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ON THE SECOND APPROXIMATE MATSUMOTO METRIC

AKBAR TAYEBI, TAYEBEH TABATABAEIFAR, AND ESMAEIL PEYGHAN

ABSTRACT. In this paper, we study the second approximate Matsumoto
metric F = a+ B+ 8%/a+ 33 /a? on a manifold M. We prove that F is of
scalar flag curvature and isotropic S-curvature if and only if it is isotropic
Berwald metric with almost isotropic flag curvature.

1. Introduction

The flag curvature in Finsler geometry is a natural extension of the sectional
curvature in Riemannian geometry, which is first introduced by L. Berwald. For
a Finsler manifold (M, F'), the flag curvature is a function K(P,y) of tangent
planes P C T, M and directions y € P. F' is said to be of scalar flag curvature
if the flag curvature K(P,y) = K(x,y) is independent of flags P associated
with any fixed flagpole y. F is called of almost isotropic flag curvature if

3Cz7n ym
F

where ¢ = ¢(z) and o = o(z) are scalar functions on M. One of the important
problems in Finsler geometry is to characterize Finsler manifolds of almost
isotropic flag curvature [10].

To study the geometric properties of a Finsler metric, one also considers
non-Riemannian quantities. In Finsler geometry, there are several important
non-Riemannian quantities: the Cartan torsion C, the Berwald curvature B,
the mean Landsberg curvature J and S-curvature S, etec. [3, 8, 10, 17]. These
are geometric quantities which vanish for Riemnnian metrics.

Among the non-Riemannian quantities, the S-curvature S = S(z, y) is closely
related to the flag curvature which constructed by Shen for given comparison
theorems on Finsler manifolds. A Finsler metric F' is called of isotropic S-
curvature if

(2) S = (n+1)cF,

(1) K= +Ua
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for some scalar function ¢ = ¢(x) on M. In [10], it is proved that if a Finsler
metric F of scalar flag curvature is of isotropic S-curvature (2), then it has
almost isotropic flag curvature (1).

The geodesic curves of a Finsler metric F = F(x,y) on a smooth manifold
M, are determined by & + 2G*(¢) = 0, where the local functions G* = G(z,y)
are called the spray coefficients. A Finsler metric F' is called a Berwald metric,
if G* are quadratic in y € T, M for any x € M. A Finsler metric F is said to
be isotropic Berwald metric if its Berwald curvature is in the following form

(3) By = c{ By + Fyreyp 8+ Fyyud'y + Fpiyppy' |

where ¢ = ¢(z) is a scalar function on M [3].

As a generalization of Berwald curvature, Bacs6-Matsumoto proposed the
notion of Douglas curvature [1]. A Finsler metric is called a Douglas metric if
G' = 3T (2)yy* + Pz, y)y'.

In order to find explicit examples of Douglas metrics, we consider («, 3)-
metrics. An (o, §)-metric is a Finsler metric of the form F := aqﬁ(g), where
¢ = ¢(s) is a C on (—bg, by) with certain regularity, a = +/a;;(x)yiy’ is a
Riemannian metric and 8 = b;(x)y’ is a 1-form on M. This class of metrics is
were first introduced by Matsumoto [9]. Among the («, 3)-metrics, the Mat-
sumoto metric is special and significant metric which constitute a majority of
actual research. The Matsumoto metric is expressed as

R R L R AR
@ Q@ Q@
This metric was introduced by Matsumoto as a realization of Finsler’s idea
“a slope measure of a mountain with respect to a time measure” [18]. In
the Matsumoto metric, the 1-form 8 = b;y* was originally to be induced by
earth gravity. Hence, we could regard b;(z) as the infinitesimals and neglect
the infinitesimals of degree of b;(x) more than two [11, 12, 13, 14, 15]. An
approximate Matsumoto metric is a Finsler metric in the following form

i(é)k],

k=0

(4) F=a«a

where |3] < |a| (for more information, see [12]). This metric was introduced
by Park-Choi in [12]. By definition, the Matsumoto metric is expressed as

2

lim, o0 L(O&, ﬂ) = aa_B-
In this paper, we consider second approximate Matsumoto metric F' = o +

2 3
6+ % + % with some non-Riemannian curvature properties and prove the

following.

Theorem 1.1. Let F = a+ 8+ %2 + g—; be a non-Riemannian second approzi-
mate Matsumoto metric on a manifold M of dimension n. Then F is of scaler
flag curvature with isotropic S-curvature (2), if and only if it has isotropic
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Berwald curvature (3) with almost isotropic flag curvature (1). In this case, F'
must be locally Minkowskian.

2. Preliminaries

Let M be a n-dimensional C'**° manifold. Denote by T, M the tangent space
at x € M, by TM = UzepT, M the tangent bundle of M, and by T My =
TM \ {0} the slit tangent bundle on M. A Finsler metric on M is a function
F :TM — [0,00) which has the following properties:

(i) F is C°° on T My;

(ii) F' is positively 1-homogeneous on the fibers of tangent bundle T'M;

(iii) for each y € T, M, the following quadratic form g, on T, M is positive
definite,

1 9?

gy(u,’l)) = 5@ [F2(y+ Su+t’l))] |s,t:07 u,v € TIM

Let x € M and F,, := F|r,p. To measure the non-Euclidean feature of F,
define Cy : T, M @ T, M @ T, M — R by

1d
Cy(u,v,w) := %
The family C := {Cy}yerm, is called the Cartan torsion. It is well known that
C =0 if and only if F' is Riemannian [16]. For y € T,, My, define mean Cartan
torsion I, by L,(u) := I;(y)u’, where I; := ¢g’*Cj;),. By Diecke Theorem, F is
Riemannian if and only if I, = 0.

The horizontal covariant derivatives of I along geodesics give rise to the mean
Landsberg curvature J, (u) := J;(y)u’, where J; := I;;;y*. A Finsler metric is
said to be weakly Landsbergian if J = 0.

Given a Finsler manifold (M, F'), then a global vector field G is induced
by F on TMjy, which in a standard coordinate (z%,4*) for T My is given by

G =y’ — 2Gi(x, y)a%iv where

.1 10%(F?) O(F?)

G = - ”[ k_ . yeT,M.

47 8xk8yly Ox! 4

The G is called the spray associated to (M, F'). In local coordinates, a curve

c(t) is a geodesic if and only if its coordinates (c(t)) satisfy ¢ + 2G*(¢) = 0.
For a tangent vector y € T, My, define By, : T, M @ T, M @ T, M — T, M and

E, : .M ® T,M — R by By (u,v,w) := B’ (y)ul vFuw! 2 |p and By (u,v) =

|:gy+tw(u; ’U):| |t:0; u, v, w S TzM

Ej(y)uiv* where

3 1
PG By lpm

7 .
B ik = 5 B k-

= Oy dykoyt’
The B and E are called the Berwald curvature and mean Berwald curvature,
respectively. Then F' is called a Berwald metric and weakly Berwald metric if
B =0 and E = 0, respectively.
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A Finsler metric F' is said to be isotropic mean Berwald metric if its mean
Berwald curvature is in the following form

n+1

(5) Eij = —pchij,
where ¢ = ¢(z) is a scalar function on M and h;; is the angular metric [3].
Define D, : T, M T, M T, M — T, M by Dy(u,v,w) := Dijkl (y)uiviwk a?ci -

where 5
Dzjkl = szkl — R—H{Ejk(sf + Ejlé,@ + Eklé; + EijyZ}.

We call D := {Dy }yernm, the Douglas curvature. A Finsler metric with D =0
is called a Douglas metric. The notion of Douglas metrics was proposed by
Bécs6-Matsumoto as a generalization of Berwald metrics [1].

For a Finsler metric F' on an n-dimensional manifold M, the Busemann-
Hausdorff volume form dVp = Up(x)dacl -+ -dx™ is defined by

op(z) == Vol(B"(1))
T Vol{(yi) € Rn F(y% z) < 1}'

In general, the local scalar function op(x) can not be expressed in terms of
elementary functions, even F' is locally expressed by elementary functions. Let
G' denote the geodesic coefficients of F' in the same local coordinate system.
The S-curvature can be defined by
0G? . 0
S = —(2,y) — l—.[lna x},
() oy (@y) —y' 55 F(z)

where y = yi%h € T, M. It is proved that S = 0 if F' is a Berwald metric.
There are many non-Berwald metrics satisfying S = 0. S said to be isotropic
if there is a scalar functions ¢(xz) on M such that S = (n + 1)c(z)F.
The Riemann curvature R, = R, dz* ® 6‘; o ToM — Ty M is a family of
linear maps on tangent spaces, defined by
; oG" - 0%GH - 02G¢ oG 0G7
Ry =2— — ¢y ——— +2G7 — - — .
k oz Y OxI Oyk + Oyidyk  Oyi Oyk
For a flag P = span{y,u} C T,M with flagpole y, the flag curvature K =
K(P,y) is defined by

K(P,y) = gy(u’Ry(u)) .
8y (v, )&y (u,u) — gy(y, u)
We say that a Finsler metric F' is of scalar curvature if for any y € T,, M, the
flag curvature K = K(z, y) is a scalar function on the slit tangent bundle T'Mj.
In this case, for some scalar function K on T'M, the Riemann curvature is in
the following form

RY, =KF?{6;, — F'Fy'}.
If K = constant, then F is said to be of constant flag curvature. A Finsler
metric F' is called isotropic flag curvature, if K = K(x).



ON THE SECOND APPROXIMATE MATSUMOTO METRIC 119

3. Proof of Theorem 1.1

Let F = a¢(s), s = g be an (o, 8)-metric, where ¢ = ¢(s) is a C* on
(—bo, b) with certain regularity, & = /a;;(z)y’y’ is a Riemannian metric and
B = b;(z)y’ is a 1-form on a manifold M. Let

1 1
rij =g [bilj + bjh}, Sij 1= 5 [bm— - bjlz}-
7’]' = biTij, Sj = bisij,

where b;|; denote the coefficients of the covariant derivative of 8 with respect
to a. Let
Ti0 = Tijij 8i0 = Sijij To = ijj, S0 = Sjyj-
Put
¢/
¢ —s¢’
R G
20[(¢ — s¢/) + (b — 52)¢"']
¢/I
- 2[(0—s¢) + (02— s)¢"]

Then the S-curvature is given by

S = [Q’ —2UQs — 2(¥Q) (b — s*) —2(n +1)QO + 2/\} S0

Q=

(6) o=

(7) +2(T + Nso + a L2 = )W + (0 + 1)0] roo.
Let us put

A= 1+sQ+ (V¥ —s)Q,

© = —(nA+1+5Q)(Q—sQ) — (b* —sM)(1+5Q)Q".
In [5], Cheng-Shen characterize («, 8)-metrics with isotropic S-curvature.
Lemma 3.1 ([5]). Let F = a¢(S/a) be an (o, B)-metric on an n-manifold.
Then, F is of isotropic S-curvature S = (n + 1)cF, if and only if one of the

following holds
(i) B satisfies

(8) Tij = €{b2aij — bibj}, S5 = 0,
where € = €(x) is a scalar function, and ¢ = P(s) satisfies
PA?

where k is a constant. In this case, ¢ = ke.
(i) B satisfies
(10) Tij = O, S5 = 0.
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In this case, ¢ = 0.

Let
1 2 2(1) /
U = b2—s2A§{7”b ]
A2
)
(11) Uy :=2(n+1)(Q — sQ') +35
0 .= Li SQ/.
2A

Then the formula for the mean Cartan torsion of an («, )-metric is given by
following

_ 1 9 ¢/ S¢Il 38@5// _ (b2 _ 82)¢/H
L= 570+ 05— =25~ e )
(b — sd'
12) = 7(2‘2(]52? ) (abs — sy1).

In [6], it is proved that the condition ® = 0 characterizes the Riemannian
metrics among (o, #)-metrics. Hence, in the continue, we suppose that ® # 0.
Let G = G'(z,y) and G, = G* (x,y) denote the coefficients of F' and «

respectively in the same coordinate system. By definition, we have
(13) G' =Gy + Py + Q'
where

P:= a'® [ —2Qasgy + 7’00}

Q' = aQsiO + v [ —2Qasg + 7‘00} bt
Simplifying (13) yields the following

i i i y’ Q’ i
(14) G :Ga+aQSO+9(—2aQSO+TOQ)|:E+ mb}
Clearly, if 3 is parallel with respect to a (r;; = 0 and s;; = 0), then P =0 and
Q' = 0. In this case, G' = G!, are quadratic in y, and F is a Berwald metric.
For an («, 8)-metric F' = a¢(s), the mean Landsberg curvature is given by

1 222 @
Ji= " gnat | n T D@ 5@ o+ sohs
(0% ® I 2
+ m(\lll + SZ)(TOO - QOZQSO)hVL + O[|: - O[Q Soh”i + QQ(Q Si — y'LSO)

)
(15) +a?Asio + a?(rio — 20Qs;) — (roo — QQQSO)%} Nk
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Contracting (15) with b° = a'™b,, yields

(16) j = szz = \111(7"00 - QOZQSO) + O[\IJQ(TO + So) .

1
- 2A02
The horizontal covariant derivatives J;;n, and Jy),, of J; with respect to F' and
«, respectively, are given by

Jiom = —Jrt - ——N!
’ dam — TLim T Gyl
0J; — aJ; -
Jijm = moe — JTL — = NL .
ilm ™ It im 8yl m
Then we have
17 Tomt™ = Jimy™ — J(NT — N1y — 29751 _ ¢t
( ) imY = JimY  — l( i i)* 8yl( - )

Let F be a Finsler metric of scalar flag curvature K. By Akbar-Zadeh’s theorem
it satisfies following

F2
(18) Aijiisimy®y™ + KF? Agj + 3 [Pia Ko + hn K + hkin:| =0,
where _Aijk = FCjyji, is the Cartan torsion and K; = g;f- [2]. Contracting (18)
with g% yields
m 2 n+1_,

By (17) and (19), for an (a, §)-metric F' = a¢p(s) of constant flag curvature K,
the following holds

(G - G") I Al a2 42
Contracting (20) with b° implies that
G —GY i 0T 2,27 i
There exists a relation between mean Berwald curvature E and the S-
curvature S. Indeed, taking twice vertical covariant derivatives of the S-
curvature gives rise the E-curvature. It is easy to see that, every Finsler metric
of isotropic S-curvature (2) is of isotropic mean Berwald curvature (5). Now,
is the equation S = (n + 1)cF equivalent to the equation E = “tcF~1h?
Recently, Cheng-Shen prove that a Randers metric F' = a+ 3 is of isotropic
S-curvature if and only if it is of isotropic E-curvature [4]. Then, Chun-Huan-
Cheng extend this equivalency to the Finsler metric F' = o~ ™(a + 3)™*!
for every real constant m, including Randers metric [20]. In [7], Cui extend

their result and show that for the Matsumoto metric F' = aa—jﬁ and the special

(a, B)-metric F = a + €3 + k(%/a) (k # 0), these notions are equivalent.
To prove Theorem 1.1, we need the following.

(20) Jijm — 1

(21) j\mymsza}kbk\mym —Ji
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Proposition 3.2. Let F' = a+ﬂ+%2+g—z be a second approximate Matsumoto
metric on a manifold M of dimension n. Then the following are equivalent
(i) F has isotropic S-curvature, S = (n + 1)c(x)F;
(ii) F has isotropic mean Berwald curvature, E = “H c(z)F~'h;
where ¢ = ¢(x) is a scalar function on the manifold M. In this case, S = 0.
Then B is a Killing 1-form with constant length with respect to «, that is,
Too = 0.

Proof. (1)=(ii) is obvious. Conversely, suppose that F' has isotropic mean
Berwald curvature, E = ("—;rl)c(ac)F_lh. Then we have

(22) S=(n+1)[cF+n,

where 1 = 1;(x)y’ is a 1-form on M. For the second approximate Matsumoto
metric, (6) reduces to following

Q- 1+ 2s+ 3s?
=14 8242837
1 1— 652 — 1253 — 1551 — 1255
(23) -1 6s S oS S ,
2(14 s+ 82+ $3)(1 — 352 — 8s3 + 2b% + 6b2s)
14 3s

(1 — 352 — 853 + 202 + 6b2s)
By substituting (22) and (23) in (7), we have
(24)
2(143s)(1 + s+ s + s3) 2(1 4 3s)(1 + 25 + 3s?)s
(=14 52+ 2s3)2 (1 —3s% — 883+ 2b% + 6b%s)(—1 + 52 + 2s3)
2(5 + 265 + 7752 + 8853 — 61s* — 4305% — 80556 + 4b% + 40625 + 148b252)(b® — 52)
(1— 352 — 853 + 202 + 6b25)2(—1 + 52 + 259)2
2(2565%b? + 2525%b? + 21655b? + 10855h? — 82857 — 43258) (b2 — 52)
(1 — 352 — 883 4+ 2b% + 6b25)2(—1 + 52 + 253)2
(n+1)(1 4 2s+ 3s%)(1 — 652 — 1253 — 15s* — 125°)
(—1482+283)(14+ s+ 5%+ s3)(1 — 352 — 8s3 + 202 + 6b2s)
1+3 3(b* — s*)(1 4 11s* + 165° + 2
+2 2(35)2 2++( 8)2( 82822)7“00
1 —3s% — 8s3 + 2b% 4 6b%s a(l — 352 — 853 + 2b% + 6b2s)
N (n+1)(1 — 6s% — 1253 — 1551 — 125)
r
201+ s+ 52 + s3)(1 — 352 — 853 + 2b2 + 6b2s) |
= (n+1)[ca(l +s+5”+5%) +n].

S:

+ 2\

S0

Multiplying (24) with (—1+4s2+2s3)(1+s+s%+53)(1—352—8s3+2b%+6b%s) %
implies that

M + M2a2 + M3a4 + M4a6 + M5a8 + M6CY10 + ]\470412 + M8a14
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G+« |:M9 + M10a2 + M11044 + M12046 + M13048 + M140élo

(25) +Misa'? + M160414} =0,
where

My = —128(n+ 1)cB*,
My =2 [(n + 1)[(—385 + 96b%)c? — 64n3] + 128(ro + 50)8 + 48n700 | B,
My i= = [(n+1)[4(~2830% + 243 + 186")c8% — 6(320% — 59)n]
+ [12(=59 4 32b%) (19 + s0) — 96((3n — 1)s9 — 0] 3
+3(=240% + 36 — 2197 + 7206700 | 87,
M, = [(n +1)[ — 2(29 — 738D 4 208b%)c% — 3(—1720% + 21 + 24b* )]

+ (—=159nb* — 132 — 39n + 96b?)ron
— 3(—48b% + 123 + 72nb* — 277n)sof

+ 3(24b% + 86103 + 6A(—1720 + 21 + 24b%)(s0 + ro)ﬁ} A,
Ms = [(n 4 1)[—8(—27b + T0b* — 41)cf? — 4(47H* — 40 — 326%)n ]
+ (15nb* 4 20 — 55n + 108b?)rog + SA(470* — 40 — 32b%) (7o + s0)3
— 2[(~2626° + 278 + 303nb* — 147n)so — (940 + 32)ro] 8| °
Mg =2 [(n +1)[ = 2(4b + 1)(4b — 1)(4b* + 13)cf* — 10(1 + 206 + 6b*)n 3]
+ (11n — 40b% 4 35nb® + 20)700 + 20\ (1 + 200 + 6b*) (1o + 50)3
—2(32n + 51+ 1200b* — 2946%)s053 — (306 — 50)r03| 3,
My = — [(n +1)[ = 4(=17b% = 7+ 30b%)cB% — 6(—1+ 106%)8]
+ (3n + 12)b%rgo
— 12X(1 — 106%) (s + 19) — 6[(nb? — 1 — 2 + 14b%)s59 — 10b2r0]5} 3,
Mg = 4[(71 +1) [2(1 +2b%) (862 + 1)cB + (1 + 2b2)2n}
—2\(1 + 2b%)2(s0 + 10)
+ [ = 57nb® — 64(n + 1)b* — 8n — 5567 + 6]rog — (2 — 4b%)rg
+ [n+ (4 +2n)b* — 1] so},
Mg := —416(n + 1)cp™,
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My = [(n +1)[(~1037 + 6166%)cB> — 2881]
+ 576 (ro + s0)8 + (204n — 6)7“00} B2,

Mlli

- % [(n + 1)[8(57b* — 385b% 4 143)cf? — 2(424b% — 267)n)
+ [AN(424b* — 267)(ro + so) — 4(—115 + 330n)so + 132070 B
+ (300nb? + 249 — 1890 — 120b2)r00] 38,
My =4 [(n + 1)[—(572b* — 93262 — 275)cf? — 4(39b* — 28 — 102b%)n )
— 75nb% — 62 — 89n + 144b%ro + SA(39b* — 28 — 10202) (o + 50) B
— 6](—58b + 100 + 81nb* — 109n)s0 — (26b% + 34)7«0]/3} 36,
My = [(n +1)[~8(—24 + 35b% + 47b%)cA2 — 6(266% — 11 + 206%)n]
+ (51nb? + 33 — 61 + 24b)roo + 12X(26b* — 11 + 20b%) (s + 70)
— 6(—118b? + 54 + 83nb* — 3n)so3 + 6(26b% — 10)r0ﬁ} B,
My = — [(n - 1)[— (5661 — 2726% — 39)eB? — 4(7(n + 1)b?
—6(1 4 n) — 22nb*)np]
+ (=7nb? — 8 — 5n + 32b%)rgo + SA(TH* — 6 — 22b%)(ro + 50)3
(1546 + 12 + 33nb% + 19n) 503 + 2(14b% — 22)505} 52
My = [(n +1)[4(236* + 562 — 1)ef% — (14b% + 1)(26% + 1)35]
n+l .o 2 2
— —5— (86 + 1)rop — 2M(146 + 1)(26" + 1)(s0 + 70) 8
— 2(—6b + 3 — 5nb?)s0 — 2(4 + 14b2)r0ﬁ},
Mg := (n+1)(1 + 2b%)%c.

The term of (25) which is seemingly does not contain o? is M;. Since B is
not divisible by o2, then ¢ = 0 which implies that

My = Mg = 0.
Therefore (25) reduces to following

(26> M> + M3042 + M4Oé4 + M5046 + MgOzS + M70410 + M80412 =0,
(27) My + My1a? 4+ Misa® + Miza® + Mysa® + Mysa'® + Miga!? = 0.
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By plugging ¢ = 0 in My and Mg, the only equations that don’t contain o
are the following

(28) 8[8(2A(ro + s0) — (n + 1)m) + 6nro0| = ma?,
(29) 6 [48(2/\(7*0 4 50) — (n 4+ 1)) + (34n — 1)7’00} p—3

where 7 = 71(z) and 72 = 7o(x) are scalar functions on M. By eliminating
[2A(ro + s0) — (n + 1)n] from (28) and (29), we get
(30) roo = T2,

where 7 = %. By (28) or (29), it follows that

(31) 2X(ro + s0) — (n + 1)n = 0.

By (30), we have ro = 7. Putting (30) and (31) in Mjo and My, yield
(32)

Mo = (204n — 6)Ta? B2,

(33)
(300m — 120)b + 249 — 189n

M11 = [(660n - 230)50 — 660T0]ﬂ — 5 7"007'042 59.
By putting (32) and (33) into (27), we have

300nb2 + 249 — 1897 — 12002
(34) [(660n — 230)so — 660r] 510 — 20 n rogra® 6

2
+ (204n — 6)76'2 — M12a? + Myza® + Myga® + Misa® + Miga® = 0.

The only equations of (34) that do not contain o? is [(204n — 6)732 + (660n —
230)sg — 66070)31°. Since 80 is not divisible by o2, then we have

(35) [(204n — 6)76% + (660n — 230)s¢ — 66070] = 0.

By Lemma 3.1, we always have s; = 0. Then (35), reduces to following

(36) (204n — 6)782 — 6607y = 0.
Thus
(37) 2(204n — 6)7b; 8 — 6607b; = 0.

By multiplying (37) with b°, we have
7=0.

Thus by (31), we get n = 0 and then S = (n + 1)cF. By (30), we get r;; = 0.
Therefore Lemma 3.1, implies that S = 0. This completes the proof. (]
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Proof of Theorem 1.1. Let F be an isotropic Berwald metric (3) with almost
isotropic flag curvature (1). In [19], it is proved that every isotropic Berwald
metric (3) has isotropic S-curvature (2).

Conversely, suppose that F is of isotropic S-curvature (2) with scalar flag
curvature K. In [10], it is showed that every Finsler metric of isotropic S-
curvature (2) has almost isotropic flag curvature (1). Now, we are going to prove
that F' is a isotropic Berwald metric. In [3], it is proved that F' is an isotropic
Berwald metric (3) if and only if it is a Douglas metric with isotropic mean
Berwald curvature (5). On the other hand, every Finsler metric of isotropic
S-curvature (2) has isotropic mean Berwald curvature (5). Thus for completing
the proof, we must show that F' is a Douglas metric. By Proposition 3.2, we
have S = 0. Therefore by Theorem 1.1 in [10], F must be of isotropic flag
curvature K = o(z). By Proposition 3.2, 3 is a Killing 1-form with constant
length with respect to «, that is, r;; = s; = 0. Then (14), (15) and (16) reduce
to

i A i ®si0 =
(38) G' - G' = aQs'y, Ji:_2aA’ J=0.
By (12), we get
o
I T _ / 2 .2 )
(39) = (6 — sl b2 — 52)

We consider two case:

Case 1. Let dim M > 3. In this case, by Schur Lemma F' has constant flag
curvature and (21) holds. Thus by (38) and (39), the equation (21) reduces to
following

Ds.n . [0} . [0
(40) W gikg 4 o0 (aQslo) b~ KF— (¢ — s¢/)(b? — 52) = 0.

20A 2aA 2A
By assumption ® # 0. Thus by (40), we get
(41) 508" + 810 (aQle) b — KFa(¢ —s¢')(b* — s*) = 0.

The following holds
(aQslo) i b =5Qs'y + Q's'y(b* — 57).

Then (41) can be rewritten as follows

(42) 5i08' 0 A — Ka2p(¢ — s¢')(b* — %) = 0.
By (11), (23) and (42), we obtain
(43)

s(14+2s+3s%)  2(b%2 —s?)(14+3s)(1 + s+ s>+ %)
(—1+ 52+ 2s3) (—1+ 52+ 2s3)2
—K(1+s+5+5)a[1+s+s+5° —s(1+2s5+3s%)](b” —5%) =0.

1-— :| SZ'()SZO
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Multiplying (43) with (=1 + s? 4+ 2s%)2a!? yields
A+ aB =0,
where
A= — Kb*a™ + (20 + 1) (KB + sips’y)at?
+2(3Kb?B% + 4505 ob* — K% — si05') B2’
— (6K 3%+ 11si08"y + 20K 2% — 6s495" )3 a®
— (—20K 3 + 5K 3%b? + 8s405" ) 3%’ + (K 3'°)(26b* + 5)a*
(44) — 2K 3™ (13 — 4b*)a* — 8K ',
B = — (Kb*B)a'? + (1 + 8b*)(Kb*B? + sips'y)Ba®
— 2(3[('1)2ﬁ2 — 4siosi0b2 +4Kp% + 53iosi0)ﬁ3a8
+ (6 K% — 11si05", — 20K 3%b?) 3%’
+ (5K %)(30% + 4)a* + (5K ) (=3 + 4b?)a® — 200K 513,
Obviously, we have A =0 and B = 0.

By A = 0 and the fact that $'* is not divisible by o2, we get K = 0.
Therefore (43) reduces to following

s S S
8i08'g = a;j5°¢s'g = 0.

Because of positive-definiteness of the Riemannian metric a, we have s%; = 0,
Le., B is closed. By 799 = 0 and s = 0, it follows that 3 is parallel with respect
to a. Then F = a+ [+ %2 + g—; is a Berwald metric. Hence F' must be locally
Minkowskian.

Case 2. Let dim M = 2. Suppose that F' has isotropic Berwald curvature
(3). In [19], it is proved that every isotropic Berwald metric (3) has isotropic
S-curvature, S = (n + 1)cF. By Proposition 3.2, ¢ = 0. Then by (3), F
reduces to a Berwald metric. Since F' is non-Riemannian, then by Szabd’s
rigidity Theorem for Berwald surface (see [2] page 278), F' must be locally
Minkowskian. (]
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