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ON THE SECOND APPROXIMATE MATSUMOTO METRIC

Akbar Tayebi, Tayebeh Tabatabaeifar, and Esmaeil Peyghan

Abstract. In this paper, we study the second approximate Matsumoto
metric F = α+β+β2/α+β3/α2 on a manifold M . We prove that F is of
scalar flag curvature and isotropic S-curvature if and only if it is isotropic
Berwald metric with almost isotropic flag curvature.

1. Introduction

The flag curvature in Finsler geometry is a natural extension of the sectional
curvature in Riemannian geometry, which is first introduced by L. Berwald. For
a Finsler manifold (M,F ), the flag curvature is a function K(P, y) of tangent
planes P ⊂ TxM and directions y ∈ P . F is said to be of scalar flag curvature
if the flag curvature K(P, y) = K(x, y) is independent of flags P associated
with any fixed flagpole y. F is called of almost isotropic flag curvature if

(1) K =
3cxmym

F
+ σ,

where c = c(x) and σ = σ(x) are scalar functions on M . One of the important
problems in Finsler geometry is to characterize Finsler manifolds of almost
isotropic flag curvature [10].

To study the geometric properties of a Finsler metric, one also considers
non-Riemannian quantities. In Finsler geometry, there are several important
non-Riemannian quantities: the Cartan torsion C, the Berwald curvature B,
the mean Landsberg curvature J and S-curvature S, etc. [3, 8, 10, 17]. These
are geometric quantities which vanish for Riemnnian metrics.

Among the non-Riemannian quantities, the S-curvature S = S(x, y) is closely
related to the flag curvature which constructed by Shen for given comparison
theorems on Finsler manifolds. A Finsler metric F is called of isotropic S-
curvature if

(2) S = (n+ 1)cF,
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for some scalar function c = c(x) on M . In [10], it is proved that if a Finsler
metric F of scalar flag curvature is of isotropic S-curvature (2), then it has
almost isotropic flag curvature (1).

The geodesic curves of a Finsler metric F = F (x, y) on a smooth manifold
M , are determined by c̈i +2Gi(ċ) = 0, where the local functions Gi = Gi(x, y)
are called the spray coefficients. A Finsler metric F is called a Berwald metric,
if Gi are quadratic in y ∈ TxM for any x ∈ M . A Finsler metric F is said to
be isotropic Berwald metric if its Berwald curvature is in the following form

(3) Bi
jkl = c

{

Fyjykδil + Fykylδij + Fylyjδik + Fyjykylyi
}

,

where c = c(x) is a scalar function on M [3].
As a generalization of Berwald curvature, Bácsó-Matsumoto proposed the

notion of Douglas curvature [1]. A Finsler metric is called a Douglas metric if
Gi = 1

2Γ
i
jk(x)y

jyk + P (x, y)yi.

In order to find explicit examples of Douglas metrics, we consider (α, β)-

metrics. An (α, β)-metric is a Finsler metric of the form F := αφ(β
α
), where

φ = φ(s) is a C∞ on (−b0, b0) with certain regularity, α =
√

aij(x)yiyj is a

Riemannian metric and β = bi(x)y
i is a 1-form on M . This class of metrics is

were first introduced by Matsumoto [9]. Among the (α, β)-metrics, the Mat-
sumoto metric is special and significant metric which constitute a majority of
actual research. The Matsumoto metric is expressed as

F = α
[

1 +
β

α
+
(β

α

)2
+
(β

α

)3
+ · · ·

]

.

This metric was introduced by Matsumoto as a realization of Finsler’s idea
“a slope measure of a mountain with respect to a time measure” [18]. In
the Matsumoto metric, the 1-form β = biy

i was originally to be induced by
earth gravity. Hence, we could regard bi(x) as the infinitesimals and neglect
the infinitesimals of degree of bi(x) more than two [11, 12, 13, 14, 15]. An
approximate Matsumoto metric is a Finsler metric in the following form

(4) F = α

[

r
∑

k=0

(
β

α
)k

]

,

where |β| < |α| (for more information, see [12]). This metric was introduced
by Park-Choi in [12]. By definition, the Matsumoto metric is expressed as

limr→∞ L(α, β) = α2

α−β
.

In this paper, we consider second approximate Matsumoto metric F = α+

β + β2

α
+ β3

α2 with some non-Riemannian curvature properties and prove the
following.

Theorem 1.1. Let F = α+β+ β2

α
+ β3

α2 be a non-Riemannian second approxi-

mate Matsumoto metric on a manifold M of dimension n. Then F is of scaler

flag curvature with isotropic S-curvature (2), if and only if it has isotropic
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Berwald curvature (3) with almost isotropic flag curvature (1). In this case, F
must be locally Minkowskian.

2. Preliminaries

Let M be a n-dimensional C∞ manifold. Denote by TxM the tangent space
at x ∈ M , by TM = ∪x∈MTxM the tangent bundle of M , and by TM0 =
TM \ {0} the slit tangent bundle on M . A Finsler metric on M is a function
F : TM → [0,∞) which has the following properties:

(i) F is C∞ on TM0;
(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM ;
(iii) for each y ∈ TxM , the following quadratic form gy on TxM is positive

definite,

gy(u, v) :=
1

2

∂2

∂s∂t

[

F 2(y + su+ tv)
]

|s,t=0, u, v ∈ TxM.

Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx,
define Cy : TxM ⊗ TxM ⊗ TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[

gy+tw(u, v)
]

|t=0, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0
is called the Cartan torsion. It is well known that

C = 0 if and only if F is Riemannian [16]. For y ∈ TxM0, define mean Cartan
torsion Iy by Iy(u) := Ii(y)u

i, where Ii := gjkCijk . By Diecke Theorem, F is
Riemannian if and only if Iy = 0.

The horizontal covariant derivatives of I along geodesics give rise to the mean
Landsberg curvature Jy(u) := Ji(y)u

i, where Ji := Ii|sy
s. A Finsler metric is

said to be weakly Landsbergian if J = 0.
Given a Finsler manifold (M,F ), then a global vector field G is induced

by F on TM0, which in a standard coordinate (xi, yi) for TM0 is given by
G = yi ∂

∂xi − 2Gi(x, y) ∂
∂yi , where

Gi :=
1

4
gil

[∂2(F 2)

∂xk∂yl
yk − ∂(F 2)

∂xl

]

, y ∈ TxM.

The G is called the spray associated to (M,F ). In local coordinates, a curve
c(t) is a geodesic if and only if its coordinates (ci(t)) satisfy c̈i + 2Gi(ċ) = 0.

For a tangent vector y ∈ TxM0, define By : TxM⊗TxM⊗TxM → TxM and

Ey : TxM ⊗ TxM → R by By(u, v, w) := Bi
jkl(y)u

jvkwl ∂
∂xi |x and Ey(u, v) :=

Ejk(y)u
jvk where

Bi
jkl :=

∂3Gi

∂yj∂yk∂yl
, Ejk :=

1

2
Bm

jkm.

The B and E are called the Berwald curvature and mean Berwald curvature,
respectively. Then F is called a Berwald metric and weakly Berwald metric if
B = 0 and E = 0, respectively.
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A Finsler metric F is said to be isotropic mean Berwald metric if its mean
Berwald curvature is in the following form

(5) Eij =
n+ 1

2F
chij ,

where c = c(x) is a scalar function on M and hij is the angular metric [3].

Define Dy : TxM⊗TxM⊗TxM → TxM by Dy(u, v, w) := Di
jkl(y)u

ivjwk ∂
∂xi |x

where

Di
jkl := Bi

jkl −
2

n+ 1
{Ejkδ

i
l + Ejlδ

i
k + Eklδ

i
j + Ejk,ly

i}.
We call D := {Dy}y∈TM0

the Douglas curvature. A Finsler metric with D = 0
is called a Douglas metric. The notion of Douglas metrics was proposed by
Bácsó-Matsumoto as a generalization of Berwald metrics [1].

For a Finsler metric F on an n-dimensional manifold M , the Busemann-
Hausdorff volume form dVF = σF (x)dx

1 · · · dxn is defined by

σF (x) :=
Vol(Bn(1))

Vol
{

(yi) ∈ Rn

∣

∣

∣
F
(

yi ∂
∂xi |x

)

< 1
} .

In general, the local scalar function σF (x) can not be expressed in terms of
elementary functions, even F is locally expressed by elementary functions. Let
Gi denote the geodesic coefficients of F in the same local coordinate system.
The S-curvature can be defined by

S(y) :=
∂Gi

∂yi
(x, y)− yi

∂

∂xi

[

lnσF (x)
]

,

where y = yi ∂
∂xi |x ∈ TxM . It is proved that S = 0 if F is a Berwald metric.

There are many non-Berwald metrics satisfying S = 0. S said to be isotropic

if there is a scalar functions c(x) on M such that S = (n+ 1)c(x)F .
The Riemann curvature Ry = Ri

kdx
k ⊗ ∂

∂xi |x : TxM → TxM is a family of
linear maps on tangent spaces, defined by

Ri
k = 2

∂Gi

∂xk
− yj

∂2Gi

∂xj∂yk
+ 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.

For a flag P = span{y, u} ⊂ TxM with flagpole y, the flag curvature K =
K(P, y) is defined by

K(P, y) :=
gy(u,Ry(u))

gy(y, y)gy(u, u)− gy(y, u)2
.

We say that a Finsler metric F is of scalar curvature if for any y ∈ TxM , the
flag curvature K = K(x, y) is a scalar function on the slit tangent bundle TM0.
In this case, for some scalar function K on TM0 the Riemann curvature is in
the following form

Ri
k = KF 2{δik − F−1Fykyi}.

If K = constant, then F is said to be of constant flag curvature. A Finsler
metric F is called isotropic flag curvature, if K = K(x).
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3. Proof of Theorem 1.1

Let F = αφ(s), s = β
α

be an (α, β)-metric, where φ = φ(s) is a C∞ on

(−b0, b0) with certain regularity, α =
√

aij(x)yiyj is a Riemannian metric and

β = bi(x)y
i is a 1-form on a manifold M . Let

rij :=
1

2

[

bi|j + bj|i

]

, sij :=
1

2

[

bi|j − bj|i

]

.

rj := birij , sj := bisij ,

where bi|j denote the coefficients of the covariant derivative of β with respect
to α. Let

ri0 := rijy
j , si0 := sijy

j , r0 := rjy
j, s0 := sjy

j .

Put

(6)

Q =
φ′

φ− sφ
,

Θ =
φφ′ − s(φφ′′ + φ′2)

2φ
[

(φ− sφ′) + (b2 − s2)φ′′
]

Ψ =
φ′′

2
[

(φ− sφ′) + (b2 − s2)φ′′
] .

Then the S-curvature is given by

S =
[

Q′ − 2ΨQs− 2(ΨQ)′(b2 − s2)− 2(n+ 1)QΘ+ 2λ
]

s0

+ 2(Ψ + λ)s0 + α−1
[

(b2 − s2)Ψ′ + (n+ 1)Θ
]

r00.(7)

Let us put

∆ := 1 + sQ+ (b2 − s2)Q′,

Φ := −(n∆+ 1 + sQ)(Q− sQ′)− (b2 − s2)(1 + sQ)Q′′.

In [5], Cheng-Shen characterize (α, β)-metrics with isotropic S-curvature.

Lemma 3.1 ([5]). Let F = αφ(β/α) be an (α, β)-metric on an n-manifold.

Then, F is of isotropic S-curvature S = (n + 1)cF , if and only if one of the

following holds

(i) β satisfies

(8) rij = ε
{

b2aij − bibj

}

, sj = 0,

where ε = ε(x) is a scalar function, and φ = φ(s) satisfies

(9) Φ = −2(n+ 1)k
φ∆2

b2 − s2
,

where k is a constant. In this case, c = kǫ.
(ii) β satisfies

(10) rij = 0, sj = 0.
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In this case, c = 0.

Let

(11)

Ψ1 :=
√

b2 − s2∆
1

2

[

√
b2 − s2Φ

∆
3

2

]′

,

Ψ2 := 2(n+ 1)(Q − sQ′) + 3
Φ

∆
,

θ :=
Q− sQ′

2∆
.

Then the formula for the mean Cartan torsion of an (α, β)-metric is given by
following

Ii =
1

2

∂

∂yi

[

(n+ 1)
φ′

φ
− (n− 2)

sφ′′

φ− sφ′
− 3sφ′′ − (b2 − s2)φ′′′

(φ− sφ′) + (b2 − s2)φ′′

]

= −Φ(φ− sφ′)

2∆φα2
(αbi − syi).(12)

In [6], it is proved that the condition Φ = 0 characterizes the Riemannian
metrics among (α, β)-metrics. Hence, in the continue, we suppose that Φ 6= 0.

Let Gi = Gi(x, y) and Ḡi
α = Ḡi

α(x, y) denote the coefficients of F and α
respectively in the same coordinate system. By definition, we have

(13) Gi = Ḡi
α + Pyi +Qi,

where

P := α−1Θ
[

− 2Qαs0 + r00

]

Qi := αQsi0 +Ψ
[

− 2Qαs0 + r00

]

bi.

Simplifying (13) yields the following

(14) Gi = Ḡi
α + αQsi0 + θ(−2αQs0 + r00)

[yi

α
+

Q′

Q− sQ′
bi
]

.

Clearly, if β is parallel with respect to α (rij = 0 and sij = 0), then P = 0 and
Qi = 0. In this case, Gi = Ḡi

α are quadratic in y, and F is a Berwald metric.
For an (α, β)-metric F = αφ(s), the mean Landsberg curvature is given by

Ji = − 1

2∆α4

[

2α2

b2 − s2
[Φ

∆
+ (n+ 1)(Q− sQ′)

]

(r0 + s0)hi

+
α

b2 − s2
(Ψ1 + s

Φ

∆
)(r00 − 2αQs0)hi + α

[

− αQ′s0hi + αQ(α2si − yis0)

+α2∆si0 + α2(ri0 − 2αQsi)− (r00 − 2αQs0)yi

]Φ

∆

]

.(15)
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Contracting (15) with bi = aimbm yields

J̄ := Jib
i = − 1

2∆α2

[

Ψ1(r00 − 2αQs0) + αΨ2(r0 + s0)
]

.(16)

The horizontal covariant derivatives Ji;m and Ji|m of Ji with respect to F and
α, respectively, are given by

Ji;m =
∂Ji
∂xm

− JlΓ
l
im − ∂Ji

∂yl
N l

m,

Ji|m =
∂Ji
∂xm

− JlΓ̄
l
im − ∂Ji

∂yl
N̄ l

m.

Then we have

(17) Ji;mym = Ji|mym − Jl(N
l
i − N̄ l

i )− 2
∂Ji
∂yl

(Gl − Ḡl).

Let F be a Finsler metric of scalar flag curvatureK. By Akbar-Zadeh’s theorem
it satisfies following

(18) Aijk;s;mysym +KF 2Aijk +
F 2

3

[

hijKk + hjkKj + hkiKj

]

= 0,

where Aijk = FCijk is the Cartan torsion and Ki =
∂K
∂yi [2]. Contracting (18)

with gij yields

(19) Ji;mym +KF 2Ii +
n+ 1

3
F 2Ki = 0.

By (17) and (19), for an (α, β)-metric F = αφ(s) of constant flag curvature K,
the following holds

(20) Ji|m − Jl
∂(Gl − Ḡl)

∂yi
bi − 2

∂J̄

∂yl
(Gl − Ḡl)Kα2φ2Ii = 0.

Contracting (20) with bi implies that

(21) J̄|mym−Jia
ikbk|mym−Jl

∂(Gl − Ḡl)

∂yi
bi−2

∂J̄

∂yl
(Gl−Ḡl)+Kα2φ2Iib

i = 0.

There exists a relation between mean Berwald curvature E and the S-
curvature S. Indeed, taking twice vertical covariant derivatives of the S-
curvature gives rise the E-curvature. It is easy to see that, every Finsler metric
of isotropic S-curvature (2) is of isotropic mean Berwald curvature (5). Now,
is the equation S = (n+ 1)cF equivalent to the equation E = n+1

2 cF−1h?
Recently, Cheng-Shen prove that a Randers metric F = α+β is of isotropic

S-curvature if and only if it is of isotropic E-curvature [4]. Then, Chun-Huan-
Cheng extend this equivalency to the Finsler metric F = α−m(α + β)m+1

for every real constant m, including Randers metric [20]. In [7], Cui extend

their result and show that for the Matsumoto metric F = α2

α−β
and the special

(α, β)-metric F = α+ ǫβ + κ(β2/α) (κ 6= 0), these notions are equivalent.
To prove Theorem 1.1, we need the following.
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Proposition 3.2. Let F = α+β+ β2

α
+ β3

α2 be a second approximate Matsumoto

metric on a manifold M of dimension n. Then the following are equivalent

(i) F has isotropic S-curvature, S = (n+ 1)c(x)F ;
(ii) F has isotropic mean Berwald curvature, E = n+1

2 c(x)F−1h;

where c = c(x) is a scalar function on the manifold M . In this case, S = 0.
Then β is a Killing 1-form with constant length with respect to α, that is,

r00 = 0.

Proof. (i)⇒(ii) is obvious. Conversely, suppose that F has isotropic mean

Berwald curvature, E = (n+1)
2 c(x)F−1h. Then we have

(22) S = (n+ 1)[cF + η],

where η = ηi(x)y
i is a 1-form on M . For the second approximate Matsumoto

metric, (6) reduces to following

(23)

Q = − 1 + 2s+ 3s2

−1 + s2 + 2s3
,

Θ =
1

2

1− 6s2 − 12s3 − 15s4 − 12s5

(1 + s+ s2 + s3)(1− 3s2 − 8s3 + 2b2 + 6b2s)
,

Ψ =
1+ 3s

(1− 3s2 − 8s3 + 2b2 + 6b2s)
.

By substituting (22) and (23) in (7), we have

S =

[

2(1 + 3s)(1 + s+ s2 + s3)

(−1 + s2 + 2s3)2
+

2(1 + 3s)(1 + 2s+ 3s2)s

(1− 3s2 − 8s3 + 2b2 + 6b2s)(−1 + s2 + 2s3)

(24)

−2(5 + 26s+ 77s2 + 88s3 − 61s4 − 430s5 − 805s6 + 4b2 + 40b2s+ 148b2s2)(b2 − s2)

(1− 3s2 − 8s3 + 2b2 + 6b2s)2(−1 + s2 + 2s3)2

−2(256s3b2 + 252s4b2 + 216s5b2 + 108s6b2 − 828s7 − 432s8)(b2 − s2)

(1− 3s2 − 8s3 + 2b2 + 6b2s)2(−1 + s2 + 2s3)2

+
(n+ 1)(1 + 2s+ 3s2)(1 − 6s2 − 12s3 − 15s4 − 12s5)

(−1 + s2 + 2s3)(1 + s+ s2 + s3)(1 − 3s2 − 8s3 + 2b2 + 6b2s)
+ 2λ

]

s0

+2

[

(1 + 3s)

1− 3s2 − 8s3 + 2b2 + 6b2s
+ λ

]

+

[

3(b2 − s2)(1 + 11s2 + 16s3 + 2s)

α(1 − 3s2 − 8s3 + 2b2 + 6b2s)2

]

r00

+

[

(n+ 1)(1− 6s2 − 12s3 − 15s4 − 12s5)

2α(1 + s+ s2 + s3)(1− 3s2 − 8s3 + 2b2 + 6b2s)

]

r00

= (n+ 1)
[

cα(1 + s+ s2 + s3) + η
]

.

Multiplying (24) with (−1+s2+2s3)(1+s+s2+s3)(1−3s2−8s3+2b2+6b2s)2α14

implies that

M1 +M2α
2 +M3α

4 +M4α
6 +M5α

8 +M6α
10 +M7α

12 +M8α
14
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+α
[

M9 +M10α
2 +M11α

4 +M12α
6 +M13α

8 +M14α
10

+M15α
12 +M16α

14
]

= 0,(25)

where

M1 := − 128(n+ 1)cβ15,

M2 := 2
[

(n+ 1)
[

(−385 + 96b2)cβ2 − 64ηβ
]

+ 128λ(r0 + s0)β + 48nr00

]

β11,

M3 := −
[

(n+ 1)[4(−283b2 + 243 + 18b4)cβ2 − 6(32b2 − 59)ηβ]

+ [12(−59 + 32b2)λ(r0 + s0)− 96((3n− 1)s0 − r0]β

+ 3(−24b2 + 36− 219n+ 72nb2)r00

]

β9,

M4 :=
[

(n+ 1)
[

− 2(29− 738b2 + 208b4)cβ2 − 3(−172b2 + 21 + 24b4)ηβ
]

+ (−159nb2 − 132− 39n+ 96b2)r00

− 3(−48b2 + 123 + 72nb2 − 277n)s0β

+ 3(24b2 + 86)r0β + 6λ(−172b2 + 21 + 24b4)(s0 + r0)β
]

β7,

M5 :=
[

(n+ 1)[−8(−27b2 + 70b4 − 41)cβ2 − 4(47b4 − 40− 32b2)ηβ]

+ (15nb2 + 20− 55n+ 108b2)r00 + 8λ(47b4 − 40− 32b2)(r0 + s0)β

− 2
[

(−262b2 + 278 + 303nb2 − 147n)s0 − (94b2 + 32)r0
]

β
]

β5

M6 := 2
[

(n+ 1)
[

− 2(4b+ 1)(4b− 1)(4b2 + 13)cβ2 − 10(1 + 20b2 + 6b4)ηβ
]

+ (11n− 40b2 + 35nb2 + 20)r00 + 20λ(1 + 20b2 + 6b4)(r0 + s0)β

− 2(32n+ 51 + 129nb2 − 294b2)s0β − (30b2 − 50)r0β
]

β3,

M7 := −
[

(n+ 1)
[

− 4(−17b2 − 7 + 30b4)cβ2 − 6(−1 + 10b4)β
]

+ (3n+ 12)b2r00

− 12λ(1− 10b4)(s0 + r0)− 6
[

(nb2 − n− 2 + 14b2)s0 − 10b2r0
]

β
]

β,

M8 := 4
[

(n+ 1)
[

2(1 + 2b2)(8b2 + 1)cβ + (1 + 2b2)2η
]

− 2λ(1 + 2b2)2(s0 + r0)

+
[

− 57nb2 − 64(n+ 1)b4 − 8n− 55b2 + 6
]

r00 − (2− 4b2)r0

+
[

n+ (4 + 2n)b2 − 1
]

s0

]

,

M9 := − 416(n+ 1)cβ14,
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M10 :=
[

(n+ 1)[(−1037 + 616b2)cβ2 − 288ηβ]

+ 576λ(r0 + s0)β + (204n− 6)r00

]

β12,

M11 := − 1

2

[

(n+ 1)[8(57b4 − 385b2 + 143)cβ2 − 2(424b2 − 267)ηβ]

+
[

4λ(424b2 − 267)(r0 + s0)− 4(−115 + 330n)s0 + 1320r0
]

β

+ (300nb2 + 249− 189n− 120b2)r00

]

β8,

M12 := 4
[

(n+ 1)[−(572b4 − 932b2 − 275)cβ2 − 4(39b4 − 28− 102b2)ηβ]

− 75nb2 − 62− 89n+ 144b2r00 + 8λ(39b4 − 28− 102b2)(r0 + s0)β

− 6[(−58b2 + 100 + 81nb2 − 109n)s0 − (26b2 + 34)r0]β
]

β6,

M13 :=
[

(n+ 1)[−8(−24 + 35b2 + 47b4)cβ2 − 6(26b4 − 11 + 20b2)ηβ]

+ (51nb2 + 33− 6n+ 24b2)r00 + 12λ(26b4 − 11 + 20b2)(s0 + r0)

− 6(−118b2 + 54 + 83nb2 − 3n)s0β + 6(26b2 − 10)r0β
]

β4,

M14 := −
[

(n+ 1)[−(56b4 − 272b2 − 39)cβ2 − 4(7(n+ 1)b4

− 6(1 + n)− 22nb2)ηβ]

+ (−7nb2 − 8− 5n+ 32b2)r00 + 8λ(7b4 − 6− 22b2)(r0 + s0)β

+ 2(−154b2 + 12 + 33nb2 + 19n)s0β + 2(14b2 − 22)s0β
]

β2

M15 :=
[

(n+ 1)[4(23b4 + 5b2 − 1)cβ2 − (14b2 + 1)(2b2 + 1)ηβ]

− n+ 1

2
(8b2 + 1)r00 − 2λ(14b2 + 1)(2b2 + 1)(s0 + r0)β

− 2(−6b2 + 3− 5nb2)s0β − 2(4 + 14b2)r0β
]

,

M16 := (n+ 1)(1 + 2b2)2c.

The term of (25) which is seemingly does not contain α2 is M1. Since β15 is
not divisible by α2, then c = 0 which implies that

M1 = M9 = 0.

Therefore (25) reduces to following

M2 +M3α
2 +M4α

4 +M5α
6 +M6α

8 +M7α
10 +M8α

12 = 0,(26)

M10 +M11α
2 +M12α

4 +M13α
6 +M14α

8 +M15α
10 +M16α

12 = 0.(27)
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By plugging c = 0 in M2 and M10, the only equations that don’t contain α2

are the following

8
[

8(2λ(r0 + s0)− (n+ 1)η) + 6nr00

]

= τ1α
2,(28)

6
[

48(2λ(r0 + s0)− (n+ 1)η) + (34n− 1)r00

]

= τ2α
2,(29)

where τ1 = τ1(x) and τ2 = τ2(x) are scalar functions on M . By eliminating
[2λ(r0 + s0)− (n+ 1)η] from (28) and (29), we get

(30) r00 = τα2,

where τ = τ2−τ1
−(18n+1) . By (28) or (29), it follows that

(31) 2λ(r0 + s0)− (n+ 1)η = 0.

By (30), we have r0 = τβ. Putting (30) and (31) in M10 and M11 yield

M10 = (204n− 6)τα2β12,

(32)

M11 =
[

[(660n− 230)s0 − 660r0]β − (300n− 120)b2 + 249− 189n

2
r00τα

2
]

β9.

(33)

By putting (32) and (33) into (27), we have

[(660n− 230)s0 − 660r0]β
10 − 300nb2 + 249− 189n− 120b2

2
r00τα

2β9(34)

+ (204n− 6)τβ12 −M12α
2 +M13α

4 +M14α
6 +M15α

8 +M16α
10 = 0.

The only equations of (34) that do not contain α2 is [(204n− 6)τβ2 + (660n−
230)s0 − 660r0]β

10. Since β10 is not divisible by α2, then we have

(35) [(204n− 6)τβ2 + (660n− 230)s0 − 660r0] = 0.

By Lemma 3.1, we always have sj = 0. Then (35), reduces to following

(36) (204n− 6)τβ2 − 660r0 = 0.

Thus

(37) 2(204n− 6)τbiβ − 660τbi = 0.

By multiplying (37) with bi, we have

τ = 0.

Thus by (31), we get η = 0 and then S = (n + 1)cF . By (30), we get rij = 0.
Therefore Lemma 3.1, implies that S = 0. This completes the proof. �



126 A. TAYEBI, T. TABATABAEIFAR, AND E. PEYGHAN

Proof of Theorem 1.1. Let F be an isotropic Berwald metric (3) with almost
isotropic flag curvature (1). In [19], it is proved that every isotropic Berwald
metric (3) has isotropic S-curvature (2).

Conversely, suppose that F is of isotropic S-curvature (2) with scalar flag
curvature K. In [10], it is showed that every Finsler metric of isotropic S-
curvature (2) has almost isotropic flag curvature (1). Now, we are going to prove
that F is a isotropic Berwald metric. In [3], it is proved that F is an isotropic
Berwald metric (3) if and only if it is a Douglas metric with isotropic mean
Berwald curvature (5). On the other hand, every Finsler metric of isotropic
S-curvature (2) has isotropic mean Berwald curvature (5). Thus for completing
the proof, we must show that F is a Douglas metric. By Proposition 3.2, we
have S = 0. Therefore by Theorem 1.1 in [10], F must be of isotropic flag
curvature K = σ(x). By Proposition 3.2, β is a Killing 1-form with constant
length with respect to α, that is, rij = sj = 0. Then (14), (15) and (16) reduce
to

(38) Gi − Ḡi = αQsi0, Ji = −Φsi0
2α∆

, J̄ = 0.

By (12), we get

(39) Iib
i =

−Φ

2∆F
(φ − sφ′)(b2 − s2).

We consider two case:
Case 1. Let dimM ≥ 3. In this case, by Schur Lemma F has constant flag
curvature and (21) holds. Thus by (38) and (39), the equation (21) reduces to
following

(40)
Φsi0
2α∆

aiksk0 +
Φsl0
2α∆

(

αQsl0

)

.i
bi −KF

Φ

2∆
(φ − sφ′)(b2 − s2) = 0.

By assumption Φ 6= 0. Thus by (40), we get

(41) si0s
i
0 + sl0

(

αQsl0

)

.i
bi −KFα(φ− sφ′)(b2 − s2) = 0.

The following holds
(

αQsl0

)

.i
bi = sQsi0 +Q′si0(b

2 − s2).

Then (41) can be rewritten as follows

(42) si0s
i
0∆−Kα2φ(φ − sφ′)(b2 − s2) = 0.

By (11), (23) and (42), we obtain

[

1− s(1 + 2s+ 3s2)

(−1 + s2 + 2s3)
+

2(b2 − s2)(1 + 3s)(1 + s+ s2 + s3)

(−1 + s2 + 2s3)2

]

si0s
i
0

(43)

−K(1 + s+ s2 + s3)α2
[

1 + s+ s2 + s3 − s(1 + 2s+ 3s2)
]

(b2 − s2) = 0.
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Multiplying (43) with (−1 + s2 + 2s3)2α12 yields

A+ αB = 0,

where

A = −Kb2α14 + (2b2 + 1)(Kβ2 + si0s
i
0)α

12

+ 2(3Kb2β2 + 4si0s
i
0b

2 −Kβ2 − si0s
i
0)β

2α10

− (6Kβ2 + 11si0s
i
0 + 20Kβ2b2 − 6si0s

i
0)β

4α8

− (−20Kβ2 + 5Kβ2b2 + 8si0s
i
0)β

6α6 + (Kβ10)(26b2 + 5)α4

− 2Kβ12(13− 4b2)α2 − 8Kβ14,(44)

B = − (Kb2β)α12 + (1 + 8b2)(Kb2β2 + si0s
i
0)βα

10

− 2(3Kb2β2 − 4si0s
i
0b

2 + 4Kβ2 + 5si0s
i
0)β

3α8

+ (6Kβ2 − 11si0s
i
0 − 20Kβ2b2)β5α6

+ (5Kβ9)(3b2 + 4)α4 + (5Kβ11)(−3 + 4b2)α2 − 20αKβ13.

Obviously, we have A = 0 and B = 0.
By A = 0 and the fact that β14 is not divisible by α2, we get K = 0.

Therefore (43) reduces to following

si0s
i
0 = aijs

j
0s

i
0 = 0.

Because of positive-definiteness of the Riemannian metric α, we have si0 = 0,
i.e., β is closed. By r00 = 0 and s0 = 0, it follows that β is parallel with respect

to α. Then F = α+β+ β2

α
+ β3

α2 is a Berwald metric. Hence F must be locally
Minkowskian.
Case 2. Let dim M = 2. Suppose that F has isotropic Berwald curvature
(3). In [19], it is proved that every isotropic Berwald metric (3) has isotropic
S-curvature, S = (n + 1)cF . By Proposition 3.2, c = 0. Then by (3), F
reduces to a Berwald metric. Since F is non-Riemannian, then by Szabó’s
rigidity Theorem for Berwald surface (see [2] page 278), F must be locally
Minkowskian. �
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