Journal of the Korean Society of Industry Convergence
/
v.12
no.4
/
pp.215-219
/
2009
A packaging technology based on flip-chip bonding and Pb-free solder for silicon pressure sensors on printed circuit board (PCB) is presented. First, the bump formation process was conducted by Pb-free solder. Ag-Sn-Cu solder and the pressed-screen printing method were used to fabricate solder bumps. The fabricated solder bumps had $189-223{\mu}m$ width, $120-160{\mu}m$ thickness, and 5.4-6.9 standard deviation. Also, shear tests was conducted to measure the bump shear strength by a Dage 2400 PC shear tester; the average shear strength was 74 g at 0.125 mm/s of test speed and $5{\mu}m$ shear height. Then, silicon pressure sensor packaging was implemented using the Pb-free solder and bump formation process. The characteristics of the pressure sensor were analogous to the results obtained when the pressure sensor dice are assembled and packaged using the standard wire-bonding technique.
Electromigration test of flip chip solder bump is performed at $140^{\circ}C$ C and $4.6{\times}10^4A/cm^2$ conditions in order to compare electromigration with thermomigration behaviors by using electroplated Sn-3.5Ag solder bump with Cu under-bump-metallurgy. As a result of measuring resistance with stressing time, failure mechanism of solder bump was evaluated to have four steps by the fail time. Discrete steps of resistance change during electromigration test are directly compared with microstructural evolution of cross-sectioned solder bump at each step. Thermal gradient in solder bump is very high and the contribution of thermomigration to atomic flux is comparable with pure electromigration effect.
Electromigration characteristics of Sn-3.5Ag flip chip solder bump were analyzed using flip chip packages which consisted of Si chip substrate and electroplated Cu under bump metallurgy. Electromigration test temperatures and current densities peformed were $140{\sim}175^{\circ}C\;and\;6{\sim}9{\times}10^4A/cm^2$ respectively. Mean time to failure of solder bump decreased as the temperature and current density increased. The activation energy and current density exponent were found to be 1.63 eV and 4.6, respectively. The activation energy and current density exponent have very high value because of high Joule heating. Evolution of Cu-Sn intermetallic compound was also investigated with respect to current density conditions.
Journal of the Korean Society of Manufacturing Technology Engineers
/
v.20
no.2
/
pp.187-192
/
2011
UBM(Under Bump Metallurgy) is very important for successful realization of Flip-Chip technology. In this study, it is investigated the interfacial reactions between various Sn-Ag solder alloys and Ni-P/Au UBM and Cu plate finish. It is also evaluated the shear strength by using the micro shear-punch test method for Sn-37Pb alloy, binary and ternary alloys of environment-friendly Pb-free solder alloys which are applied in the electronic packages. In terms of interfacial microstructure, the Pb-free solder joints have thicker IMCs than the Sn-Pb solder joints. The thickness of IMC is related to Reflow time. The IMC has been observed to grow with the increase in Reflow time. As a result of the shear test, in case of Max. shear strength, Pb-free solder showed the highest strength value and Sn-37Pb showed the lowest strength value 10 be generally condition of Reflow time.
Journal of the Microelectronics and Packaging Society
/
v.11
no.4
s.33
/
pp.43-48
/
2004
Electromigration of Sn-3.5Ag-0.5Cu solder bumps was investigated with current densities of $3{\~}4{\times}10^4 A/cm^2$ at temperatures of $130{\~}160^{\circ}C$ using flip chip specimens which consisted of upper Si chip and lower Si substrate. Electromigration failure of the Sn-3.5Ag-0.5Cu solder bump occurred with complete consumption of Cu UBM and void formation at cathode side of the solder bump. The activation energies for electromigration of the Sn-3.5Ag-0.5Cu solder bump were measured as 0.61 eV at current density of $3{\times}10^4 A/cm^2$, 0.63 eV at $3.5{\times}10^4 A/cm^2$, and 0.77 eV at $4{\times}10^4 A/cm^2$, respectively.
The electroplating process for a solder bump which can be applied for a flip chip was studied. Si-wafer was used for an experimental substrate, and the substrate were coated with UBM (Under Bump Metallization) of Al(400 nm)/Cu(300 nm)Ni(400 nm)/Au(20 nm) subsequently. The compositions of the bump were Sn-Cu and eutectic Sn-Pb, and characteristics of two bumps were compared. Experimental results showed that the electroplated thickness of the solders were increased with time, and the increasing rates were TEX>$0.45 <\mu\textrm{m}$/min for the Sn-Cu and $ 0.35\mu\textrm{m}$/min for the Sn-Pb. In the case of Sn-Cu, electroplating rate increased from 0.25 to $2.7\mu\textrm{m}$/min with increasing current density from 1 to 8.5 $A/dm^2$. In the case of Sn-Pb the rate increased until the current density became $4 A/dm^2$, and after that current density the rate maintains constant value of $0.62\mu\textrm{m}$/min. The electro plated bumps were air reflowed to form spherical bumps, and their bonded shear strengths were evaluated. The shear strength reached at the reflow time of 10 sec, and the strength was of 113 gf for Sn-Cu and 120 gf for Sn-Pb.
In this study, three solders, Sn-37Pb, Sn-3.5Ag, and Sn-3.8Ag-0.7Cu were screen printed on both electroless Ni/Au and OSP metal finished micro-via PCBs (Printed Circuit Boards). The interfacial reaction between PCB metal pad finish materials and solder materials, and its effects on the solder bump joint mechanical reliability were investigated. The lead free solders formed a large amount of intermetallic compounds (IMC) than Sn-37Pb on both electroless Ni/Au and OSP (Organic Solderabilty Preservatives) finished PCBs during solder reflows because of the higher Sn content and higher reflow temperature. For OSP finish, scallop-like $Cu_{6}$ /$Sn_{5}$ and planar $Cu_3$Sn intermetallic compounds (IMC) were formed, and fracture occurred 100% within the solder regardless of reflow numbers and solder materials. Bump shear strength of lead free solders showed higher value than that of Sn-37Pb solder, because lead free solders are usually harder than eutectic Sn-37Pb solder. For Ni/Au finish, polygonal shaped $Ni_3$$Sn_4$ IMC and P-rich Ni layer were formed, and a brittle fracture at the Ni-Sn IMC layer or the interface between Ni-Sn intermetallic and P-rich Ni layer was observed after several reflows. Therefore, bump shear strength values of the Ni/Au finish are relatively lower than those of OSP finish. Especially, spalled IMCs at Sn-3.5Ag interface was observed after several reflow times. And, for the Sn-3.8Ag-0.7Cu solder case, the ternary Sn-Ni-Cu IMCs were observed. As a result, it was found that OSP finished PCB was a better choice for solders on PCB in terms of flip chip mechanical reliability.
Journal of the Microelectronics and Packaging Society
/
v.7
no.4
/
pp.23-29
/
2000
We demonstrate the fabrication method of high-density and high-quality solder bump solving a copper (Cu) cross-contamination in Si-LSI laboratory. The Cu cross-contamination is solved by separating solder-bump process by two steps. Former is via-formation process excluding Cu/Ti under ball metallurgy (UBM) layer sputtering in Si-LSI laboratory. Latter is electroplating process including Ti-adhesion and Cu-seed layers sputtering out of Si-LSI laboratory. Thick photoresist (PR) is achieved by a multiple coating method. After TiW/Al-electrode sputtering for electroplating and via formation in Si-LSI laboratory, Cu/Ti UBM layer is sputtered on sample. The Cu-seed layer on the PR is etched during Cu-electroplating with low-electroplating rate due to a difference in resistance of UBM layer between via bottom and PR. Therefore Cu-buffer layer can be electroplated selectively at the via bottom. After etching the Ti-adhesion layer on the PR, Sn/Pb solder layer with a composition of 60/40 is electroplated using a tin-lead electroplating bath with a metal stoichiometry of 60/40 (weight percent ratio). Scanning electron microscope image shows that the fabricated solder bump is high-uniformity and high-quality as well as symmetric mushroom shape. The solder bumps with even 40/60 $\mu\textrm{m}$ in diameter/pitch do not touch during electroplating and reflow procedures. The solder-bump process of high-uniformity and high-density with the Cu cross-contamination free in Si-LSI laboratory will be effective for electronic microwave application.
Journal of the Microelectronics and Packaging Society
/
v.17
no.4
/
pp.11-17
/
2010
The electromigration phenomenon in lead-free flip-chip solder joint has been one of the serious problems. To understand the mechanism of this phenomenon, the crystallographic orientation of Sn grain in the Sn-Ag-Cu solder bump has been analyzed. Different time to failure and different microstructural changes were observed in the all test vehicle and bumps, respectively. Fast failure and serious dissolution of Cu electrode was observed when the c-axis of Sn grain parallel to electron flow. On the contrary of this, slight microstructural changes were observed when the c-axis of Sn perpendicular to electron flow. In addition, underfill could enhance the electromigration reliability to prevent the deformation of solder bump during EM test.
In this paper, fabrication of Sn-3.0Ag-0.5Cu solder bumping having accurate composition and behavior of intermetallic compounds(IMCs) growth at interface between Sn-Ag-Cu bumps and Cu substrate were studied. The ternary alloy of the Sn-3.0Ag-0.5Cu solder was made by two binary(Sn-Cu, Sn-Ag) electroplating on Cu pad. For the manufacturing of the micro-bumps, photo-lithography and reflow process were carried out. After reflow process, the micro-bumps were aged at $150^{\circ}C$ during 1 hr to 500 hrs to observe behavior of IMCs growth at interface. As a different of Cu contents(0.5 or 2wt%) at Sn-Cu layer, behavior of IMCs was estimated. The interface were observed by FE-SEM and TEM for estimating of their each IMCs volume ratio and crystallographic-structure, respectively. From the results, it was found that the thickness of $Cu_3Sn$ layer formed at Sn-2.0Cu was thinner than the thickness of that layer be formed Sn-0.5Cu. After aging treatment $Cu_3Sn$ was formed at Sn-0.5Cu layer far thinner.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.