0, . . . , u(n−1)(0) = 0, u(1) = δu(η),

where 0 < η, γ, δ < 1, cDq
0+ is the Caputo fractional derivative. The function

f is assumed to be continuous and non-negative on [0, 1]× [0,∞) and may be
nonlinear.

For convenience of the readers, we provide definitions of Riemann-Liouville
fractional integral, fractional derivative, and some of their basic properties
which will be helpful in the forth coming investigations.

Definition 1.1 ([13, 18]). For a function φ : (a,∞) → R, the Riemann-
Liouville fractional integral of order α > 0 is defined as

Iα
a+φ(t) =

1

Γ (α)

∫ t

a

(t− s)α−1φ(s)ds,

provided that the integral on right hand side exists.

For α, β ≥ 0, the fractional integral satisfies the semi group property

Iα
0+I

β
0+φ(t) = Iα+β

0+ φ(t) = Iβ
0+I

α
0+φ(t) almost everywhere on [0, 1].

In addition, if φ ∈ C[0, 1] or if α + β ≥ 1, then the identity is true for every
t ∈ [0, 1].

Definition 1.2 ([13, 18]). The standard Riemann-Liouville fractional deriv-
ative of order α > 0 of a function φ : (a,∞) → R is given by Dα

a+φ(t) =

( d
dt
)nIn−α

a+ φ(t), where a ∈ R, n = [s] + 1, provided right hand side is pointwise
defined on (a,∞).
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Definition 1.3. For a given function φ : (a,∞) → R, the Caputo fractional
derivative of order α > 0 is defined by cDα

a+φ(t) = In−α
a+ φ(n)(t), where a ∈ R,

n = [s] + 1.

Lemma 1.4 ([13]). If α > β > 0, then cDβ
0+I

α
0+φ(t) = Iα−β

0+ φ(t). In particular,

if m is positive integer and δ > m, then dm

dtm
(Iδ

0+φ(t)) = Iδ−m
0+ φ(t).

The following two lemmas play a fundamental role in obtaining an equivalent
integral representation to the boundary value problem (1.1).

Lemma 1.5 ([13]). Let α > 0. Then

Iα
0+

cDα
0+φ(t) = φ(t)−

n−1
∑

k=0

φk(0)

k!
tk

= φ(t) + c1 + c2t+ c3t
2 + · · ·+ cnt

n−1,

where ci =
φk−1(0)
(k−1)! , i = 1, 2, . . . , n and n− 1 < α ≤ n.

Lemma 1.6 ([13]). For α > 0, the fractional differential equation cDα
0+φ(t) = 0

has a general solution φ(t) = c1 + c2t + c3t
2 + · · · + cnt

n−1, where ci ∈ R,

i = 1, 2, . . . , n and n− 1 < α ≤ n.

Now, applying Iq on both sides of the differential equation in (1.1), and
using Lemma 1.5 and the boundary conditions in (1.1), the boundary value
problem (1.1) can be equivalently written as an integral equation

(1.2)

u(t) = − Iqf(t, u(t)) +
γ

1− γ
Iq−1f(η, u(η))(

1 − δη

1− δ
− t)

+
1

1− δ

(

Iqf(1, u(1))− δIqf(η, u(η))
)

=

∫ 1

0

k(t, s)f(s, u(s))ds, t ∈ [0, 1],

where

k(t, s) =
1

Γ(q)







































−(t− s)q−1 + qγ
1−γ

(1−δη
1−δ

− t)(η − s)q−2

+ 1
1−δ

(

(1 − s)q−1 − δ(η − s)q−1
)

(s ≤ t ≤ 1, η ≥ s),
qγ
1−γ

(1−δη
1−δ

− t)(η − s)q−2

+ 1
1−δ

(

(1 − s)q−1 − δ(η − s)q−1
)

(t ≤ s ≤ 1, η ≥ s),

−(t− s)q−1 + 1
1−δ

(1 − s)q−1 (s ≤ t ≤ 1, η ≤ s),
1

1−δ
(1− s)q−1 (t ≤ s ≤ 1, η ≤ s).

Clearly, we know k(t, s) ≥ 0 on (0, 1)× (0, 1).
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2. Upper and lower solutions method

For the purpose of comparison results, consider the following nonlinear
boundary value problem for fractional differential equation
(2.1)

cDqu(t) + h(t) = 0, t ∈ (0, 1), n− 1 < q ≤ n

u′(0)− γu′(η) = a1, u
′′(0) = a2, . . . , u

(n−1)(0) = an−1, u(1)− δu(η) = b,

where b, aj ∈ R, j = 1, 2, . . . , n − 1. The boundary value problem (2.1) is
equivalent to the following integral equation

u(t) = bψ1 + a1ψ2 +

n
∑

j=3

aj−1

(j − 1)!
ψj +

∫ 1

0

k(t, s)h(s)ds, t ∈ [0, 1],(2.2)

where ψ1 = 1
1−δ

, ψ2(t) = − 1
1−γ

(1−δη
1−δ

− t), ψj(t) = −(1−δηj−1

1−δ
− tj−1) −

γ(j−1)ηj−2

1−γ
(1−δη

1−δ
− t), j = 3, 4, . . . , n. Note that ψ1 > 0, ψ2 < 0 and ψj(t) ≤ 0

on (0, 1) for j = 3, 4, . . . , n. Hence, if b ≥ 0, a1 ≤ 0, aj ≤ 0, j = 2, 4, . . . , n and
h(t) ≥ 0 for t ∈ [0, 1], then any solution u of the integral equation (2.2) satisfies
u(t) ≥ 0 on (0, 1). On the other hand, if b ≤ 0, a1 ≥ 0, aj ≥ 0, j = 2, 4, . . . , n
and h(t) ≤ 0 for t ∈ [0, 1], then any solution u of the integral equation (2.2)
satisfies u(t) ≤ 0 on (0, 1). Thus, we have the following comparison result.

Comparison results: (i) If cDqu(t) ≤ 0 on (0, 1) for q ∈ (n − 1, n], n ≥ 3
such that u′(0) ≤ γu′(η), u′′(0) ≤ 0, . . . , u(n−1)(0) ≤ 0, u(1) ≥ δu(η), then any
solution u of the linear problem −cDqu(t) = h(t) satisfies u ≥ 0 on (0, 1).

(ii) If cDqu(t) ≥ 0 on (0, 1) for q ∈ (n − 1, n], n ≥ 3 such that u′(0) ≥
γu′(η), u′′(0) ≥ 0, . . . , u(n−1)(0) ≥ 0, u(1) ≤ δu(η), then any solution u of the
linear problem −cDqu(t) = h(t) satisfies u ≤ 0 on (0, 1).

In view of the comparison results, we introduce the definition of upper and
lower solutions corresponding to the BVP (1.1) as follows:

Definition 2.1. A function α is called a lower solution of the BVP (1.1) if
α ∈ Cn−1[0, 1] and satisfies

−cDqα(t) ≤ f(t, α(t)), q ∈ (n− 1, n], t ∈ (0, 1),

α′(0) ≥ γα′(η), α′′(0) ≥ 0, . . . , α(n−1)(0) ≥ 0, α(1) ≤ δα(η).

An upper solution β ∈ Cn−1[0, 1] of the BVP (1.1) is defined similarly by
reversing the inequality.

Define β̄ = max{β(t) : t ∈ [0, 1]} and ᾱ = min{α(t) : t ∈ [0, 1]}.

Theorem 2.2. Assume that there exist lower and upper solutions α, β ∈ C[0, 1]
of the BVP (1.1) such that α ≤ β on [0, 1]. Assume that f : [0, 1]×R → (0,∞)
is continuous and non-decreasing with respect to u on [0, 1]. Then the BVP

(1.1) has C[0, 1] positive solution u such that α(t) ≤ u(t) ≤ β(t), t ∈ [0, 1].
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Proof. Consider the modified BVP for fractional differential equations

−cDqu(t) = F (t, u(t)), q ∈ (n− 1, n], n ≥ 3, t ∈ (0, 1),

u′(0) = γu′(η), u′′(0) = 0, . . . , u(n−1)(0) = 0, u(1) = δu(η),
(2.3)

where [10, 11]

(2.4) F (t, u) =











f(t, β(t)), if u ≥ β(t),

f(t, u(t)), if α(t) ≤ u ≤ β(t),

f(t, α(t)), if u ≤ α(t).

The BVP (2.3) is equivalent to the following integral equation

u(t) =

∫ 1

0

k(t, s)F (s, u(s))ds, t ∈ [0, 1],

which can equivalently be written as an operator equation (I − A)u(t) = 0,

where I is the identity operator and Au(t) =
∫ 1

0
k(t, s)F (s, u(s))ds, t ∈ [0, 1].

By a solution of the BVP (2.3), we means a fixed point of the operator equation.
It should be noted that any solution u of the BVP (2.3) such that α(t) ≤

u(t) ≤ β(t), t ∈ [0, 1], is a solution of the BVP (1.1). On the other hand, as an
application of the Schauder’s fixed point theorem, the BVP (2.3) has a solution
if F is continuous and bounded on [0, 1]×R. Further, for each fixed t ∈ [0, 1],
the non-decreasing property of f(t, u) with respect to u implies that F (t, u) is
non-decreasing with respect to u on [ᾱ, β̄] and

(2.5) f(t, α(t)) ≤ F (t, u) ≤ f(t, β(t)), (t, u) ∈ [0, 1]× R.

We only need to show that α(t) ≤ u ≤ β(t), t ∈ [0, 1], where u is solution
of the BVP (2.3). Define m(t) = α(t) − u(t), t ∈ [0, 1], where u is solution
of the BVP (2.3), and in view of the boundary conditions, we obtain m′(0) ≥
γm′(η), m′′(0) ≥ 0, . . . ,m(n−1)(0) ≥ 0, m(1) ≤ δm(η). Using the definition of
lower solution and (2.5), we obtain

−cDqm(t) = −Dqα(t) +Dqu(t)

≤ f(t, α(t)) − F (t, u(t)) ≤ 0, q ∈ (n− 1, n], t ∈ [0, 1].

Hence, by comparison results m(t) ≤ 0, t ∈ [0, 1]. Similarly, we can show that
u(t) ≤ β(t), t ∈ [0, 1]. �

Now, we approximate the solution of BVP (1.1) via the generalized quasilin-
earization [10, 11]. Choose a function φ(t, u) such that φ, φu, φuu ∈ C([0, 1]×

R), ∂2

∂u2φ(t, u) ≥ 0 on [ᾱ, β̄] and

(2.6)
∂2

∂u2
[f(t, u) + φ(t, u)] ≥ 0 on [0, 1]× [ᾱ, β̄].

Here we remark that the expression (2.6) is a weaker relation than convexity
and such function φ always exists. For example, if max{fuu(t, u) : (t, u) ∈

[0, T ]× [ᾱ, β̄]} =M , then we may choose φ = Mu2

2 .
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Define F ∗ : [0, 1] × R → R by F ∗(t, u) = f(t, u) + φ(t, u). Then, F ∗ ∈
C([0, 1]× R) and

(2.7)
∂2

∂u2
F ∗(t, u) ≥ 0 on [0, 1]× [ᾱ, β̄].

The expression (2.7) implies that

(2.8) f(t, u) ≥ f(t, y) + F ∗

u (t, y)(u − y)− [φ(t, u)− φ(t, y)], t ∈ [0, 1]

for u, y ∈ [ᾱ, β̄]. The non decreasing property of φu with respect to u on [ᾱ, β̄],

that is, ∂2

∂u2φ(t, u) ≥ 0 yields

(2.9) φ(t, u)− φ(t, y) = φu(t, c)(u − y) ≤ φu(t, β̄)(u− y) for u ≥ y, t ∈ [0, 1]

where u, y ∈ [ᾱ, β̄] such that y ≤ c ≤ u. Substituting this into (2.8), we have

f(t, u) ≥ f(t, y) + [F ∗

u (t, y)− φu(t, β̄)](u− y) ≥ f(t, y) + λ(u − y) for u ≥ y,

(2.10)

where λ = min{0,min{F ∗

u (t, ᾱ) − φu(t, β̄) : t ∈ [0, 1]}}. We note that λ ≤
F ∗

u (t, z)− φu(t, β̄) ≤ fu(t, β̄) : t ∈ [0, 1].
Define g : [0, 1]× R× R → R by

g(t, u, y) = f(t, y) + λ(u − y).(2.11)

We note that g(t, u, y) is continuous on [0, 1]×R×R and for u, y ∈ [ᾱ, β̄], using
(2.10) and (2.11), we have

(2.12)

{

f(t, u) ≥ g(t, u, y) for u ≥ y,

f(t, u) = g(t, u, u).

Now, we develop the iterative scheme to approximate the solution.

Theorem 2.3. Under the hypothesis of Theorem 2.2, there exists a bounded

monotone sequence of solutions of linear problems converging uniformly and

quadratically to a solution of the problem (1.1).

Proof. As an initial approximation, we choose w0 = α and consider the linear
problem

−cDqu(t) = g(t, u(t), w0(t)), q ∈ (n− 1, n], t ∈ [0, 1]

u′(0) = γu′(η), u′′(0) = 0, . . . , u(n−1)(0) = 0, u(1) = δu(η).
(2.13)

In view of the definition of lower and upper solutions and (2.12), it follows that

g(t, w0(t), w0(t)) = f(t, w0(t)) ≥ −cDqw0(t), q ∈ (n− 1, n], t ∈ [0, 1],

g(t, β(t), w0(t)) ≤ f(t, β(t)) ≤ −cDqβ(t), q ∈ (n− 1, n], t ∈ [0, 1],

which imply that w0 and β are lower and upper solutions of (2.13). Hence, by
Theorem 2.2, there exists a solution w1 ∈ C[0, 1] of (2.13) such that w0 ≤ w1 ≤
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β on [0, 1]. Again, from (2.12) and the fact that w1 is a solution of (2.13), we
obtain

−cDqw1(t) = g(t, w1(t), w0(t)) ≤ f(t, w1(t)), q ∈ (n− 1, n], t ∈ [0, 1],(2.14)

which implies that w1 is a lower solution of (1.1).
Similarly, we can show that w1 and β are lower and upper solutions of the

linear problem

−cDqu(t) = g(t, u(t), w1(t)), q ∈ (n− 1, n], t ∈ [0, 1]

u′(0) = γu′(η), u′′(0) = 0, . . . , u(n−1)(0) = 0, u(1) = δu(η).
(2.15)

Hence, by Theorem 2.2, there exists a solution w2 ∈ C[0, 1] of (2.15) such that
w1 ≤ w2 ≤ β on [0, 1]. Continuing in the above fashion, we obtain a bounded
monotone sequence {wn} of solutions of linear problems satisfying

(2.16) w0 ≤ w1 ≤ w2 ≤ w3 ≤ · · · ≤ wn ≤ β on [0, 1],

where wn is a solution of the linear problem

−cDqu(t) = g(t, u(t), w0(t)), q ∈ (n− 1, n], t ∈ [0, 1]

u′(0) = γu′(η), u′′(0) = 0, . . . , u(n−1)(0) = 0, u(1) = δu(η)

and is given by

(2.17) wn(t) =

∫ 1

0

k(t, s)g(s, wn(s), wn−1(s))ds, t ∈ [0, 1].

The monotonicity and uniform boundedness of the sequence {wn} implies the
existence of a pointwise limit w on [0, 1] such that wn → w uniformly. From
the dominated convergence theorem, it follows that for any t ∈ [0, 1],

∫ 1

0

k(t, s)g(s, wn(s), wn−1(s))ds →

∫ 1

0

k(t, s)f(s, w(s))ds.

Passing to the limit as n → ∞, (2.17) yields w(t) =
∫ 1

0 k(t, s)f(s, w(s))ds, t ∈
[0, 1], which implies that w is a solution of (1.1).

To show that the convergence is quadratic, define en(t) = w(t) − wn(t), t ∈
[0, 1], where w is a solution of (1.1). Then, en(t) ≥ 0 on [0, 1], en(t) → 0 as
n → ∞ and from the boundary conditions, we have e′n(0) = γe′n(η), e

′′

n(0) =

0, . . . , e
(n−1)
n (0) = 0, en(1) = δen(η). Moreover, for every t ∈ [0, 1], we have

−cDqen(t)=F
∗(t, w(t))−φ(t, w(t))−f(t, wn−1(t))−λ(wn(t)−wn−1(t)).(2.18)

Using the mean value theorem and the nondecreasing property of φu, that is,
φuu ≥ 0 on [0, 1]× [ᾱ, β̄], we obtain,

φ(t, w(t)) ≥ φ(t, wn−1(t)) + φu(t, wn−1(t))(w(t) − wn−1(t))

≥ φ(t, wn−1(t)) + φu(t, ᾱ)(w(t) − wn−1(t)),

F (t, w(t)) = F (t, wn−1(t)) + Fu(t, wn−1(t))(w(t) − wn−1(t))
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+
Fuu(t, ξ)

2
(w(t) − wn−1(t))

2

≤ F (t, wn−1(t)) + Fu(t, β̄)(w(t) − wn−1(t))

+
Fuu(t, ξ)

2
(w(t) − wn−1(t))

2,

where wn−1 ≤ ξ ≤ w. Hence,

F (t, w(t)) − φ(t, w(t))

≤ f(t, wn−1(t)) + [Fu(t, β̄)− φu(t, ᾱ)](w(t) − wn−1(t))

+
Fuu(x, ξ)

2
(w(t) − wn−1(t))

2.

Hence, the equation (2.18) can be rewritten as
(2.19)

−cDqen(t) ≤ [Fu(t, β̄)− φu(t, ᾱ)]en−1(t) +
Fuu(t, ξ)

2
(en−1(t))

2

− λ(en−1(t)− en(t))

≤ [Fu(t, β̄)− φu(t, ᾱ)− λ]en−1(t) + λen(t) +
Fuu(t, ξ)

2
(en−1(t))

2.

Since λ ≤ 0 and Fu(t, β̄)− φu(t, ᾱ)− λ ≥ 0, it follows that

−cDqen(t) ≤ [Fu(t, β̄)− φu(t, ᾱ)− λ]‖en−1‖+
Fuu(t, ξ)

2
‖en−1(t)‖

2

≤ ρ‖en−1‖+ d‖en−1‖
2, t ∈ [0, 1],

where ρ = max{Fu(t, β̄)− φu(t, ᾱ)− λ : t ∈ [0, 1]} ≥ 0 and d = max{Fuu(t,y)
2 :

y ∈ [ᾱ, β̄]}. By comparison results, en(t) ≤ z(t), t ∈ [0, 1], where z(t) is a
solution of the linear BVP

−cDq
0+z(t) = ρ‖en−1‖+ d‖en−1‖

2, q ∈ (n− 1, n], n ≥ 3

z′(0) = γz′(η), z′′(0) = 0, . . . , z(n−1)(0) = 0, z(1) = δz(η),
(2.20)

which is given by

en(t) ≤ z(t) =

∫ 1

0

k(t, s)d‖en−1‖
2 ≤ A‖en−1‖+B‖en−1‖

2,(2.21)

where A = max{ρ
∫ 1

0 k(t, s)ds : t ∈ [0, 1]} and B = max{d
∫ 1

0 k(t, s)ds : t ∈
[0, 1]}. �
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