Browse > Article
http://dx.doi.org/10.4134/JKMS.2012.49.5.907

SOME MULTI-SUBLINEAR OPERATORS ON GENERALIZED MORREY SPACES WITH NON-DOUBLING MEASURES  

Shi, Yanlong (Department of fundamental Courses Zhejiang Pharmaceutical College)
Tao, Xiangxing (Department of Mathematics Zhejiang University of Science & Technology)
Publication Information
Journal of the Korean Mathematical Society / v.49, no.5, 2012 , pp. 907-925 More about this Journal
Abstract
In this paper the boundedness for a large class of multi-sublinear operators is established on product generalized Morrey spaces with non-doubling measures. As special cases, the corresponding results for multilinear Calder$\acute{o}$n-Zygmund operators, multilinear fractional integrals and multi-sublinear maximal operators will be obtained.
Keywords
multilinear Calder$\acute{o}$n-Zygmund operator; multilinear fractional integral; multi-sublinear maximal function; generalized Morrey spaces; non-doubling measure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Lin and S. Lu, Boundedness of multilinear singular integral operators on Hardy and Herz-type spaces, Hokkaido Math. J. 36 (2007), no. 3, 585-613.   DOI
2 E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr. 166 (1994), no. 1, 95-103.   DOI
3 Y. Sawano, Generalized Morrey spaces for non-doubling measures, Nonlinear Differential Equations Appl. 15 (2008), no. 4-5, 413-425.   DOI
4 Y. Sawano and H. Tanaka, Morrey spaces for non-doubling measures, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 6, 1535-1544.   DOI
5 Y. Shi and X. Tao, Boundedness for multilinear fractional integral operators on Herz type spaces, Appl. Math. J. Chinese Univ. Ser. B 23 (2008), no. 4, 437-446.   DOI
6 Y. Shi and X. Tao, Multilinear Riesz potential operators on Herz-type spaces and generalized Morrey spaces, Hokkaido Math. J. 38 (2009), no. 4, 635-662.   DOI
7 E. M. Stein, Harmonic Analysis: Real-Variable methods, Orthogonality, and Oscillatory Integrals, Princeton N. J. Princeton Univ Press, 1993.
8 X. Tao, Y. Shi, and S. Zhang, Boundedness of multilinear Riesz potential on the product of Morrey and Herz-Morrey spaces, Acta Math. Sinica (Chin. Ser.) 52 (2009), no. 3, 535-548.
9 X. Tolsa, BMO, $H^{1}$, and Calderon-Zygmund operators for nondoubling measures, Math. Ann. 319 (2001), no. 1, 89-149.   DOI
10 J. Xu, Boundedness of multilinear singular integrals for non-doubling measures, J. Math. Anal. Appl. 327 (2007), no. 1, 471-480.   DOI   ScienceOn
11 J. Lian and H. Wu, A class of commutators for multilinear fractional integrals in non-homogeneous spaces, J. Inequal. Appl. 2008 (2008), Article ID 373050, 17 pages.
12 L. Grafakos and R. Torres, Multilinear Calderon-Zygmund theory, Adv. Math. 165 (2002), no. 1, 124-164.   DOI   ScienceOn
13 C. E. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett. 6 (1999), no. 1, 1-15.   DOI
14 A. K. Lerner, S. Ombrosi, C. Perze, R. H. Torres, and R. R. Trujillo-Gonzaalez, New maximal functions and multiple weights for the multilinear Calderon-Zygmund theory, Adv. Math. 220 (2009), no. 4, 1222-1264.   DOI   ScienceOn
15 Y. Lin and S. Lu, Multilinear Calderon-Zygmund operator on Morrey type spaces, Anal. Theory Appl. 22 (2006), no. 4, 387-400.   DOI