Browse > Article
http://dx.doi.org/10.6113/JPE.2019.19.4.835

Augmentation of Fractional-Order PI Controller with Nonlinear Error-Modulator for Enhancing Robustness of DC-DC Boost Converters  

Saleem, Omer (Dept. of Electrical Eng., National University of Computer and Emerging Sciences (NUCES))
Rizwan, Mohsin (Dept. of Mechatronics and Control Eng., University of Engineering and Technology (UET))
Khizar, Ahmad (Dept. of Mechatronics and Control Eng., University of Engineering and Technology (UET))
Ahmad, Muaaz (Dept. of Electrical Eng., National University of Computer and Emerging Sciences (NUCES))
Publication Information
Journal of Power Electronics / v.19, no.4, 2019 , pp. 835-845 More about this Journal
Abstract
This paper presents a robust-optimal control strategy to improve the output-voltage error-tracking and control capability of a DC-DC boost converter. The proposed strategy employs an optimized Fractional-order Proportional-Integral (FoPI) controller that serves to eliminate oscillations, overshoots, undershoots and steady-state fluctuations. In order to significantly improve the error convergence-rate during a transient response, the FoPI controller is augmented with a pre-stage nonlinear error-modulator. The modulator combines the variations in the error and error-derivative via the signed-distance method. Then it feeds the aggregated-signal to a smooth sigmoidal control surface constituting an optimized hyperbolic secant function. The error-derivative is evaluated by measuring the output-capacitor current in order to compensate the hysteresis effect rendered by the parasitic impedances. The resulting modulated-signal is fed to the FoPI controller. The fixed controller parameters are meta-heuristically selected via a Particle-Swarm-Optimization (PSO) algorithm. The proposed control scheme exhibits rapid transits with improved damping in its response which aids in efficiently rejecting external disturbances such as load-transients and input-fluctuations. The superior robustness and time-optimality of the proposed control strategy is validated via experimental results.
Keywords
Boost converter; Capacitor-current; Error modulation; Fractional-order PI controller; Hyperbolic secant function; Particle swarm optimization;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 M. Boutouba, A. El-Ougli, S. Miqoi, and B. Tidhaf, "Intelligent control for voltage regulation system via DC-DC converter using raspberry Pi 2 board," WSEAS Trans. Electron., Vol. 8, pp. 41-47, 2017
2 M. Demirtas and G. Gezer, "Analyzing of PI controlled DC/DC converter output voltage using LABVIEW," in Proc. 18th IEEE SIU, pp. 704-707, 2010.
3 P. Akter, M. Uddin, S. Mekhilef, N. M. L. Tan, and H. Akagi, “Model predictive control of bidirectional isolated DC-DC converter for energy conversion system,” Int. J. Electron., Vol. 102, No. 8, pp. 1407-1427, Aug. 2015.   DOI
4 H. Cui, J. Yang, and S. Li, "Nonlinear disturbance rejection control for a buck-boost converter with load uncertainties," in Proc. 33rd IEEE CCC, pp. 3788-3793, 2014.
5 S. Sivakumar, M. JagabarSathik, P. S. Manoj, and G. Sundararajan, "An assessment on performance of DC-DC converters for renewable energy applications," Renew. Sustain. Energy Rev., Vol. 58, pp. 1475-1485, May 2016.   DOI
6 B. S. Lee, S. K. Kim, J. H. Park, and K. B. Lee, “Adaptive output voltage tracking controller for uncertain DC/DC boost converter,” Int. J. Electron., Vol. 103, No. 6, pp. 1002-1017, Jun. 2016.   DOI
7 W. J. Lambert, R. Ayyanar, and S. Chickamenahalli, “Fast load transient regulation of low-voltage converters with the low-voltage transient processor,” IEEE Trans. Power Electron., Vol. 24, No. 7, pp. 1839-1854, Jul. 2009.   DOI
8 A. Ghosh and S. Banerjee, “Control of switched-mode boost converter by using classical and optimized type controllers,” Contr. Eng. Applied Informat., Vol. 17, No. 4, pp. 114-125, Dec. 2015.
9 M. Hejri and H. Mokhtari, “Hybrid predictive control of a DC-DC boost converter in both continuous and discontinuous current modes of operation,” Optimal Contr. Appl. Methods, Vol. 32, No. 3, pp. 270-284, May/Jun. 2011.   DOI
10 M. Z. Hossain, N. A. Rahim, and J. Selvaraj, “Recent progress and development on power DC-DC converter topology, control, design and applications: A review,” Renew. Sustain. Energy Rev., Vol. 81, No. 1, pp. 205-230, Jan. 2018.   DOI
11 P. Dobra, M. Trusca, D. Moga, and D. Petreus, “Stability aspects in DC-DC converters using PID controller,” Contr. Eng. Applied Informat., Vol. 9, No. 1, pp. 33-40, Mar. 2007.
12 S. Mariethoz, S. Almer, M. Baja, A. G. Beccuti, D. Patino, A. Wernrud, Buisson, J. H. Cormerais, T. Geyer, H. Fujioka, U. T. Jonsson, C. Y. Kao, M. Morari, G. Papafotiou, A. Rantzer, and P. Riedinger, “Comparison of hybrid control techniques for buck and boost DC-DC converters,” IEEE Trans. Contr. Syst. Technol., Vol. 18, No. 5, pp. 1126-1145, May 2010.   DOI
13 L. Guo, J. Y. Hung, and R. M. Nelms, “Evaluation of DSP-based PID and fuzzy controllers for DC-DC converters,” IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 2237-2248, Jun. 2009.   DOI
14 K. Vijayakumar and T. Manigandan, “Nonlinear PID controller parameter optimization using enhanced genetic algorithm for nonlinear control system,” Contr. Eng. Applied Informat., Vol. 18, No. 2, pp. 3-10, Jun. 2016.
15 S. W. Seo, J. S. Park, Y. Kim, and H. H. Choi, “Fuzzy PI-type controller design for boost converter,” Int. J. Electron., Vol. 104, No. 1, pp. 143-156, Jan. 2017.   DOI
16 Z. Salam, F. Taeed, and S. M. Ayob, “Design and implementation of a single input fuzzy logic controller for boost converters,” J. Power Electron., Vol. 11, No. 4, pp. 543-550, Jul. 2011.
17 A. Kessal, L. Rahmani, J. P. Gaubert, and M. Mostefai, “Experimental design of a fuzzy controller for improving power factor of boost rectifier,” Int. J. Electron., Vol. 99, No. 12, pp. 1611-1621, Dec. 2012.   DOI
18 C. Olalla, I. Queinnec, R. Leyva, and A. E. Aroudi, “Robust optimal control of bilinear DC-DC converters,” Contr. Eng. Practice, Vol. 19, No. 7, pp. 688-699, Jul. 2011.   DOI
19 A. Leon-Masich, H. Valderrama-Blavi, J. M. Bosque-Moncusi, J. Maixe-Altes, and L. Martinez-Salamero, “Slidingmode-control-based boost converter for high-voltage-low-power applications,” IEEE Trans. Ind. Electron., Vol. 62, No. 1, pp. 229-237, Jan. 2015.   DOI
20 S. Singh, D. Fulwani, and V. Kumar, “Robust sliding-mode control of dc/dc boost converter feeding a constant power load,” IET Power Electron., Vol. 8, No. 7, pp. 1230-1237, Jul. 2015.   DOI
21 V. Utkin and H. Lee, "Chattering problem in sliding mode control systems," in Proc. IEEE VSS, pp. 346-350, 2006.
22 A. Amirahmadi, M. Rafiei, K. Tehrani, G. Griva, and I. Batarseh, “Optimum design of integer and fractional-order PID controllers for boost converter using SPEA look-up tables,” J. Power Electron., Vol. 15, No. 1, pp. 160-176, Jan. 2015.   DOI
23 Z. Bingul and O. Karahan, “Comparison of PID and FOPID controllers tuned by PSO and ABC algorithms for unstable and integrating systems with time delay,” Optimal Contr. Appl. Methods, Vol. 39, No. 4, pp. 1431-1450, Jul./ Aug. 2018.   DOI
24 K. A. Tehrani, A. Amirahmadi, S. M. R. Rafiei, G. Griva, L. Barrandon, M. Hamzaoui, I. Rasoanarivo, and F. M. Sargos, "Design of fractional order PID controller for boost converter based on Multi-Objective optimization," in Proc. 14th IEEE PEMC, T3-179-T3-185, 2010.
25 S. K. Verma, S. Yadav, and S. K. Nagar, “Fractional order PI controller design for non-monotonic phase systems,” IFAC-PapersOnLine, Vol. 49, No. 1, pp. 236-240, 2016.
26 G. E. Pitel and P. T. Krein, “Minimum-time transient recovery for DC-DC converters using raster control surfaces,” IEEE Trans. Power Electron., Vol. 24, No. 12, pp. 2692-2703, Dec. 2009.   DOI
27 M. H. Rashid, Power Electronics: Circuits, Devices, and Applications, Pearson Education, 2009.
28 S. Kapat and P. T. Krein, “Formulation of PID control for DC-DC converters based on capacitor current: A geometric context,” IEEE Trans. Power Electron., Vol. 27, No. 3, pp. 1424-1432, Mar. 2012.   DOI
29 J. B. L. Fermeiro, J. A. N. Pombo, M. R. A. Calado, and S. J. P. S. Mariano, "A new controller for DC-DC converters based on particle swarm optimization," Applied Soft Computing, Vol. 52, pp. 418-434, Mar. 2017.   DOI
30 R. Senthilkumar and V. Manikandan, “Design of fractional order PI controller using metaheuristic algorithms applied to DC-DC boost converter - A comparision,” ARPN J. Eng. Applied Sci., Vol. 10, No. 11, pp. 4832-4837, Jun. 2015.
31 M. M. Peretz and S. B. Yaakov, “Time-domain design of digital compensators for PWM DC-DC converters,” IEEE Trans. Power Electron., Vol. 27, No. 1, pp. 284-293, Jan. 2012.   DOI
32 R. Priewasser, M. Agostinelli, C. Unterrieder, S. Marsili, and M. Huemer, “Modeling, control, and implementation of DC-DC converters for variable frequency operation,” IEEE Trans. Power Electron., Vol. 29, No. 1, pp. 287-301, Jan. 2014.   DOI
33 S. Padmanaban, E. Kabalci, A. Iqbal, H. Abu-Rub, and O. Ojo, "Control strategy and hardware implementation for DC-DC boost power circuit based on proportional-integral compensator for high voltage application," Eng., Sci. Tech., Vol. 18, pp. 163-170, Jun. 2015.
34 M. Zamani, M. Karimi-Ghartemani, and N. Sadati, “FOPID controller design for robust performance using particle swarm optimization,” J. Fractional Calculus Applied Analysis, Vol. 10, No. 2, pp. 169-188, 2007.
35 A. T. Azar, A. G. Radwan, and S. Vaidyanathan, Fractional Order Systems: Optimization, Control, Circuit Realizations and Applications, Elsevier Science & Technology, 2018.
36 A. Tepljakov, Fractional-order Modeling and Control of Dynamic Systems, Springer; 2017.
37 M. A. Rahimian, and M. S. Tavazoei, “Improving integral square error performance with implementable fractionalorder PI controllers,” Optimal Contr. Appl. Methods, Vol. 35, No. 3, pp. 303-323, May/Jun. 2013.   DOI
38 R. Kelly and R. Carelli, “A class of nonlinear PD-type controller for robot manipulator,” J. Robotic Syst., Vol. 13, No. 12, pp. 793-802, Dec. 1996.   DOI
39 H. Seraji, “A new class of nonlinear PID controllers with robotic applications,” J. Robotic Syst., Vol. 15, No. 3, pp. 161-181, Mar. 1998.   DOI
40 Y. Xu, J. M. Hollerbach, and D. Ma, “A nonlinear PD controller for force and contact transient control,” IEEE Control Syst. Mag., Vol. 15, No. 1, pp. 15-21, Mar. 1995.   DOI
41 L. Corradini, A. Babazadeh, A. Bjeletic, and D. Maksimovic, “Current-limited time-optimal response in digitally controlled DC-DC converters,” IEEE Trans. Power Electron., Vol. 25, No. 11, pp. 2869-2880, Dec. 2010.   DOI
42 S. M. Ayob, N. A. Azli, and Z. Salam, “PWM DC-AC converter regulation using a multi-loop single input fuzzy PI controller,” J. Power Electron., Vol. 9, No. 1, pp. 124-131, Jan. 2009.
43 S. Kapat and P. T. Krein, “Improved time optimal control of a buck converter based on capacitor current,” IEEE Trans. Power Electron., Vol. 27, No. 3, pp. 1444-1454, Mar. 2012.   DOI
44 Z. Salam, F. Taeed, and S. M. Ayob, “Design and implementation of a single input fuzzy logic controller for boost converters,” J. Power Electron., Vol. 11, No. 4, pp. 542-550, Jan. 2011.   DOI
45 F. Taeed, Z. Salam, and S. Ayob, “FPGA implementation of a single-input fuzzy logic controller for boost converter with the absence of an external analog-to-digital converter,” IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 1208-1217, Feb. 2012.   DOI
46 E. Sahin and I. H. Altas, "A PSO tuned fractional-order PID controlled non-inverting buck-boost converter for a wave/UC energy system," Int. J. Intelligent Syst. Appl. Eng., Vol. 4, pp. 32-37, Dec. 2016.   DOI
47 A. Djoewahir, K. Tanaka, and S. Nakashima, “Adaptive PSO-based self-tuning PID controller for ultrasonic motor,” Int. J. Innovative Comput., Informt. Contr., Vol. 9, No. 10, pp. 3903-3914, Jan. 2013.