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DEFORMATION OF CARTAN CURVATURE ON

FINSLER MANIFOLDS

Behroz Bidabad, Alireza Shahi, and Mohamad Yar Ahmadi

Abstract. Here, certain Ricci flow for Finsler n-manifolds is considered

and deformation of Cartan hh-curvature, as well as Ricci tensor and scalar
curvature, are derived for spaces of scalar flag curvature. As an appli-

cation, it is shown that on a family of Finsler manifolds of constant flag
curvature, the scalar curvature satisfies the so-called heat-type equation.

Hence on a compact Finsler manifold of constant flag curvature of initial

non-negative scalar curvature, the scalar curvature remains non-negative
by Ricci flow and blows up in a short time.

1. Introduction

The Ricci flow, introduced by Hamilton in 1981, is a tool for deforming an
initial Riemannian metric tensor on a manifold, in order to pushing smoothly
out irregularities in the metric. This procedure allows to discover the round
metrics on a manifold, namely metrics of constant curvature, Einstein metrics,
solitons and obtain topological, geometrical and physical information of the
underlying manifold. Starting with a Riemannian metric g0 and a family g(t)
of the Riemannian metrics on M he considers

(1.1)
∂

∂t
g(t) = −2Ricg(t), g(0) = g, t ∈ [0, T ),

where Ric is the Ricci tensor of g(t). The Hamilton’s work on Ricci flow, as
a branch of geometric flow, is appeared as an indispensable tool for accessing
classical problems in geometry and topology. They also provide a natural
setting for formulating many applied and theoretical evolution problems in
physics. One of Hamilton’s innovation is an application of maximum principles,
to show that if the initial metric has strictly positive scalar curvature, then it
will be continuously so for all time [8, 10]. Next, he proves that the scalar
curvature blows up in a short time.
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In recent years, the number of works on the Ricci flow in Riemannian and
Finslerian geometry and its solitons has grown rapidly. Without pretending
to be exhaustive we just cite more recent ones, for instance, [5–7, 12–14], etc.
There are two significant definitions for Ricci tensor in Finsler geometry, and
accordingly, there will be two Ricci flow with their own advantages, features
and applications, see Subsection 2.3. One is a symmetric sum of the trace of
Cartan hh-curvature tensor and the other is a homogenized second variational
derivative of Riemannian curvature. Here, the former Ricci flow is considered.
One advantage of this Ricci flow is its closed relation with Laplacian operator
and diffusion of the heat equation.

In a recent work the present authors have studied convergence of Finslerian
metric first in a general flow and next under the Ricci flow introduced by D.
Bao, and proved that a family of Finslerian metrics g(t) which are solutions
to the Finslerian Ricci flow converge to a smooth limit Finslerian metric as t
approaches the finite time T [7]. As the existence of solutions is well known
in special cases, particularly in Riemannian and Berwaldian cases, we are not
going to deal with general existence problem here, see for instance [3, 12].

In the present work, the Finslerian Ricci flow given by Eq. (3.1) is considered
and deformation of Cartan hh-curvature, as well as Ricci tensor and scalar
curvature, is derived for spaces of scalar flag curvature. As a consequence of
this evolution equation, a heat type equation is obtained and it is shown that
if the initial scalar curvature is non-negative then it remains non-negative by
evolution and blows up in finite time. More precisely, we prove the following
theorems;

Theorem 1.1. Let M be an n-dimensional compact differentiable manifold
and g(t) a family of Finslerian solutions to the Ricci flow on M . If g(0) has
non-negative scalar curvature, then the scalar curvature remains non-negative
for all t ∈ [0, T ), whenever any of the following properties holds.

1. dimM = 2.
2. (M, g(t)) are Finsler manifolds of constant flag curvature.

Theorem 1.2. Let (M, g(t)) be a family of n-dimensional compact Finsler
manifolds with constant flag curvature which are solutions to the Ricci flow for
t ∈ [0, T ). If infSM scalg(0) = α > 0, then T ≤ n

2α and infSM scalg(t) ≥ nα
n−2αt

for t ∈ [0, T ).

Corollary 1.3. Let (M, g(t)) be a family of compact Finsler surfaces satisfying
in the Finslerian Ricci flow equation. If infSM scalg(0) = α > 0, then T ≤ 1

α
and infSM scalg(t) ≥ α

1−αt for t ∈ [0, T ), and hence the scalar curvature blows
up in short time.

2. Preliminaries and terminologies

In order to deal with evolution equation of hh-curvature tensors in Finsler
geometry, it is preferable to use a global definition of Cartan connection. To
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be brief we recall some basic definitions which are not easily found in the
current literature. In this work we adopt the notations and terminologies of [2]
whenever we are dealing with Cartan connection and otherwise we use those
of [4]. Let M be a connected differentiable manifold of dimension n. Denote
the bundle of tangent vectors of M by p : TM −→ M , the fiber bundle of
non-zero tangent vectors of M by π : TM0 −→M and the pulled-back tangent
bundle by π∗TM −→ TM0. A point of TM0 is denoted by z = (x, y), where
x = πz ∈M and y ∈ TπzM . Let (xi) be a local chart with the domain U ⊆M
and (xi, yi) the induced local coordinates on π−1(U), where y = yi ∂

∂xi ∈ TπzM ,
and i running over the range 1, 2, . . . , n. A (globally defined) Finsler structure
on M is a function F : TM −→ [0,∞) with the following properties; F is
C∞ on the entire slit tangent bundle TM\0; F (x, λy) = λF (x, y) ∀λ > 0; the
n × n Hessian matrix (gij) = 1

2 ([F 2]yiyj ) is positive-definite at every point of
TM0. The pair (M, g) is called a Finsler manifold. Denote by TTM0 and
SM the tangent bundle of TM0 and the sphere bundle respectively, where
SM :=

⋃
x∈M SxM and SxM := {y ∈ TxM |F (y) = 1}. Given the induced

coordinates (xi, yi) on TM , coefficients of spray vector field are defined by

Gi = 1/4gih( ∂2F 2

∂yh∂xj y
j − ∂F 2

∂xh ). One can observe that the pair {δ/δxi, ∂/∂yi}
forms a horizontal and vertical frame for TTM , where δ

δxi := ∂
∂xi − Gji ∂

∂yj ,

Gji := ∂Gj

∂yi . There is a canonical linear mapping % : TTM0 −→ π∗TM, where,

% = π∗, %z((
δ
δxi )z) = ( ∂

∂xi )z and %(( ∂
∂yi )z) = 0. Let VzTM be the set of vertical

vectors at z ∈ TM0, that is, the set of vectors which are tangent to the fiber
through z. Equivalently, VzTM = kerπ∗ where π∗ : TTM0 −→ TM is the
linear tangent mapping. Let ∇ be a linear connection on π∗TM the sections
of pull back bundle π∗TM ,

∇ : TzTM0 × Γ(π∗TM) −→ Γ(π∗TM),

provided that there is a linear mapping µ : TTM0 −→ π∗TM, defined by
µ(X̂) = ∇X̂v where, X̂ ∈ TTM0 and v is the canonical section of π∗TM . The
connection ∇ is said to be regular, if µ defines an isomorphism between V TM0

and π∗TM . In this case, there is a horizontal distribution HTM such that
we have the Whitney sum TTM0 = HTM ⊕ V TM. It can be shown that the
set { δ

δxj } and { ∂
∂yj }, forms a local frame field for the horizontal and vertical

subspaces, respectively. This decomposition permits to write a vector field
X̂ ∈ TTM0 into the form X̂ = HX̂ + V X̂ uniquely. In the sequel, we denote
all the sections of π∗TM by X = %(X̂), Y = %(Ŷ ), and the corresponding

complete lift on TM0 by X̂, Ŷ respectively, unless otherwise specified.

2.1. A global approach to the hh-curvature of Cartan connection

The torsion and curvature tensors of the regular connection ∇ are given by

τ(X̂, Ŷ ) = ∇X̂Y −∇ŶX − %[X̂, Ŷ ],

Ω(X̂, Ŷ )Z = ∇X̂∇Ŷ Z −∇Ŷ∇X̂Z −∇[X̂,Ŷ ]Z,
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where, X = %(X̂), Y = %(Ŷ ), Z = %(Ẑ) and X̂, Ŷ and Ẑ are vector fields on
TM0. They determine two torsion tensors denoted here by S and T and three
curvature tensors denoted by R, P and Q, defined by:

S(X,Y ) = τ(HX̂,HŶ ), T (Ẋ, Y ) = τ(V X̂,HŶ ),

R(X,Y ) = Ω(HX̂,HŶ ), P (X, Ẏ ) = Ω(HX̂, V Ŷ ),

Q(Ẋ, Ẏ ) = Ω(V X̂, V Ŷ ),

where, X = %(X̂), Y = %(Ŷ ), Ẋ = µ(X̂) and Ẏ = µ(Ŷ ). The tensors R, P
and Q are called hh-, hv- and vv-curvature tensors, respectively. There is a
unique metric compatible h-torsion free regular connection ∇ associated to the
Finsler structure F satisfying, ∇Ẑg = 0, S(X,Y ) = 0, and g(τ(V X̂, Ŷ ), Z) =

g(τ(V X̂, Ẑ), Y ), called the Cartan connection. In local coordinates the covari-

ant derivation of a vector field X̂ in Cartan connection is given by; ∇Xk =
dXk +Xj(Γkjidx

i + T kjidy
i).

Using the Jacobian identity for three vector fields X̂, Ŷ and Ẑ, one obtains
the Bianchi identities for a regular connection ∇ with curvature 2-forms Ω as
follows:

σΩ(X̂, Ŷ )Z = σ∇Ẑτ(X̂, Ŷ ) + στ(Ẑ, [X̂, Ŷ ]),

σ∇ẐΩ(X̂, Ŷ ) + σΩ(Ẑ, [X̂, Ŷ ]) = 0,

where, σ denotes the circular permutation in the set {X̂, Ŷ , Ẑ} [2].
The isomorphism between the bundles V TM and π∗TM permits to define

the Cartan connection on the sections of V TM rather than π∗TM . We need
the following property of a linear connection in the sequel.

2g(∇X̂Y,Z) = X̂.g(Y,Z) + Ŷ .g(X,Z)− Ẑ.g(X,Y ) + g(τ(X̂, Ŷ ), Z)

+ g(τ(Ẑ, X̂), Y ) + g(τ(Ẑ, Ŷ ), X) + g(%[X̂, Ŷ ], Z)

+ g(%[Ẑ, X̂], Y ) + g(%[Ẑ, Ŷ ], X).(2.1)

The (0, 4) hh-curvature tensor of Cartan connection is defined here by

R(Z,W,X, Y ) := −g(R(X,Y )Z,W ),

where

R(X,Y )Z = ∇HX̂∇HŶ Z −∇HŶ∇HX̂Z −∇[HX̂,HŶ ]Z.

Recall that the hh-curvature of Cartan connection is skew-symmetric with
respect to the two first and last indices, see [2, page 43]. That is,

R(X,Y, Z,W ) = −R(Y,X,Z,W ),

R(X,Y, Z,W ) = −R(X,Y,W,Z).

In a local coordinate system we have R(∂i, ∂j)∂k = Rlkij∂l and Rlkij = Rmkijgml,
that is, we lower the upper index to the first position.
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A flag can be considered as a 2-dimensional subspace of TxM which is de-
termined by two independent vectors of TxM. Consider y ∈ TxM as a flagpole
and V = V i ∂

∂xi as a transverse edge, then the flag curvature is defined to be

K(x, y, V ) = g(R(V,y)y,V )
g(y,y)g(V,V )−(g(y,V ))2 . If the flag curvature does not depend on

the transverse edge V, then the Finsler manifold (M, g) is called of scalar flag
curvature. In Finsler manifolds of scalar flag curvature the two first and the
two last indices can be interchanged symmetrically, that is Rijkl = Rklij , [1].
The Bianchi identities for Cartan connection on Finsler manifolds of scalar flag
curvature are expressed by

R(X,Y, Z,W ) +R(X,Z,W, Y ) +R(X,W, Y, Z) = 0,(2.2)

and

σ(Z,U,W )[(∇HẐR)(X,Y, U,W )(2.3)

+ (
F 2

3
∇V ẐK +KF∇V ẐF )(∇vQ)(X,Y, U̇ , Ẇ )] = 0.

In terms of local coordinates the above equations are written as follows;

σjklR
i
jkl = 0,

σmkl∇mRijkl + σmkl(
F 2

3

∂K

∂ym
+Kym)yh∇hQijkl = 0,

where σmkl denotes the sum of the terms obtained by cyclic permutation of
indices m, k and l. Using the relation ym = gmjy

j = (FFymyj + FymFyj )yj =
FFym , one can rewrite the above equation as follows, [1].

σmkl∇mRijkl + σmkl(
F 2

3

∂K

∂ym
+KFFym)yh∇hQijkl = 0.

2.2. A horizontal Finslerian Laplacian

There is a Riemannian metric on V TM induced by F . The regularity of
Cartan connection permits to define a horizontal bundle HTM and a horizontal
map Θ : V TM −→ HTM . One can use Θ to transfer a Riemannian structure
from V TM to HTM , by the following setting

∀ HX̂,HŶ ∈ HTM, 〈HX̂,HŶ 〉 = 〈Θ−1(HX̂),Θ−1(HŶ )〉.
Hence a Riemannian metric can be defined on the whole TTM0, just by stating
that HTM is orthogonal to V TM and TTM0 = HTM⊕V TM . As usual define
the second covariant derivative by

∇2
X̂,Ŷ

Z := (∇2Z)(X̂, Ŷ ) = ∇X̂∇Ŷ Z −∇∇X̂Y
Z.

Let {ek} be a basis for π∗TM and êk its complete lift to TTM0. Consider
{Hêk, V êk} for k = 1, . . . , n as an orthonormal frame on TM0, where {Hêk}
and {V êk} denote the horizontal and vertical parts of {êk} respectively. Define

a horizontal Laplacian on TM0 by, ∆hf = trace(HX̂ → ](∇2f)(HX̂, ·)). In
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an orthonormal frame it is written ∆hf =
∑n
k=1(∇2f)(Hêk, Hêk), where f is

a scalar function on the sphere bundle SM .

2.3. On Ricci curvatures in Finsler geometry

H. Akbar-Zadeh in his works has considered two kinds of Ricci curvatures in
Finsler geometry. One is defined by Ric(X,Y ) := 1/2

(
Rc(X,Y ) + Rc(Y,X)

)
,

where Rc is obtained by contraction of Cartan hh-curvature tensor and have
the components Rcij = Rlilj , where Rlikj are the components of Cartan hh-
curvature tensor. The other definition of Ricci curvature tensor is given by
1
2 [F 2Ric]yiyj , where Ric := Rii is the trace of Riemannian curvature, expressed

entirely in terms of partial derivatives of the spray Gi. One of the advantages
of the former Ricci tensor, obtained by contraction and symmetrization of the
Cartan hh-curvature tensor, is its closed relation with second covariant deriva-
tive and hence Laplacian and diffusion operators. While the later definition is
independent of the choice of any connection. Both of these two Ricci tensors
reduce to the ordinary Ricci tensor in Riemannian case.

Here and everywhere in the present work we consider the following Ricci
curvature tensor,

(2.4) Ric(X,Y ) := 1/2
(
Rc(X,Y ) +Rc(Y,X)

)
.

It is well known that in a Finsler manifold of scalar flag curvature, Rcij is
symmetric and Ricci curvature tensor Ric(X,Y ) coincides with Rc(X,Y ), see
[2], page 152.

As usual, trace of the Ricci curvature is called scalar curvature and is denoted

here by scal = gijRicij , where Ricij :=
Rij+Rji

2 .

3. Covariant time derivative in Cartan connection

In this section we establish the covariant time derivative ∇ ∂
∂t

with respect

to the Cartan connection associated with a family of Finslerian metrics g(t).
Consider the following evolution equation known as the Finslerian Ricci flow
on the family of Finslerian manifolds (M, g(t)),

(3.1)
∂

∂t
g(t) = −2Ricg(t), g(0) = g, t ∈ [0, T ),

where Ric is the Ricci tensor defined by (2.4). The existence of solutions is
well known in special cases, particularly in Riemannian and Berwaldian spaces,
we are not going to deal with general existence problem here, see for instance
[3, 12]. Let E be the pull-back of tangent bundle under the projection pr :
TM0×(0, T ) −→M, where pr(x, y, t) = x. The fiber of E over a point (x, y, t) ∈
TM0 × (0, T ) is given by E(x,y,t) = TxM . In order to define a covariant time
derivative in Finsler geometry we extend the definition of Cartan connection
on a general vector bundle E in the sense of Uhlenbeck see [11, Chapter 5]. Let
X be a section of the vector bundle E, using the Uhlenbeck trick for a general
vector bundle, the extension of Cartan connection for the section ∂

∂t and for
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the Ricci flow (3.1) is defined by ∇ ∂
∂t
X = ∂

∂tX −
∑n
k=1Ric(X, ek)ek, where

{ek}nk=1 is considered as an orthonormal frame for E with respect to the metric
g(t). By uniqueness and metric compatibility of Cartan connection, it can be
shown that the ∇ ∂

∂t
is unique up to the Ricci flow (3.1). We specify that the

covariant time derivative ∇ ∂
∂t

should be metric compatible with respect to g(t)

in the sense of the following proposition.

Proposition 3.1. The extended Cartan connection ∇ ∂
∂t

is compatible with

bundle metric on E, that is (∇ ∂
∂t
g)(X,Y ) = 0.

Proof. Using definition of covariant time derivative yields

(∇ ∂
∂t
g)(X,Y ) =

∂

∂t
(g(X,Y ))− g(∇ ∂

∂t
X,Y )− g(X,∇ ∂

∂t
Y )

= (
∂

∂t
g)(X,Y ) + g(

∂

∂t
X, Y ) + g(X,

∂

∂t
Y )

− g(
∂

∂t
X −

n∑
k=1

Ric(X, ek)ek, Y )

− g(X,
∂

∂t
Y −

n∑
k=1

Ric(Y, ek)ek)

= − 2Ric(X,Y ) + 2Ric(X,Y ) = 0.

Hence proof is complete. �

In the sequel without loss of generality, we assume all sections of the vector
bundle E, are constant with respect to t. Therefore for a fixed section X of E
the earlier defined, covariant time derivative reduces to

∇ ∂
∂t
X = −

n∑
k=1

Ric(X, ek)ek.

4. Evolution of the hh-curvature of Cartan connection

A section Z of π∗TM or a vector field Ẑ on TM0 respectively is said to be
fixed if it is independent of the parameter “t”, that is, ∂

∂tZ = 0 or ∂
∂t Ẑ =0.

Proposition 4.1. Let X̂, Ŷ and Ẑ be the fixed vector fields on TM0. Then

g(B(X,Y ), Z) = −(∇X̂Ric)(Y,Z)− (∇ŶRic)(X,Z) + (∇ẐRic)(X,Y ),

where B(X,Y ) := ∂
∂t (∇X̂Y ).

Proof. By Leibnitz rule and using ∂
∂tZ = 0, we have

∂

∂t
(g(∇X̂Y,Z)) = (

∂

∂t
g)(∇X̂Y,Z) + g(

∂

∂t
∇X̂Y,Z),
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from which

g(B(X,Y ), Z) =
∂

∂t
(g(∇X̂Y, Z))− (

∂

∂t
g)(∇X̂Y,Z).

Since g(t) satisfy in (3.1), by virtue of (2.1) for Cartan connection, we have,

g(B(X,Y ), Z) = −∇X̂(Ric(Y,Z))−∇Ŷ (Ric(X,Z)) +∇Ẑ(Ric(X,Y ))

−Ric(∇X̂Y −∇ŶX,Z)−Ric(∇ẐX −∇X̂Z, Y )

−Ric(∇ẐY −∇Ŷ Z,X) + 2Ric(∇X̂Y,Z)

+
1

2
g
( ∂
∂t

(∇X̂Y −∇ŶX), Z
)

+
1

2
g
( ∂
∂t

(∇ẐX −∇X̂Z), Y
)

+
1

2
g
( ∂
∂t

(∇ẐY −∇Ŷ Z), X
)
.(4.1)

Note that X̂ and Ŷ are fixed vector fields, so we have

∂

∂t
(∇HX̂Y −∇HŶX)

=
∂

∂t

(
Xi(

δY j

δxi
∂

∂xj
+ Y jΓkij

∂

∂xk
)− Y i(δX

j

δxi
∂

∂xj
+XjΓkij

∂

∂xk
)
)

= 0,

since Γkij = Γkji. By similar argument for vertical part and using X̂ = HX̂+V X̂
we get

g
( ∂
∂t

(∇X̂Y −∇ŶX), Z
)

= g
( ∂
∂t

(∇HX̂+V X̂Y −∇HŶ+V ŶX), Z
)

= 0.

Likewise the last two terms on the right hand side of (4.1) vanish, hence

g(B(X,Y ), Z) = −(∇X̂Ric)(Y,Z)− (∇ŶRic)(X,Z) + (∇ẐRic)(X,Y ).

This completes the proof. �

Let A be a tensor field defined by A(X,Y ) := ∂
∂t (∇HX̂Y ). Similar to the

Proposition 4.1 one can easily prove the following corollary.

Corollary 4.2. Let HX̂,HŶ and HẐ be the fixed horizontal parts of X̂, Ŷ
and Ẑ on HTM respectively. We have

g(A(X,Y ), Z) = −(∇HX̂Ric)(Y, Z)− (∇HŶRic)(X,Z) + (∇HẐRic)(X,Y ).

Let S be a section or a (0, 2n)-tensor field on π∗TM . We claim that
∇2
HX̂,HŶ

S − ∇2
HŶ ,HX̂

S can be expressed in terms of hh-curvature of Cartan

connection and one extra term as follows. Let Z be a section of π∗TM , then

∇2
HX̂,HŶ

Z −∇2
HŶ ,HX̂

Z

= ∇HX̂∇HŶ Z −∇∇HX̂Y
Z −∇HŶ∇HX̂Z +∇∇HŶX

Z

= ∇HX̂∇HŶ Z −∇HŶ∇HX̂Z −∇[HX̂,HŶ ]Z +∇[HX̂,HŶ ]−%[HX̂,HŶ ]Z

= R(X,Y )Z +∇ ˜[HX̂,HŶ ]
Z,
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where we have put ˜[HX̂,HŶ ] = [HX̂,HŶ ]− %[HX̂,HŶ ].
By straight forward computations we have the following relation for a (0, 4)-

tensor field S

(∇2
HX̂,HŶ

S)(U, V,W,Z)− (∇2
HŶ ,HX̂

S)(U, V,W,Z)(4.2)

=

n∑
k=1

R(U, ek, X, Y )S(ek, V,W,Z) +

n∑
k=1

R(V, ek, X, Y )S(U, ek,W,Z)

+

n∑
k=1

R(W, ek, X, Y )S(U, V, ek, Z) +

n∑
k=1

R(Z, ek, X, Y )S(U, V,W, ek)

+ (∇ ˜[HX̂,HŶ ]
S)(U, V,W,Z),

where {ek}nk=1 is an orthonormal basis for π∗TM .

Proposition 4.3. Let (M, g(t)) be a family of Finsler manifolds of scalar flag

curvature satisfying in the Finslerian Ricci flow equation and HX̂,HŶ ,HẐ
and HŴ be the fixed horizontal parts of X̂, Ŷ , Ẑ and Ŵ on HTM respectively.
We have

∂

∂t
(R(Z,W,X, Y )) = (∇2

HX̂,HẐ
Ric)(Y,W )− (∇2

HX̂,HŴ
Ric)(Y,Z)

− (∇2
HŶ ,HẐ

Ric)(X,W ) + (∇2
HŶ ,HŴ

Ric)(X,Z)

+ (∇ ˜[HX̂,HŶ ]
Ric)(Z,W )−

n∑
k=1

R(Z, ek, X, Y )Ric(ek,W )

+

n∑
k=1

R(W, ek, X, Y )Ric(Z, ek).

Proof. By definition of the hh-curvature tensor R we have,

∂

∂t
(R(Z,W,X, Y )) = − ∂

∂t
(g(R(X,Y )Z,W ))

= − (
∂

∂t
g)(R(X,Y )Z,W )− g(

∂

∂t
R(X,Y )Z,W )

= − 2Ric(

n∑
k=1

R(Z, ek, X, Y )ek,W )

− g(
∂

∂t
(∇HX̂∇HŶ Z −∇HŶ∇HX̂Z −∇[HX̂,HŶ ]Z),W )

= − 2

n∑
k=1

R(Z, ek, X, Y )Ric(ek,W )− g(A(X,∇HŶ Z),W )

− g(∇HX̂(A(Y, Z)),W ) + g(A(Y,∇HX̂Z),W )

+ g(∇HŶ (A(X,Z)),W ) + g(A(%[HX̂,HŶ ], Z),W ).
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Finally we get

∂

∂t
(R(Z,W,X, Y )) = − 2

n∑
k=1

R(Z, ek, X, Y )Ric(ek,W )

− g((∇HX̂A)(Y, Z),W ) + g((∇HŶA)(X,Z),W ).(4.3)

On the other hand,

g((∇HX̂A)(Y,Z),W ) = g(∇HX̂(A(Y,Z),W )− g(A(∇HX̂Y, Z)),W ),

−g(A(Y,∇HX̂Z),W ) = ∇HX̂(g(A(Y,Z),W ))− g(A(Y,Z),∇HX̂W )

− g(A(∇HX̂Y,Z),W )− g(A(Y,∇HX̂Z),W ).

Therefore by using Corollary 4.2, we have

g((∇HX̂A)(Y, Z),W )

= ∇HX̂((−∇HŶRic)(Z,W )− (∇HẐRic)(Y,W ) + (∇HŴRic)(Y,Z))

+ (∇HŶRic)(Z,∇HX̂W ) + (∇HẐRic)(Y,∇HX̂W )− (∇∇HX̂W
Ric)(Y,Z)

+ (∇∇HX̂Y
Ric)(Z,W ) + (∇HẐRic)(∇HX̂Y,W )− (∇HŴRic)(∇HX̂Y,Z)

+ (∇HŶRic)(∇HX̂Z,W ) + (∇∇HX̂Z
Ric)(Y,W )− (∇HŴRic)(Y,∇HX̂Z).

Thus we have

g((∇HX̂A)(Y, Z),W ) = − (∇2
HX̂,HŶ

Ric)(Z,W )− (∇2
HX̂,HẐ

Ric)(Y,W )

+ (∇2
HX̂,HŴ

Ric)(Y,Z).(4.4)

By interchanging the roles of X and Y we obtain,

g((∇HŶA)(X,Z),W ) = − (∇2
HŶ ,HX̂

Ric)(Z,W )− (∇2
HŶ ,HẐ

Ric)(X,W )

+ (∇2
HŶ ,HŴ

Ric)(X,Z).(4.5)

For the Ricci tensor we have,

(∇2
HX̂,HŶ

Ric)(Z,W )− (∇2
HŶ ,HX̂

Ric)(Z,W )

=

n∑
k=1

R(Z, ek, X, Y )Ric(ek,W ) +

n∑
k=1

R(W, ek, X, Y )Ric(Z, ek)

+ (∇ ˜[HX̂,HŶ ]
Ric)(Z,W ).(4.6)

Using relations (4.3), (4.4), (4.5) and (4.6) we obtain

∂

∂t
(R(Z,W,X, Y )) = (∇2

HX̂,HẐ
Ric)(Y,W )− (∇2

HX̂,HŴ
Ric)(Y, Z)

− (∇2
HŶ ,HẐ

Ric)(X,W ) + (∇2
HŶ ,HŴ

Ric)(X,Z)

−
n∑
k=1

R(Z, ek, X, Y )Ric(ek,W )
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+
n∑
k=1

R(W, ek, X, Y )Ric(Z, ek) + (∇ ˜[HX̂,HŶ ]
Ric)(Z,W ).

As we have claimed. �

To be brief, in the sequel we will use the usual notions of [8] as follows,

Q(R)(Z,W,X, Y ) :=

n∑
k,l=1

R(ek, el, X, Y )R(ek, el, Z,W )

+ 2

n∑
k,l=1

R(Z, el, X, ek)R(ek, Y, el,W )

− 2

n∑
k,l=1

R(W, el, X, ek)R(ek, Y, el, Z),

and also Q1, . . . , Q6, to denote the lower order terms with respect to the Finsler
structure F , flag curvature K and vv-curvature.

Proposition 4.4. Let (M, g(t)) be a family of Finsler manifolds of scalar flag
curvature satisfying in the Finslerian Ricci flow equation. Then

(∇2
HX̂,HẐ

Ric)(Y,W )− (∇2
HX̂,HŴ

Ric)(Y, Z)− (∇2
HŶ ,HẐ

Ric)(X,W )

+ (∇2
HŶ ,HŴ

Ric)(X,Z)

=

n∑
k=1

(∇2
Hêk,Hêk

R)(X,Y, Z,W )−∇HX̂Q1 +∇HŶQ3 −
n∑
k=1

∇HêkQ5

+ lower order terms.

Proof. Considering R as a (0, 4)-tensor field, leads to

n∑
k=1

(∇2
HX̂,Hêk

R)(ek, Y, Z,W )−
n∑
k=1

(∇2
Hêk,HX̂

R)(ek, Y, Z,W )

=

n∑
k,l=1

R(ek, el, X, ek)R(el, Y, Z,W ) +

n∑
k,l=1

R(Y, el, X, ek)R(ek, el, Z,W )

+

n∑
k,l=1

R(Z, el, X, ek)R(ek, Y, el,W ) +

n∑
k,l=1

R(W, el, X, ek)R(ek, Y, Z, el)

+

n∑
k=1

(∇ ˜[HX̂,Hêk]
R)(ek, Y, Z,W ).
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Interchanging the roles of X and Y and subtracting the second identity from
the first one, we obtain

n∑
k=1

(∇2
HX̂,Hêk

R)(ek, Y, Z,W )−
n∑
k=1

(∇2
HŶ ,Hêk

R)(ek, X, Z,W )

(4.7)

−
n∑
k=1

(∇2
Hêk,HX̂

R)(ek, Y, Z,W ) +

n∑
k=1

(∇2
Hêk,HŶ

R)(ek, X, Z,W )

=

n∑
k,l=1

(R(Y, el, X, ek)−R(X, el, Y, ek))R(ek, el, Z,W )

+

n∑
k,l=1

R(ek, el, X, ek)R(el, Y, Z,W ) +

n∑
k,l=1

R(Z, el, X, ek)R(ek, Y, el,W )

+

n∑
k,l=1

R(W, el, X, ek)R(ek, Y, Z, el) +

n∑
k=1

(∇ ˜[HX̂,Hêk]
R)(ek, Y, Z,W )

−
n∑

k,l=1

R(ek, el, Y, ek)R(el, X, Z,W )−
n∑

k,l=1

R(Z, el, Y, ek)R(ek, X, el,W )

−
n∑

k,l=1

R(W, el, Y, ek)R(ek, X, Z, el)−
n∑
k=1

(∇ ˜[HŶ ,Hêk]
R)(ek, X, Z,W ).

Next, by means of the first Bianchi identity (2.2) for Finsler manifolds of scalar
flag curvature, the right hand side of (4.7) reduces to

Q(R)(Z,W,X, Y )−
n∑
l=1

R(el, Y, Z,W )Ric(el, X)

+

n∑
l=1

R(el, X, Z,W )Ric(el, Y ) +

n∑
k=1

(∇ ˜[HX̂,Hêk]
R)(ek, Y, Z,W )

−
n∑
k=1

(∇ ˜[HŶ ,Hêk]
R)(ek, X, Z,W ).(4.8)

On the other hand,
n∑
k=1

(∇2
HX̂,Hêk

R)(ek, Y, Z,W )(4.9)

=

n∑
k=1

(∇HX̂∇HêkR)(ek, Y, Z,W )−
n∑
k=1

(∇∇HX̂ek
R)(ek, Y, Z,W )

=

n∑
k=1

∇HX̂((∇HêkR)(ek, Y, Z,W ))−
n∑
k=1

(∇HêkR)(∇HX̂ek, Y, Z,W )
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−
n∑
k=1

(∇HêkR)(ek,∇HX̂Y, Z,W )−
n∑
k=1

(∇HêkR)(ek, Y,∇HX̂Z,W )

−
n∑
k=1

(∇HêkR)(ek, Y, Z,∇HX̂W )−
n∑
k=1

(∇∇HX̂ek
R)(ek, Y, Z,W ).

Using the second Bianchi identity (2.3) for the Finsler metric of scalar flag
curvature, the first term of right hand side of (4.9) reads

n∑
k=1

∇HX̂((∇HêkR)(ek, Y, Z,W ))(4.10)

= −
n∑
k=1

∇HX̂((∇HẐR)(ek, Y,W, ek) + (∇HŴR)(ek, Y, ek, Z)

+ (
F 2

3
∇V êkK +KF∇V êkF )(∇vQ)(ek, Y, Ż, Ẇ )

+ (
F 2

3
∇V ẐK +KF∇V ẐF )(∇vQ)(ek, Y, Ẇ , ėk)

+ (
F 2

3
∇V ŴK +KF∇V ŴF )(∇vQ)(ek, Y, ėk, Ż)).

Repeating the above procedure for the other five terms of (4.9), upon simplifi-
cation we obtain,

n∑
k=1

(∇2
HX̂,Hêk

R)(ek, Y, Z,W )(4.11)

=

n∑
k=1

(∇2
HX̂,HẐ

R)(ek, Y, ek,W )−
n∑
k=1

(∇2
HX̂,HŴ

R)(ek, Y, ek, Z)

+∇HX̂(Q1) +Q2

= (∇2
HX̂,HẐ

Ric)(Y,W )− (∇2
HX̂,HŴ

Ric)(Y,Z) +∇HX̂(Q1) +Q2,

where the first two terms on the right hand side are second order differential
equations with respect to the horizontal covariant derivative. Interchanging
the roles of X and Y yields,

n∑
k=1

(∇2
HŶ ,Hêk

R)(ek, X, Z,W )(4.12)

= (∇2
HŶ ,HẐ

Ric)(X,W )− (∇2
HŶ ,HŴ

Ric)(X,Z) +∇HŶ (Q3) +Q4.

Using the symmetric property R(X,Y, Z,W ) = R(Z,W,X, Y ) for hh-curvature
tensor of a Finsler manifold of scalar flag curvature and the second Bianchi
identity (2.3) we obtain,

n∑
k=1

(∇2
Hêk,Hêk

R)(X,Y, Z,W )(4.13)
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=

n∑
k=1

(∇2
Hêk,HX̂

R)(ek, Y, Z,W )−
n∑
k=1

(∇2
Hêk,HŶ

R)(ek, X, Z,W )

+∇Hêk(Q5) +Q6.

Combining the equations (4.8), (4.9), (4.11), (4.12) and (4.13) yields,

(∇2
HX̂,HẐ

Ric)(Y,W )− (∇2
HX̂,HŴ

Ric)(Y,Z)− (∇2
HŶ ,HẐ

Ric)(X,W )

+ (∇2
HŶ ,HŴ

Ric)(X,Z)

=

n∑
k=1

(∇2
HX̂,Hêk

R)(ek, Y, Z,W )−
n∑
k=1

(∇2
HŶ ,Hêk

R)(ek, X, Z,W )

−∇HX̂Q1 −Q2 +∇HŶQ3 +Q4

=

n∑
k=1

(∇2
Hêk,HX̂

R)(ek, Y, Z,W )−
n∑
k=1

(∇2
Hêk,HŶ

R)(ek, X, Z,W )

+Q(R)(Z,W,X, Y )−
n∑
l=1

Ric(el, X)R(el, Y, Z,W )

+

n∑
l=1

Ric(el, Y )R(el, X, Z,W ) +

n∑
k=1

(∇ ˜[HX̂,Hêk]
R)(ek, Y, Z,W )

−
n∑
k=1

(∇ ˜[HŶ ,Hêk]
R)(ek, X, Z,W )−∇HX̂Q1 −Q2 +∇HŶQ3 +Q4

=

n∑
k=1

(∇2
Hêk,Hêk

R)(X,Y, Z,W )−∇HX̂Q1 +∇HŶQ3 −
n∑
k=1

∇HêkQ5

+Q4 −Q6 +

n∑
k=1

(∇ ˜[HX̂,Hêk]
R)(ek, Y, Z,W )−Q2

−
n∑
k=1

(∇ ˜[HŶ ,Hêk]
R)(ek, X, Z,W ) +Q(R)(Z,W,X, Y )

−
n∑
l=1

Ric(el, X)R(el, Y, Z,W ) +

n∑
l=1

Ric(el, Y )R(el, X, Z,W ).

Collecting the last eight terms of right hand side as lower order terms, completes
the proof of Proposition 4.4. �

Theorem 4.5. Let (M, g(t)) be a family of Finsler manifolds of scalar flag
curvature satisfying in the Finslerian Ricci flow equation. We have

∂

∂t
(R(X,Y, Z,W )) =

n∑
k=1

(∇2
Hêk,Hêk

R)(X,Y, Z,W )−∇HX̂Q1 +∇HŶQ3
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−
n∑
k=1

∇HêkQ5 + lower order terms,

where Qj are some lower order terms and HX̂,HŶ , HẐ and HŴ are the fixed

horizontal parts of X̂, Ŷ , Ẑ and Ŵ on HTM respectively.

Proof. By Propositions 4.3 and 4.4 we have

∂

∂t
(R(Z,W,X, Y ))

=

n∑
k=1

(∇2
Hêk,Hêk

R)(X,Y, Z,W )−∇HX̂Q1 +∇HŶQ3 −
n∑
k=1

∇HêkQ5

−Q2 +Q4 −Q6 +

n∑
k=1

(∇ ˜[HX̂,Hêk]
R)(ek, Y, Z,W )

−
n∑
k=1

(∇ ˜[HŶ ,Hêk]
R)(ek, X, Z,W ) +Q(R)(Z,W,X, Y )

−
n∑
l=1

Ric(el, X)R(el, Y, Z,W ) +

n∑
l=1

Ric(el, Y )R(el, X, Z,W )

−
n∑
k=1

R(Z, ek, X, Y )Ric(ek,W ) +

n∑
k=1

R(W, ek, X, Y )Ric(Z, ek)

+ (∇ ˜[HX̂,HŶ ]
Ric)(Z,W ).

Collecting the last eleven terms of right hand side as lower order terms, com-
pletes the proof. �

5. Covariant time derivative of hh-curvature of Cartan connection

In this section we are going to evaluate the covariant time derivative of hh-
curvature tensor of Cartan connection in order to establish evolution equation
for its scalar curvature. As described earlier this method is introduced in
Riemannian manifolds by Uhlenbeck.

Theorem 5.1. Let (M, g(t)) be a family of Finsler manifolds of scalar flag
curvature satisfying in the Finslerian Ricci flow equation. Then

(∇ ∂
∂t
R)(X,Y, Z,W ) =

n∑
k=1

(∇2
Hêk,Hêk

R)(X,Y, Z,W )−∇HX̂Q1

+∇HŶQ3 −
n∑
k=1

∇HêkQ5 + lower order terms.

Proof. Covariant time derivative of the hh-curvature tensor is

(∇ ∂
∂t
R)(X,Y, Z,W ) =

∂

∂t
(R(X,Y, Z,W ))−R(∇ ∂

∂t
X,Y, Z,W )
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−R(X,∇ ∂
∂t
Y, Z,W )−R(X,Y,∇ ∂

∂t
Z,W )

−R(X,Y, Z,∇ ∂
∂t
W ).

By means of Theorem 4.5 we have,

(∇ ∂
∂t
R)(X,Y, Z,W )

=

n∑
k=1

(∇2
Hêk,Hêk

R)(X,Y, Z,W )−∇HX̂Q1

−
n∑
k=1

∇HêkQ5 −Q2 +∇HŶQ3 +Q4 −Q6 +Q(R)(Z,W,X, Y )

−
n∑
k=1

(∇ ˜[HŶ ,Hêk]
R)(ek, X, Z,W ) +

n∑
k=1

(∇ ˜[HX̂,Hêk]
R)(ek, Y, Z,W )

−
n∑
l=1

Ric(el, X)R(el, Y, Z,W ) +

n∑
l=1

Ric(el, Y )R(el, X, Z,W )

−
n∑
k=1

R(Z, ek, X, Y )Ric(ek,W ) +

n∑
k=1

R(W, ek, X, Y )Ric(Z, ek)

+ (∇ ˜[HX̂,HŶ ]
Ric)(Z,W ) +

n∑
k=1

R(ek, Y, Z,W )Ric(X, ek)

+

n∑
k=1

R(X, ek, Z,W )Ric(Y, ek) +

n∑
k=1

R(X,Y, ek,W )Ric(Z, ek)

+

n∑
k=1

R(X,Y, Z, ek)Ric(W, ek).

Hence we have

(∇ ∂
∂t
R)(X,Y, Z,W )

=

n∑
k=1

(∇2
Hêk,Hêk

R)(X,Y, Z,W )−∇HX̂Q1 +∇HŶQ3 −
n∑
k=1

∇HêkQ5

−
n∑
k=1

(∇ ˜[HŶ ,Hêk]
R)(ek, X, Z,W ) +

n∑
k=1

(∇ ˜[HX̂,Hêk]
R)(ek, Y, Z,W )

+ (∇ ˜[HX̂,HŶ ]
Ric)(Z,W ) +Q(R)(Z,W,X, Y )−Q2 +Q4 −Q6.

Collecting the last seven terms of right hand side as lower order terms, com-
pletes the proof. �



DEFORMATION OF CARTAN CURVATURE ON FINSLER MANIFOLDS 2135

6. Evolution of the Ricci and scalar curvatures

Let (M, g) be a Finsler manifold of scalar flag curvature, ∇ the covariant
derivative of Cartan connection and g(t), t ∈ [0, T ) a family of metrics satis-
fying in the Finslerian Ricci flow equation. In this section we obtain evolution
equation for the Ricci curvature and scalar curvature of Cartan connection.

Theorem 6.1. Let (M, g(t)) be a family of Finsler manifolds of scalar flag
curvature satisfying in the Finslerian Ricci flow equation. We have

(∇ ∂
∂t
Ric)(Y,W ) =

n∑
k=1

(∇2
Hêk,Hêk

Ric)(Y,W )−
n∑
l=1

∇Hêl(Q1)tr +∇HŶ (Q3)tr

−
n∑
k=1

∇Hêk(Q5)tr + lower order terms,

where (Qj)tr denotes the trace of Qj.

Proof. By Theorem 5.1, we have

(∇ ∂
∂t
Ric)(Y,W ) =

n∑
k=1

(∇2
Hêk,Hêk

Ric)(Y,W )−
n∑
k=1

∇Hêk(Q5)tr +∇HŶ (Q3)tr

− (Q2)tr+(Q4)tr−(Q6)tr+

n∑
k,l=1

(∇ ˜[Hêl,Hêk]
R)(ek, Y, el,W )

−
n∑
k=1

∇Hêl(Q1)tr −
n∑

k,l=1

(∇ ˜[HŶ ,Hêk]
R)(ek, el, el,W )

+

n∑
l=1

Q(R)(el,W, el, Y ) +

n∑
l=1

(∇ ˜[Hêl,HŶ ]
Ric)(el,W ),(6.1)

where (Qj)tr denotes the trace of Qj with respect to the X and Z in Theorem
5.1.

n∑
h=1

Q(R)(eh,W, eh, Y ) =

n∑
k,l,h=1

R(ek, el, eh, Y )R(ek, el, eh,W )

+ 2

n∑
k,h,l=1

R(eh, el, eh, ek)R(ek, Y, el,W )

− 2

n∑
k,h,l=1

R(W, el, eh, ek)R(ek, Y, el, eh).

Since (M, g) is of scalar flag curvature, by means of the first Bianchi identity
(2.2) we have,

2

n∑
k,h,l=1

R(W, el, eh, ek)R(ek, Y, el, eh)
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=

n∑
k,h,l=1

R(W, el, eh, ek)(R(ek, Y, el, eh)−R(eh, Y, el, ek))

=

n∑
k,h,l=1

R(W, el, eh, ek)R(el, Y, ek, eh)

=

n∑
k,l,h=1

R(ek, el, eh,W )R(ek, el, eh, Y ).

Therefore
n∑
h=1

Q(R)(eh,W, eh, Y ) = 2

n∑
k,h,l=1

R(eh, el, eh, ek)R(ek, Y, el,W )

= 2

n∑
k,l=1

Ric(el, ek)R(ek, Y, el,W ).(6.2)

On the other hand,
n∑
l=1

(∇ ˜[Hêl,HŶ ]
Ric)(el,W ) = −

n∑
l=1

(∇ ˜[HŶ ,Hêl]
Ric)(el,W )

=

n∑
k,l=1

(∇ ˜[HŶ ,Hêk]
R)(ek, el, el,W ).(6.3)

Combining (6.1), (6.2) and (6.3) we obtain,

(∇ ∂
∂t
Ric)(Y,W ) =

n∑
k=1

(∇2
Hêk,Hêk

Ric)(Y,W )−
n∑
k=1

∇Hêk(Q1)tr

+∇HŶ (Q3)tr−
n∑
k=1

∇Hêk(Q5)tr− (Q2)tr+ (Q4)tr− (Q6)tr

+

n∑
k,l=1

(∇ ˜[Hêl,Hêk]
R)(ek, Y, el,W )

+ 2

n∑
k,l=1

Ric(el, ek)R(ek, Y, el,W ).

Collecting the last five terms of right hand side as lower order terms, completes
the proof. �

Theorem 6.2. Let (M, g(t)) be a family of Finsler manifolds of scalar flag
curvature satisfying in the Finslerian Ricci flow equation. Then the evolution
equation for scalar curvature is given by

∂

∂t
scal = (∆hscal) + 2|Ric|2 −

n∑
k=1

∇Hêk(Q5)tr2 −
n∑
l=1

∇Hêl(Q1)tr2
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+

n∑
h=1

∇Hêh(Q3)tr2 − (Q2)tr2 + (Q4)tr2 − (Q6)tr2 ,

where (Qj)tr2 denotes the trace of (Qj)tr.

Proof. By contracting the covariant time derivative of the Ricci tensor in The-
orem 6.1 with respect to Y and W we have,

∂

∂t
scal = ∇ ∂

∂t
scal =

n∑
k,l=1

(∇2
Hêk,Hêk

Ric)(el, el)

+ 2

n∑
k,h,l=1

Ric(el, ek)R(ek, eh, el, eh)

−
n∑
k=1

∇Hêk(Q5)tr2 −
n∑
l=1

∇Hêl(Q1)tr2 − (Q2)tr2

+

n∑
h=1

∇Hêh(Q3)tr2 + (Q4)tr2 − (Q6)tr2

+

n∑
k,l,h=1

(∇ ˜[Hêl,Hêk]
R)(ek, eh, el, eh),

where, (Qj)tr2 denotes the trace of (Qj)tr with respect to Y and W . Note that

n∑
k,l,h=1

(∇ ˜[Hêl,Hêk]
R)(ek, eh, el, eh) = 0 and

n∑
k,l=1

(∇2
Hêk,Hêk

Ric)(el, el) = (∆hscal).

Therefore,

∂

∂t
scal = (∆hscal) + 2|Ric|2 −

n∑
l=1

∇Hêl(Q1)tr2 +

n∑
h=1

∇Hêh(Q3)tr2

−
n∑
k=1

∇Hêk(Q5)tr2 − (Q2)tr2 + (Q4)tr2 − (Q6)tr2 .

As claimed. �

Proof of Theorem 1.1. Recall that every 2-dimensional Finsler manifold is
isotropic and its vv-curvature vanishes, see [2]. On the other hand, it is
well known for every n-dimensional Finsler manifold of non-zero constant flag
curvature the vv-curvature vanishes, cf., [2]. If K = 0, then the last six
terms in evolution equation for scalar curvature in Theorem 6.2 vanish and
therefore in any of two cases the evolution equation for scalar curvature re-
duces to ∂

∂tscal = (∆hscal) + 2|Ric|2. By non-negativity of 2|Ric|2, we have
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∂
∂tscal ≥ (∆hscal), which is an inequality on the heat type equation. By as-
sumption we have scal0 ≥ 0. The scalar curvature, scal is homogeneous of
degree zero, hence one can consider the scalar curvature as a real function on
SM . Note that compactness of the sphere bundle SM is due to the compact-
ness of M . Next using the maximum principles for scalar parabolic equation
(see, [9] pages 93 and 96) we obtain scalt ≥ 0 for all t ∈ [0, T ). This completes
the proof. �

Proof of Theorem 1.2. Let τ = min{T, n2α}, then similar to the proof of The-
orem 1.1 the last six terms in evolution equation for scalar curvature in The-
orem 6.2 vanish. Consider a function f : SM × [0, τ) −→ R, defined by
f(z, t) = scal(z, t)− nα

n−2αt . We have,

∂

∂t
f =

∂

∂t
scal − 2

n
(

nα

n− 2αt
)2.

Hence by using evolution equation for scalar curvature in isotropic Finsler man-
ifolds with constant flag curvature we have

∂

∂t
f = (∆hscal) + 2|Ric|2 − 2

n
(

nα

n− 2αt
)2

= (∆hf) + 2|Ric|2 − 2

n
(

nα

n− 2αt
)2.

Consider the tensor H = Ric − scal
n g. By |H|2 ≥ 0 we have |Ric|2 ≥ scal2

n ,
therefore

∂

∂t
f ≥ (∆hf) +

2

n
scal2 − 2

n
(

nα

n− 2αt
)2

= (∆hf) +
2

n
(scal +

nα

n− 2αt
)f.

For all p ∈ SM, f(p, 0) = scal(p, 0) − α ≥ 0, therefore by maximum principle
for scalar parabolic equations we have, f(p, t) ≥ 0 for p ∈ SM and t ∈ [0, τ),
hence infSM scalg(t) ≥ nα

n−2αt . Now if the solution of Ricci flow exist on a

time interval [0, T ) and t = n
2α ∈ [0, T ), then infSM scalg(t) = ∞, which is a

contradiction with the continuity of scalar curvature on compact sphere bundle
SM , therefore T ≤ n

2α . This completes the proof. �

We remark that as a consequence of this theorem the time T on equation
(3.1) on compact Finsler surfaces, has the upper bound 1

infSMscalg(0)
. Hence in

these manifolds scalar curvature blows up in finite time.
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