DOI QR코드

DOI QR Code

UNIFORMITY OF HOLOMORPHIC VECTOR BUNDLES ON INFINITE-DIMENSIONAL FLAG MANIFOLDS

  • Ballico, E. (Department Of Mathematics, University Of Trento)
  • Published : 2003.02.01

Abstract

Let V be a localizing infinite-dimensional complex Banach space. Let X be a flag manifold of finite flags either of finite codimensional closed linear subspaces of V or of finite dimensional linear subspaces of V. Let E be a holomorphic vector bundle on X with finite rank. Here we prove that E is uniform, i.e. that for any two lines $D_1$ R in the same system of lines on X the vector bundles E$\mid$D and E$\mid$R have the same splitting type.

Keywords

References

  1. Ann. Inst. Fourier v.16 Le problems des modules pour les sous-espace analytiques compacts d'un espace analytique donne A. Douady
  2. J. Amer. Math. Soc. v.11 The Dolbeaut complex in infinite dimension. I L .Lempert https://doi.org/10.1090/S0894-0347-98-00266-5
  3. Erg. der Math. v.53 Sous-ensembles analytiques d'une variete banachique complexe J. -P. Ramis
  4. Cambridge Tracts in Math. no.53 Topological vector spaces A. P. Robertson;W. Robertson
  5. J. Math. Kyoto Univ. v.17 On the decomposability of infinitely extendable vector bundles on projective spaces and Grassmann varieties E .Sato https://doi.org/10.1215/kjm/1250522816
  6. Math. USSR Izvestija v.10 Vector bundles of finite rank over infinite varieties A. N. Tyurin https://doi.org/10.1070/IM1976v010n06ABEH001832