Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.5.239

ZnO Nanorod Array as an Efficient Photoanode for Photoelectrochemical Water Oxidation  

Park, Jong-Hyun (Department of Materials Science and Engineering, Chungnam National University)
Kim, Hyojin (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.30, no.5, 2020 , pp. 239-245 More about this Journal
Abstract
Synthesizing one-dimensional nanostructures of oxide semiconductors is a promising approach to fabricate highefficiency photoelectrodes for hydrogen production from photoelectrochemical (PEC) water splitting. In this work, vertically aligned zinc oxide (ZnO) nanorod arrays are successfully synthesized on fluorine-doped-tin-oxide (FTO) coated glass substrate via seed-mediated hydrothermal synthesis method with the use of a ZnO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Zn metal thin film. The structural, optical and PEC properties of the ZnO nanorod arrays synthesized at varying levels of Zn sputtering power are examined to reveal that the optimum ZnO nanorod array can be obtained at a sputtering power of 20 W. The photocurrent density and the optimal photocurrent conversion efficiency obtained for the optimum ZnO nanorod array photoanode are 0.13 mA/㎠ and 0.49 %, respectively, at a potential of 0.85 V vs. RHE. These results provide a promising avenue to fabricating earth-abundant ZnO-based photoanodes for PEC water oxidation using facile hydrothermal synthesis.
Keywords
oxide semiconductor; zinc oxide; nanorod; photoanode; photoelectrochemical water splitting;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A., 103, 15729 (2006).   DOI
2 P. V. Kamat, J. Phys. Chem. C, 111, 2834 (2007).   DOI
3 C.-J. Winter, Int. J. Hydrogen Energy, 34, S1 (2009).   DOI
4 A. Kudo and Y. Miseki, Chem. Soc. Rev., 38, 253 (2009).   DOI
5 X. Chen, S. Chen, L. Guo and S. S. Mao, Chem. Rev., 110, 6503 (2010).   DOI
6 F. E. Osterloch, Chem. Soc. Rev., 42, 2294 (2013).   DOI
7 Y. Yang, D. Xu, Q. Wu and P. Diao, Sci. Rep., 6, 30158 (2016).   DOI
8 Y. Liu, Y. Gu, X. Yan, Z. Kang, S. Lu, Y. Sun and Y. Zhang, Nano. Res., 8, 2891 (2015).   DOI
9 M. Y. Wang, L. Sun, Z. Q. Lin, J. H. Cai, K. P. Xie and C. J. Lin, Energy Environ. Sci., 6, 1211 (2013).   DOI
10 D. A. Wheeler, G. M. Wang, Y. C. Ling, Y. Li and J. Z. Zhang, Energy Environ. Sci., 5, 6682 (2012).   DOI
11 Z. Kang, Y. S. Gu, X. Q. Yan, Z. M. Bai, Y. C. Liu, S. Liu, X. H. Zhang, Z. Zhang, X. J. Zhang and Y. Zhang, Biosens. Bioelectron., 64, 499 (2015).   DOI
12 Z. Kang, X. Q. Yan, Y. F. Wang, Z. M. Bai, Y. C. Liu, Z. Zhang, P. Lin, X. H. Zhang, H. G. Yuan and X. J. Zhang, Sci. Rep., 5, 7882 (2015).   DOI
13 A. Fujishima and K. Honda, Nature, 238, 37 (1972).   DOI
14 B. Min and H. Kim, Korean J. Mater. Res., 29, 196 (2019).   DOI
15 X. Chen and S. S. Mao, Chem. Rev., 107, 2891 (2007).   DOI
16 J. Hu, T. W. Odom and C. M. Lieber, Acc. Chem. Res., 32, 435 (1999).   DOI
17 M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science, 292, 1897 (2001).   DOI
18 J.-J. Wu and S. C. Liu, Adv. Mater., 14, 215 (2002).   DOI
19 L. Liu, K. Hong, T. Hu and M. Xu, J. Alloys Compd., 511, 195 (2012).   DOI
20 L. M. Fudzi, Z. Zainai, H. N. Lim. S.-K. Chang, A. M. Holi and M. S. Ali, Materials, 11, 704 (2018).   DOI
21 R. Zhang, P.-G. Yin. N. Wang and L. Guo, Solid State Sci., 11, 865 (2009).   DOI
22 P. Sinsermsuksakul, J. Heo, W. Noh, A. S. Hock and R. G. Gordon, Adv. Energy Mater., 1, 1116 (2011).   DOI
23 N. Beermann, L. Vayssieres, S.-E. Lindquist and A. Hagfeldt, J. Electrochem. Soc., 147, 2456 (2000).   DOI
24 J. Taug, R. Grigorovici and A. Vancu, Phys. Stat. Sol., 15, 627 (1966).   DOI
25 V. Srikant and D. R. Clarke, J. Appl. Phys., 83, 5447 (1998).   DOI
26 T. Hisatomi, J. Kubota and K. Domen, Chem. Soc. Rev., 43, 7520 (2014).   DOI
27 D. T. Sawyer, A. J. Sobkowiak and J. Roberts, Jr., Electrochemistry for Chemists, 2nd ed., p. 196, John Wiley & Sons, New York (1995).