• Title/Summary/Keyword: flag manifold

Search Result 8, Processing Time 0.022 seconds

UNIFORMITY OF HOLOMORPHIC VECTOR BUNDLES ON INFINITE-DIMENSIONAL FLAG MANIFOLDS

  • Ballico, E.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.85-89
    • /
    • 2003
  • Let V be a localizing infinite-dimensional complex Banach space. Let X be a flag manifold of finite flags either of finite codimensional closed linear subspaces of V or of finite dimensional linear subspaces of V. Let E be a holomorphic vector bundle on X with finite rank. Here we prove that E is uniform, i.e. that for any two lines $D_1$ R in the same system of lines on X the vector bundles E$\mid$D and E$\mid$R have the same splitting type.

COMPARISON THEOREMS IN FINSLER GEOMETRY WITH WEIGHTED CURVATURE BOUNDS AND RELATED RESULTS

  • Wu, Bing-Ye
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.603-624
    • /
    • 2015
  • We first extend the notions of weighted curvatures, including the weighted flag curvature and the weighted Ricci curvature, for a Finsler manifold with given volume form. Then we establish some basic comparison theorems for Finsler manifolds with various weighted curvature bounds. As applications, we obtain some McKean type theorems for the first eigenvalue of Finsler manifolds, some results on weighted curvature and fundamental group for Finsler manifolds, as well as an estimation of Gromov simplicial norms for reversible Finsler manifolds.

THE FUNDAMENTAL FORMULAS OF FINSLER SUBMANIFOLDS

  • Li, Jintang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.767-775
    • /
    • 2010
  • Let ${\varphi}\;:\;(M^n,\;F)\;{\rightarrow}\;(\overline{M}^{n+p},\;\overline{F})$ be an isometric immersion from a Finsler manifold to a Finsler manifold. In this paper, we shall obtain the Gauss and Codazzi equations with respect to the Chern connection on submanifolds M, by which we prove that if M is a weakly totally geodesic submanifold of $\overline{M}$, then flag curvature of M equals flag curvature of $\overline{M}$.

INVARIANT OPEN SETS UNDER COCOMPACT AFFINE ACTIONS

  • Park, Kyeong-Su
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.203-207
    • /
    • 1999
  • In this paper, we find a condition of an open subset of the affine space which admits a cocompact affine action. To do it, the asymptotic flag of an open convex subset is introduced and some applications to affine manifolds are presented.

  • PDF

ON THE SECOND APPROXIMATE MATSUMOTO METRIC

  • Tayebi, Akbar;Tabatabaeifar, Tayebeh;Peyghan, Esmaeil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.115-128
    • /
    • 2014
  • In this paper, we study the second approximate Matsumoto metric F = ${\alpha}+{\beta}+{\beta}^2/{\alpha}+{\beta}^3/{\alpha}^2$ on a manifold M. We prove that F is of scalar flag curvature and isotropic S-curvature if and only if it is isotropic Berwald metric with almost isotropic flag curvature.

THE SCHWARZIAN DERIVATIVE AND CONFORMAL TRANSFORMATION ON FINSLER MANIFOLDS

  • Bidabad, Behroz;Sedighi, Faranak
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.873-892
    • /
    • 2020
  • Thurston, in 1986, discovered that the Schwarzian derivative has mysterious properties similar to the curvature on a manifold. After his work, there are several approaches to develop this notion on Riemannian manifolds. Here, a tensor field is identified in the study of global conformal diffeomorphisms on Finsler manifolds as a natural generalization of the Schwarzian derivative. Then, a natural definition of a Mobius mapping on Finsler manifolds is given and its properties are studied. In particular, it is shown that Mobius mappings are mappings that preserve circles and vice versa. Therefore, if a forward geodesically complete Finsler manifold admits a Mobius mapping, then the indicatrix is conformally diffeomorphic to the Euclidean sphere Sn-1 in ℝn. In addition, if a forward geodesically complete absolutely homogeneous Finsler manifold of scalar flag curvature admits a non-trivial change of Mobius mapping, then it is a Riemannian manifold of constant sectional curvature.

DEFORMATION OF CARTAN CURVATURE ON FINSLER MANIFOLDS

  • Bidabad, Behroz;Shahi, Alireza;Ahmadi, Mohamad Yar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.2119-2139
    • /
    • 2017
  • Here, certain Ricci flow for Finsler n-manifolds is considered and deformation of Cartan hh-curvature, as well as Ricci tensor and scalar curvature, are derived for spaces of scalar flag curvature. As an application, it is shown that on a family of Finsler manifolds of constant flag curvature, the scalar curvature satisfies the so-called heat-type equation. Hence on a compact Finsler manifold of constant flag curvature of initial non-negative scalar curvature, the scalar curvature remains non-negative by Ricci flow and blows up in a short time.

THE HARDY TYPE INEQUALITY ON METRIC MEASURE SPACES

  • Du, Feng;Mao, Jing;Wang, Qiaoling;Wu, Chuanxi
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1359-1380
    • /
    • 2018
  • In this paper, we prove that if a metric measure space satisfies the volume doubling condition and the Hardy type inequality with the same exponent n ($n{\geq}3$), then it has exactly the n-dimensional volume growth. Besides, three interesting applications of this fact have also been given. The first one is that we prove that complete noncompact smooth metric measure space with non-negative weighted Ricci curvature on which the Hardy type inequality holds with the best constant are isometric to the Euclidean space with the same dimension. The second one is that we show that if a complete n-dimensional Finsler manifold of nonnegative n-Ricci curvature satisfies the Hardy type inequality with the best constant, then its flag curvature is identically zero. The last one is an interesting rigidity result, that is, we prove that if a complete n-dimensional Berwald space of non-negative n-Ricci curvature satisfies the Hardy type inequality with the best constant, then it is isometric to the Minkowski space of dimension n.