Browse > Article

Electromigration and Thermomigration Characteristics in Flip Chip Sn-3.5Ag Solder Bump  

Lee, Jang-Hee (Andong National University, School of Materials Science and Engineering)
Lim, Gi-Tae (Andong National University, School of Materials Science and Engineering)
Yang, Seung-Taek (Package R&D Division, Hynix Semiconductor Inc.)
Suh, Min-Suk (Package R&D Division, Hynix Semiconductor Inc.)
Chung, Qwan-Ho (Package R&D Division, Hynix Semiconductor Inc)
Byun, Kwang-Yoo (Package R&D Division, Hynix Semiconductor Inc.)
Park, Young-Bae (Andong National University, School of Materials Science and Engineering)
Publication Information
Korean Journal of Metals and Materials / v.46, no.5, 2008 , pp. 310-314 More about this Journal
Abstract
Electromigration test of flip chip solder bump is performed at $140^{\circ}C$ C and $4.6{\times}10^4A/cm^2$ conditions in order to compare electromigration with thermomigration behaviors by using electroplated Sn-3.5Ag solder bump with Cu under-bump-metallurgy. As a result of measuring resistance with stressing time, failure mechanism of solder bump was evaluated to have four steps by the fail time. Discrete steps of resistance change during electromigration test are directly compared with microstructural evolution of cross-sectioned solder bump at each step. Thermal gradient in solder bump is very high and the contribution of thermomigration to atomic flux is comparable with pure electromigration effect.
Keywords
electromigration; thermomigration; joule heating; flip chip Pb-free solder bump; Sn-3.5Ag solder;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 10  (Related Records In Web of Science)
Times Cited By SCOPUS : 10
연도 인용수 순위
1 T. Y. Lee and K. N. Tu, J. Appl. Phys. 89, 3189 (2001)   DOI   ScienceOn
2 J. R. Lloyd, J. Phys. D. Appl. Phys. 32, 109(1999)
3 K. L. Lin and S. M. Kuo, Proc. 56th Electronic Components and Technology Conf, San Diego, FL, p.667, IEEE (2006)
4 Everett C. C. Yeh, W. J. choi, and K. N. Tu, Appl. Phys. Lett. 80. p.580 (2002)   DOI   ScienceOn
5 H. Gan and K. N. Tu, J. Appl. Phys. 97, 063514 (2005)   DOI   ScienceOn
6 K. N. Chiang, Chien Chen Lee, and Chang Chun Lee, Appl. Phys. Lett. 88, 072102(2006)   DOI   ScienceOn
7 Y. H. Lin, Y. C. Hu, C. M. Tsai, C. R. Kao, K. N. Tu, Acta Mater. 53, 2029 (2005)   DOI   ScienceOn
8 H. Y. Hsiao and C. Chen, Appl. Phys. Lett. 90, 152105 (2007)   DOI   ScienceOn
9 H. Ye, C. Basaran, and D. Hokins, Appl. Phys. Lett. 82, 1045(2003)   DOI   ScienceOn
10 W. J. Choi, E. C. C. Yeh, and K. N. Tu, J. Appl. Phys, 94, p.5665 (2003)   DOI   ScienceOn
11 Annie T. Huang and K. N. Tu, J. Appl. Phys. 100, 033512 (2006)   DOI   ScienceOn
12 I. A. Blech and K. L. Tai, Appl. Phys. Lett. 30, 387 (1977)   DOI
13 F. Y. Ouyang, A. T. Huang, and K. N. Tu, Proc. 56th Electronic Components and Technology Conf, p.1974, IEEE, San Diego, FL (2006)
14 I. A. Blech, J. Appl. Phys. 47, 1203 (1976)   DOI   ScienceOn