• Title/Summary/Keyword: fluorine

Search Result 787, Processing Time 0.024 seconds

ZnO Nanorod Array as an Efficient Photoanode for Photoelectrochemical Water Oxidation (광전기화학적 물 산화용 산화아연 나노막대 광양극의 합성 및 특성평가)

  • Park, Jong-Hyun;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.239-245
    • /
    • 2020
  • Synthesizing one-dimensional nanostructures of oxide semiconductors is a promising approach to fabricate highefficiency photoelectrodes for hydrogen production from photoelectrochemical (PEC) water splitting. In this work, vertically aligned zinc oxide (ZnO) nanorod arrays are successfully synthesized on fluorine-doped-tin-oxide (FTO) coated glass substrate via seed-mediated hydrothermal synthesis method with the use of a ZnO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Zn metal thin film. The structural, optical and PEC properties of the ZnO nanorod arrays synthesized at varying levels of Zn sputtering power are examined to reveal that the optimum ZnO nanorod array can be obtained at a sputtering power of 20 W. The photocurrent density and the optimal photocurrent conversion efficiency obtained for the optimum ZnO nanorod array photoanode are 0.13 mA/㎠ and 0.49 %, respectively, at a potential of 0.85 V vs. RHE. These results provide a promising avenue to fabricating earth-abundant ZnO-based photoanodes for PEC water oxidation using facile hydrothermal synthesis.

원자층 식각방법을 이용한, Contact Hole 내의 Damage Layer 제거 방법에 대한 연구

  • Kim, Jong-Gyu;Jo, Seong-Il;Lee, Seong-Ho;Kim, Chan-Gyu;Gang, Seung-Hyeon;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.244.2-244.2
    • /
    • 2013
  • Contact Pattern을 Plasma Etching을 통해 Pattering 공정을 진행함에 있어서 Plasma 내에 존재하는 High Energy Ion 들의 Bombardment 에 의해, Contact Bottom 의 Silicon Lattice Atom 들은 Physical 한 Damage를 받아 Electron 의 흐름을 방해하게 되어, Resistance를 증가시키게 된다. 또한 Etchant 로 사용되는 Fluorine 과 Chlorine Atom 들은, Contact Bottom 에 Contamination 으로 작용하게 되어, 후속 Contact 공정을 진행하면서 증착되는 Ti 나 Co Layer 와 Si 이 반응하는 것을 방해하여 Ohmic Contact을 형성하기 위한 Silicide Layer를 형성하지 못하도록 만든다. High Aspect Ratio Contact (HARC) Etching 을 진행하면서 Contact Profile을 Vertical 하게 형성하기 위하여 Bias Power를 증가하여 사용하게 되는데, 이로부터 Contact Bottom에서 발생하는 Etchant 로 인한 Damage 는 더욱 더 증가하게 된다. 이 Damage Layer를 추가적인 Secondary Damage 없이 제거하기 위하여 본 연구에서는 원자층 식각방법(Atomic Layer Etching Technique)을 사용하였다. 실험에 사용된 원자층 식각방법을 이용하여, Damage 가 발생한 Si Layer를 Secondary Damage 없이 효과적으로 Control 하여 제거할 수 있음을 확인하였으며, 30 nm Deep Contact Bottom 에서 Damage 가 제거될 수 있음을 확인하였다. XPS 와 Depth SIMS Data를 이용하여 상기 실험 결과를 확인하였으며, SEM Profile 분석을 통하여, Damage 제거 결과 및 Profile 변화 여부를 확인하였으며, 4 Point Prove 결과를 통하여 결과적으로 Resistance 가 개선되는 결과를 얻을 수 있었다.

  • PDF

Synthesis of 18F Labelled Isoquinoline Salt for PET Imaging (PET 영상용 18F 표지 Isoquinolinium Salt의 합성)

  • Kim, Hee Jung;Kim, Dong Yeon;Kim, In Jong;Park, Jeong Hoon;Lee, Heung Nae;Kim, Sang Wook;Hur, Min Goo;Choi, Sang Moo;Yang, Seung Dae;Yu, Kook Hyun
    • Journal of Radiation Industry
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • The purpose of this study is to synthesize the radio fluorine labelled isoquinoline salt derivative as new radiopharmaceutical for imaging tumors using positron emission tomography (PET). The planarity of isoquinoline allows to inhibit topoisomerase or intercalate between adjacent DNA base pairs, which result in producing double strand breaks in the DNA and a cell death. Therefore, the isoquinoline has seemed to have a potential anticancer activity. In order to obtain 2-(5-[$^{18}F$]fluoropentylisoquinolinium salt with good radiochemical yield, tosylated precursors have been synthesized. The labelling reaction was carried out for 30 minute in HMPA at $120^{\circ}C$. The radiochemical yield was about 50~60%.

Effect of Process Parameters on TSV Formation Using Deep Reactive Ion Etching (DRIE 공정 변수에 따른 TSV 형성에 미치는 영향)

  • Kim, Kwang-Seok;Lee, Young-Chul;Ahn, Jee-Hyuk;Song, Jun Yeob;Yoo, Choong D.;Jung, Seung-Boo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.1028-1034
    • /
    • 2010
  • In the development of 3D package, through silicon via (TSV) formation technology by using deep reactive ion etching (DRIE) is one of the key processes. We performed the Bosch process, which consists of sequentially alternating the etch and passivation steps using $SF_6$ with $O_2$ and $C_4F_8$ plasma, respectively. We investigated the effect of changing variables on vias: the gas flow time, the ratio of $O_2$ gas, source and bias power, and process time. Each parameter plays a critical role in obtaining a specified via profile. Analysis of via profiles shows that the gas flow time is the most critical process parameter. A high source power accelerated more etchant species fluorine ions toward the silicon wafer and improved their directionality. With $O_2$ gas addition, there is an optimized condition to form the desired vertical interconnection. Overall, the etching rate decreased when the process time was longer.

Study on Self-Organized Ru Dots Using ALD and Low Temperature Rapid Thermal Annealing Process (ALD와 저온 RTA를 이용한 자가정렬 Ru 응집체의 제조와 물성)

  • Park, Jongseung;Noh, Yunyoung;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.8
    • /
    • pp.557-562
    • /
    • 2012
  • Self-organized ruthenium (Ru) dots were fabricated by $400^{\circ}C$ RTA (rapid thermal annealing) and ALD (atomic layer deposition). The dots were produced under the $400^{\circ}C$ RTA conditions for 10, 30 and 60 seconds on all Si(100)/200 nm-SiO2, glass, and glass/fluorine-doped tin oxide (FTO) substrates. Electrical sheet resistance, and surface microstructure were examined using a 4-point probe and FE-SEM (field emission scanning electron microscopy). Ru dots were observed when a 30 nm-Ru layer on a Si(100)/200 nm-SiO2 substrate was annealed for 10, 30 and 60 seconds, whereas the dots were only observed on a glass substrate when a 50 nm-Ru layer was annealed on glass. For a glass/FTO substrate, RTA <30 seconds was needed for 30 nm Ru thick films. Those dots can increase the effective surface area for silicon and glass substrates by up to 5-44%, and by 300% for the FTO substrate with a < $20^{\circ}$ wetting angle.

Effect of fluorine gas addition for improvement of surface wear property of DLC thin film deposited by using PECVD (PECVD를 이용한 DLC 박막의 표면 마모 특성 향상을 위한 플루오린 첨가의 영향)

  • Park, Hyun-Jun;Kim, Jun-Hyung;Moon, Kyoung-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.357-364
    • /
    • 2021
  • In this study, DLC films deposited by PECVD were evaluated to the properties of super-hydrophobic by CF4 treatment. The structure of DLC films were confirmed by Raman Spectra whether or not mixed sp3 (like diamond) peak and sp2 (like graphite) peak. And the hydrogen contents in the DLC films (F-DLC) were measured by RBS analysis. In addition, DLC films were analyzed by scratch test for adhesion, nano-indentation for hardness and tribo-meter of Ball-on-disc type for friction coefficient. In the result of analysis, DLC films had traditional structure regardless of variation of hardness at constant conditions. Also adhesion of DLC film was increased as higher material hardness. Otherwise, friction coefficient was increased as lower material hardness. The DLC films were treated by CF4 plasma treatment to enhance the properties of super-hydrophobic. And the DLC films were measured by ESEM(Enviromental Scanning Electron Microscope) for water condensation.

Study on the Improvement of the Fastness of Dyeing for Environmentally Synthetic Suede Using Silica Particles (실리카 입자를 활용한 친환경 인조스웨이드의 견뢰도 향상에 관한 연구)

  • Lee, Hye Mi;Kim, Ah Rong;Kim, Dae Geun
    • Textile Coloration and Finishing
    • /
    • v.30 no.4
    • /
    • pp.275-287
    • /
    • 2018
  • In recent years, research on the development of eco-friendly synthetic suede based on water-dispersed polyurethane resin and non-fluorine water repellent has been conducted. Synthetic suede has a problem that the fastness to dyeing is greatly lowered after the water-repellent processing at a high temperature of $160^{\circ}C$ because the polyester is dyed with a disperse dye. Therefore, in this study, silica was added to water-dispersed polyurethane resin to improve dye fastness. To distribute the $PUD-SiO_2$ mixture evenly in the water-dispersed polyurethane resin, sufficient stirring was done for a period of time. When the $PUD-SiO_2$ mixture(PUD 1-5%) is applied to the substrate, it is confirmed through SEM that the mixture is uniformly applied without particle condensation. The results showed that silica with a diameter of 4~12nm and BET of $200{\sim}380g/m^2$ had the ability to improve dispersibility and fastness.

The Evaluation of Inorganic Components with Pu-Erh Tea (중국 보이차의 무기성분 특성 평가)

  • Cho, Young-Man;Jeung, Young-Sik
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.5
    • /
    • pp.401-407
    • /
    • 2019
  • This study compares and analyzes inorganic components of four different Pu-erh tea species consumed in Korea. The criteria for the inorganic components was based on the Royal Institute of Technology (KTH) recommendations. Out of the 19 general items: potassium, manganese, silicon and fluorine were detected in amounts exceeding the maximum allowable concentration by 5~23, 57~91, 1.6~1.8 and 9~18 times respectively. Out of the 15 potentially harmful elements: aluminum and nickel were exceeded the Maximum allowable concentration by 9~14 times and 0.8~1.2 times respectively. To reduce the concentration of inorganic elements in excess of the maximum allowable concentration, the extraction time of tea should be less than 1 minute in addition to limiting the amount. The amount of Pu-erh tea for extraction was about 0.1 g manganese, about 0.3 g potassium, about 0.5 g fluoride and about 2 g silicon. Therefore, the maximum amount of tea for extraction should be 0.1 g in regards to the safety of Pu-erh tea. Based on the recommended maximum daily intake of inorganic ingredients by the Ministry of Food and Drug Safety, it is desirable that the number of extractions be less than three.

Enhanced Photoelectrochemical Reaction of MoS2 Nanosheets Vertically Grown on TiO2 Nanowires (MoS2 나노시트의 TiO2 나노선에 수직 성장을 통한 광전기화학반응 향상)

  • Seo, Dong-Bum;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.92-96
    • /
    • 2021
  • We report the growth and enhanced photoelectrochemcial (PEC) water-splitting reactivity of few-layer MoS2 nanosheets on TiO2 nanowires. TiO2 nanowires with lengths of ~1.5 ~ 2.0 ㎛ and widths of ~50~300 nm are synthesized on fluorine-doped tin oxide substrates at 180 ℃ using hydrothermal methods with Ti(C4H9O)4. Few-layer MoS2 nanosheets with heights of ~250 ~ 300 nm are vertically grown on TiO2 nanowires at a moderate growth temperature of 300 ℃ using metalorganic chemical vapor deposition. The MoS2 nanosheets on TiO2 nanowires exhibit typical Raman and ultraviolet-visible light absorption spectra corresponding to few-layer thick MoS2. The PEC performance of the MoS2 nanosheet/TiO2 nanowire heterostructure is superior to that of bare TiO2 nanowires. MoS2/TiO2 heterostructure shows three times higher photocurrent than that of bare TiO2 nanowires at 0.6 V. The enhanced PEC photocurrent is attributed to improved light absorption of MoS2 nanosheets and efficient charge separation through the heterojunction. The photoelectrode of the MoS2/TiO2 heterostructure is stably sustained during on-off switching PEC cycle.

Developing High-Performance Polymer Electrolyte Membrane Electrolytic Cell for Green Hydrogen Production (그린수소 생산을 위한 고성능 고분자 전해질막 전해조 개발 연구)

  • Choi, Baeck Beom;Jo, Jae Hyeon;Lee, Yae Rin;Kim, Jungsuk;Lee, Taehee;Jeon, Sang-Yun;Yoo, Young-Sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.137-143
    • /
    • 2021
  • As an electrochemical water electrolysis for green hydrogen production, both polymer electrolyte membrane (PEM) and alkaline electrolyte are being developed extensively in various countries. The PEM electrolyzer with high current density (above 2 A/cm2) has the advantage of being able to design a simple structure. Also, it is known that it has high response to electrical output fluctuations. However, the cost problem of major components is the most important issue that a PEM electrolyzer must overcome. Instantly, there are platinum group metal (PGM)-based electrocatalysts, fluorine-based polyfluoro sulfuric acid (PFSA) membrane, Ti felt (porous transport layer, PTL) and so on. Another challenging issue is productivity. A securing outstanding productivity brings price benefits of the electrolytic cells. From this point of view, we conducted basic studies on manufacturing electrode and membrane electrode assembly (MEA) for PEM electrolyzer production.