Electro-migration Phenomenon in Flip-chip Packages

플립칩 패키지에서의 일렉트로마이그레이션 현상

  • Received : 2010.12.05
  • Accepted : 2010.12.17
  • Published : 2010.12.30

Abstract

The electromigration phenomenon in lead-free flip-chip solder joint has been one of the serious problems. To understand the mechanism of this phenomenon, the crystallographic orientation of Sn grain in the Sn-Ag-Cu solder bump has been analyzed. Different time to failure and different microstructural changes were observed in the all test vehicle and bumps, respectively. Fast failure and serious dissolution of Cu electrode was observed when the c-axis of Sn grain parallel to electron flow. On the contrary of this, slight microstructural changes were observed when the c-axis of Sn perpendicular to electron flow. In addition, underfill could enhance the electromigration reliability to prevent the deformation of solder bump during EM test.

차세대 패키징 기술을 실현하기 위해서는 극복해야 할 기술적인 과제들이 많이 존재한다. 그 중에서 솔더 접합부의 EM에 의한 고장은 오랜전부터 알려진 과제이지만, 고밀도화, 파인핏치화, 발열문제가 심각해지면서 현실적인 문제로 인식되기 시작했다. 더욱이 솔더가 무연화 되면서 다양해진 구성원소들의 영향에 대한 연구가 시작되었다. 지금까지의 연구결과를 종합해보면 Sn-Pb 공정솔더 보다 무연솔더는 EM에 대한 저항성이 강한 것으로 보여진다. 하지만, 무연솔더 접합부에서 발생하는 EM현상에 대해서는 아직 밝혀지지 않은 부분이 많다. 보이드의 핵 생성 및 성장속도와 전기저항의 급격한 변화와의 관계, Sn 결정립의 방향과 전류밀도에 따른 마이그레이션 속도계수와 수명예측기술, 각종 무연솔더와 시험조건에서의 언더필의 효과 등에 관한 다양한 연구가 필요하다. 또한 무연 플립칩 패키지의 총체적인 신뢰성 확보를 위해, EM과 반도체칩 내부배선의 발열에 기인하는 Thermomigraton, 응력에 기인하는 Stress-migration과의 상관관계에 대한 연구도 요구된다.

Keywords

References

  1. K. Suganuma, "Reliability of lead-free soldering for beginners (in Japanese)", Kougyou-Chousakai Publishing, Inc., 2005.
  2. Y. Tsukada, "Challenge of Promising Technologies for the Next Generation Packaging (in Japanese)", J. Japan Institute of Electronics Packaging, 13(5), 319 (2010). https://doi.org/10.5104/jiep.13.319
  3. Y. Chan, D. Yang, "Failure mechanisms of solder interconnects under current stressing in advanced electronic packages", Progress in Materials Science, 55(5), 428 (2010). https://doi.org/10.1016/j.pmatsci.2010.01.001
  4. C. Chen, S. Liang, "Electromigration issues in lead-free solder joints", J. Mater. Sci.: Mater. Electron., 18(1), 259 (2007).
  5. K. Tu, "Recent advances on electromigration in very-largescale-integration of interconnects", J. Appl. Phys., 94(9), 5451 (2003). https://doi.org/10.1063/1.1611263
  6. K. Tu, A. Gusak, M. Li, "Physics and materials challenges for lead-free solders", J. Appl. Phys., 93(3), 1335 (2003). https://doi.org/10.1063/1.1517165
  7. E.C.C. Yeh, W.J. Choi, K.N. Tu, P. Elenius, H. Balkan, "Current- crowding-induced electromigration failure in flip chip solder joints", Appl. Phys. Lett., 80(4), 580 (2002). https://doi.org/10.1063/1.1432443
  8. A. Telang, T. Bieler, "Characterization of microstructure and crystal orientation of the tin phase in single shear lap Sn-3.5 Ag solder joint specimens", Scr. Mater., 52(10), 1027 (2005). https://doi.org/10.1016/j.scriptamat.2005.01.043
  9. J. Rayne, B. Chandrasekhar, "Elastic Constants of a Tin from ${4.2^{\circ}C}$K to ${300^{\circ}C}$K", Phys. Rev., 120(5), 1658 (1960). https://doi.org/10.1103/PhysRev.120.1658
  10. H. Huntington, "The elastic constants of crystals", Solid state physics, 7, 213 (1958). https://doi.org/10.1016/S0081-1947(08)60553-6
  11. D. House, E. Vernon, "Determination of the elastic moduli of tin single crystals, and their variation with temperature", British Journal of Applied Physics, 11(6), 254 (1960). https://doi.org/10.1088/0508-3443/11/6/308
  12. T. Bieler, H. Jiang, L. Lehman, T. Kirkpatrick, E. Cotts, B. Nandagopal, "Influence of Sn grain size and orientation on the thermomechanical response and reliability of Pb-free solder joints", IEEE T. Compon. Pack. T., 31(2), 370 (2008). https://doi.org/10.1109/TCAPT.2008.916835
  13. V. T. Deshpande, and D. B. Sirdeshmukh, "Thermal expansion of tetragonal tin", Acta Crystallohr., 14(4), 355 (1961), from http://www.webelements.com/tin/crystal_structure.html https://doi.org/10.1107/S0365110X61001212
  14. B.F. Dyson, "Diffusion of gold and silver in tin single crystals", J. Appl. Phys., 37(6), 2375 (1966). https://doi.org/10.1063/1.1708821
  15. B.F. Dyson, T.R. Anthony, D. Turnbull, "Interstitial diffusion of copper in tin", J. Appl. Phys., 38(8), 3408 (1967).
  16. F. Huang, H. Huntington, "Diffusion of $Sb^{124}, Cd^{109}, Sn^{113},$ and $Zn^{65}$ in tin", Phys. Rev. B, 9(4), 1479 (1974). https://doi.org/10.1103/PhysRevB.9.1479
  17. D. Yeh, H. Huntington, "Extreme fast-diffusion system: Nickel in single-crystal tin", Phys. Rev. Lett., 53(15), 1469 (1984). https://doi.org/10.1103/PhysRevLett.53.1469
  18. J. Lloyd, "Electromigration induced resistance decrease in Sn conductors", J. Appl. Phys., 94(10), 6483 (2003). https://doi.org/10.1063/1.1623632
  19. F.V. Burckbuchler, C.A. Reynolds, "Anisotropy of the residual resistivity of tin with Sb, In, Zn, and Cd impurities, and the ideal resistivities and deviations from Matthiessen's rule at 77 and 273K", Phys. Rev., 175(2), 550 (1968). https://doi.org/10.1103/PhysRev.175.550
  20. M. Lu, D. Shih, P. Lauro, C. Goldsmith, D. Henderson, "Effect of Sn grain orientation on electromigration degradation mechanism in high Sn-based Pb-free solders", Appl. Phys. Lett., 92(21), 211909 (2008). https://doi.org/10.1063/1.2903706
  21. S. Ha, J. Kim, J. Yoon, S. Ha, S. Jung, "Electromigration behavior in Sn-37Pb and Sn-3.0 Ag-0.5 Cu flip-chip solder joints under high current density", J. Electron. Mater., 38(1), 70 (2009). https://doi.org/10.1007/s11664-008-0574-5
  22. T. Lee, K. Tu, D. Frear, "Electromigration of eutectic SnPb and SnAg3.8Cu0.7 flip chip solder bumps and under-bump metallization", J. Appl. Phys., 90(9), 4502 (2001). https://doi.org/10.1063/1.1400096
  23. S.H. Kim, J.H. Choi, T.S. Oh, "Electromigration Behavior in the 62Pb-27Sn Solder Strip (in Korean)", J. Microelectron. Packag. Soc., 11(2), 53 (2004).
  24. Chiu, C. Chen, "Investigation of void nucleation and propagation during electromigration of flip-chip solder joints using x-ray microscopy", Appl. Phys. Lett., 89(26), 262106 (2006). https://doi.org/10.1063/1.2425040
  25. Y. Chang, S. Liang, C. Chen, "Study of void formation due to electromigration in flip-chip solder joints using Kelvin bump probes", Appl. Phys. Lett., 89(3), 032103 (2006). https://doi.org/10.1063/1.2226989
  26. E. Yeh, W. Choi, K. Tu, P. Elenius, H. Balkan, "Currentcrowding-induced electromigration failure in flip chip solder joints", Appl. Phys. Lett., 80(4), 580 (2002). https://doi.org/10.1063/1.1432443
  27. W. Choi, E. Yeh, K. Tu, "Mean-time-to-failure study of flip chip solder joints on Cu/Ni (V)/Al thin-film under-bump-metallization", J. Appl. Phys., 94(9), 5665 (2003). https://doi.org/10.1063/1.1616993
  28. Y. Hu, Y. Lin, C. Kao, K. Tu, "Electromigration failure in flip chip solder joints due to rapid dissolution of copper", J. Mater. Res., 18(11), 2544 (2003). https://doi.org/10.1557/JMR.2003.0355
  29. Y. Lai, K. Chen, C. Kao, C. Lee, Y. Chiu, "Electromigration of Sn-37Pb and Sn-3Ag-1.5 Cu/Sn-3Ag-0.5 Cu composite flip-chip solder bumps with Ti/Ni (V)/Cu under bump metallurgy", Microelectron. Reliab., 47(8), 1273 (2007). https://doi.org/10.1016/j.microrel.2006.09.023
  30. J. Nah, F. Ren, K. Tu, S. Venk, G. Camara, "Electromigration in Pb-free flip chip solder joints on flexible substrates", J. Appl. Phys., 99(2), 023520 (2006). https://doi.org/10.1063/1.2163982
  31. M. Jen, L. Liu, Y. Lai, "Electromigration on void formation of Sn3Ag1.5Cu FCBGA solder joints", Microelectron. Reliab., 49(7), 734 (2009). https://doi.org/10.1016/j.microrel.2009.04.008
  32. T. Chiu, K. Lin, "The difference in the types of intermetallic compound formed between the cathode and anode of an Sn-Ag-Cu solder joint under current stressing", Intermetallics, 17(12), 1105 (2009). https://doi.org/10.1016/j.intermet.2009.05.014
  33. J.H. Chio, S.W. Jun, H.J. Won, B.Y. Jung, T.S. Oh, "Electromigration behavior of the flip-chip bonded Sn-3.5Ag-0.5Cu solder bumps (in Korean)", J. Microelectron. Packag. Soc., 11(4), 43 (2004)
  34. A. Telang, T. Bieler, J. Lucas, K. Subramanian, L. Lehman, Y. Xing, E. Cotts, "Grain-boundary character and grain growth in bulk tin and bulk lead-free solder alloys", J. Electron. Mater., 33(12), 1412 (2004). https://doi.org/10.1007/s11664-004-0081-2
  35. C. Chen, L. Chen, Y. Lin, "Electromigration-induced Bi segregation in eutectic SnBi solder joint", J. Electron. Mater., 36(2), 168 (2007). https://doi.org/10.1007/s11664-006-0025-0
  36. C. Chen, C. Huang, "Effects of silver doping on electromigration of eutectic SnBi solder", J. Alloy. Compd., 461(1-2), 235 (2008). https://doi.org/10.1016/j.jallcom.2007.07.059
  37. C. Chen, C. Huang, C. Liao, K. Liou, "Effects of copper doping on microstructural evolution in eutectic SnBi solder stripes under annealing and current stressing", J. Electron. Mater., 36(7), 760 (2007). https://doi.org/10.1007/s11664-007-0150-4
  38. C. Chen, Y. Hung, C. Lin, "Electromigration of Sn-8 wt.% Zn-3 wt.% Bi and Sn-9 wt.% Zn-1 wt.% Cu solders", J. Alloy. Compd., 475(1-2), 238 (2009). https://doi.org/10.1016/j.jallcom.2008.07.106
  39. H. He, G. Xu, F. Guo, "Effect of small amount of rare earth addition on electromigration in eutectic SnBi solder reaction couple", J. Mater. Sci., 44(8), 2089 (2009). https://doi.org/10.1007/s10853-009-3276-3
  40. K. Yamanaka, Y. Tsukada, K. Suganuma, "Studies on solder bump electromigration in Cu/Sn-3Ag-0.5Cu/Cu system", Microelectron. Reliab., 47(8), 1280 (2007). https://doi.org/10.1016/j.microrel.2006.09.028
  41. W. Zhou, L. Liu, B. Li, P. Wu, "Effect of intermetallic on electromigration and atomic diffusion in Cu/SnAg 3.0 Cu 0.5/Cu joints: Experimental and first-principles study", J. Electron. Mater., 38(6), 866 (2009). https://doi.org/10.1007/s11664-009-0760-0
  42. K. Lee, K.S. Kim, K. Yamanaka, Y. Tsukada, S. Kuritani, M. Ueshima, K. Suganuma, "Effects of crystallographic orientation of Sn on electromigration behavior", IMAPS-43rd International Symposium on Microelectronics, 792 (2010).
  43. K. Lee, K.S. Kim, K. Yamanaka, Y. Tsukada, S. Kuritani, M. Ueshima, K. Suganuma, "Effects of the crystallographic orientation of Sn grain during electromigration test", IEEE CPMT Workshop in Japan, 65 (2010).
  44. K. Lee, K.S. Kim, K. Yamanaka, Y. Tsukada, S. Kuritani, M. Ueshima, K. Suganuma, "Effects of the crystallographic orientation of Sn on the electromigration of Cu/Sn-Ag-Cu/Cu ball joints", J. Mater. Res., (2011). (in press)
  45. S. Kuo, K. Lin, "The hillock formation in a Cu/Sn-9Zn/Cu lamella upon current stressing", J. Electron. Mater., 36(10), 1378 (2007). https://doi.org/10.1007/s11664-007-0209-2
  46. Y. Hung, C. Chen, "Electromigration of Sn-9wt%Zn solder", J. Electron. Mater., 37(6), 887 (2008). https://doi.org/10.1007/s11664-008-0402-y
  47. C. Chen, Y. Hung, C. Lin, W. Su, "Effect of temperature on microstructural changes of the Sn-9 wt%Zn lead-free solder stripe under current stressing", Mater. Chem. Phys., 115(1), 367 (2009). https://doi.org/10.1016/j.matchemphys.2008.12.019
  48. S. Kuo, K. Lin, "Recrystallization under electromigration of a solder alloy", J. Appl. Phys., 106(2), 023514 (2009). https://doi.org/10.1063/1.3174382
  49. J. Daghfal, J. Shang, "Current-induced phase partitioning in eutectic indium-tin Pb-free solder interconnect", J. Electron. Mater., 36(10), 1372 (2007). https://doi.org/10.1007/s11664-007-0206-5
  50. K. Yamanaka, Y. Tsukada, K. Suganuma, "Solder electromigration in Cu/In/Cu flip chip joint system", J. Alloy. Compd., 437(1-2), 186 (2007). https://doi.org/10.1016/j.jallcom.2006.07.125
  51. K. Yamanaka, T. Ooyoshi, T. Nejime, "Effect of underfill on electromigration lifetime in flip chip joints", J. Alloy. Compd., 481(1-2), 659 (2009). https://doi.org/10.1016/j.jallcom.2009.03.063
  52. J3EDEC standard JEP 154, "Guideline for Characterizing Solder Bump Electromigration under Constant Current and Temperature Stress", (2008).
  53. A.T. Wu, A.M. Gusak, K.N. Tu, C.R. Kao, "Electromigrationinduced grain rotation in anisotropic conducting beta tin", Appl. Phys. Lett., 86(24), 241902 (2005). https://doi.org/10.1063/1.1941456
  54. A.T. Wu, Y.C. Hsieh, "Direct observation and kinetic analysis of grain rotation in anisotropic tin under electromigration", Appl. Phys. Lett., 92(12), 121921 (2008). https://doi.org/10.1063/1.2901155