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COMPARISON THEOREMS IN FINSLER GEOMETRY
WITH WEIGHTED CURVATURE BOUNDS AND
RELATED RESULTS

BiNG-YE WU

ABSTRACT. We first extend the notions of weighted curvatures, includ-
ing the weighted flag curvature and the weighted Ricci curvature, for a
Finsler manifold with given volume form. Then we establish some basic
comparison theorems for Finsler manifolds with various weighted curva-
ture bounds. As applications, we obtain some McKean type theorems for
the first eigenvalue of Finsler manifolds, some results on weighted curva-
ture and fundamental group for Finsler manifolds, as well as an estimation
of Gromov simplicial norms for reversible Finsler manifolds.

1. Introduction

Comparison technique is a powerful tool in global analysis in differential ge-
ometry, and it has been well developed in Riemannian geometry. Among these
issues, the Laplacian comparison theorems and volume comparison theorems
are important and interesting, and one can derive the volume comparison re-
sults from Laplacian comparison theorems. Recently comparison technique has
been developed for Finsler manifolds and the relationship between curvature
and topology of Finsler manifolds has also been investigated [2, 12, 13, 14, 17].
As in the Riemannian case, the Laplacian of a smooth function on a Finsler
manifold is defined as the divergence of the gradient of the function, and it
depends on the choice of the volume form. Since there are different choices
of volume forms for given Finsler metrics, we usually need to control the S-
curvature in order to obtain Laplacian comparison theorems as well as the
volume comparison theorems.

It should be noted here that by utilizing the weighted Ricci curvature con-
dition, Ohta and Sturm [9, 10] gave another version of Laplacian comparison
theorem and volume comparison theorem, which absorb the S-curvature into
the weighted Ricci curvature assumption and remove the S-curvature in the
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conclusion. In this paper we shall continue investigations in this direction. We
first extend the notions of weighted curvatures, including the weighted flag
curvature and the weighted Ricci curvature, for a Finsler manifold with given
volume form. Our notions include Ohta’s notion of weighted Ricci curvature
as a special case. Then we shall establish some weighted Hessian comparison
theorems, Laplacian comparison theorems and volume comparison theorems
for Finsler manifolds under various weighted curvature assumptions. As their
applications, we obtain some McKean type theorems for the first eigenvalue of
Finsler manifolds, some results on weighted curvature and fundamental group
for Finsler manifolds, as well as an estimation of Gromov simplicial norms for
reversible Finsler manifolds. Our results indicate that it is quite natural to
introduce the notions of weighted curvatures from viewpoint of comparison
geometry.

2. Finsler geometry

Let (M, F) be a Finsler n-manifold with Finsler metric F' : TM — [0, 00).
Let (z,y) = (2%,y") be local coordinates on TM, and 7 : TM\0 — M the
natural projection. Unlike in the Riemannian case, most Finsler quantities are
functions of TM rather than M. The fundamental tensor g;; and the Cartan
tensor Cjji, are defined by

1 0%F?(z,y) 1 *F%(z,y)
/L" ) ::_7,, CZ P} ::_7’.
g J (:E y) 2 ayzayj ]k(.’I] y) 4 ayzayjayk

Let F;k (x,y) be the Chern connection coefficients. Then the first Chern

curvature tensor Rjikl can be expressed by

oTi, oY,

T 7 s s 7
Rj U™ 5ok Sal kst jl *ijFlsv
where =0 1= -2 —y*T7 2 Let Ryjp := g;sR,%,;, and write g, =g, (z, y)dz'®
Sut T Bzt Y ik ByT- igkl *= 9jsd; g 8y =9ij (%, Y

da Ry = Riju (x,y)daci ® dr? @ dz* @ dxt. The angular metric form h, is
defined by

1 .
hy (u,v) = gy(u,v) — FQ—(y)gy(yaU)gy(ya v), Vy,u,v € T, M with y # 0.
For a tangent plane P C T, M, let

Ry(y, u,u, y) Ry (y, u,u, y)

K(Py) =K(y;u) := =2 = Y ,
) = RO = oy, ()~ (90 (,10) — [ )]
where y,u € P are tangent vectors such that P = span{y,u}. K(P,y) is called

the flag curvature of P with flag pole y. Let

Ric(y) = i K(y; ei),
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here eq,...,en—1,e, = ¥y is a gy-orthogonormal basis for the corresponding
tangent space. Ric(y) is called the Ricci curvature of y.

Let V = v'9/0z" be a non-vanishing vector field on an open subset & C M.
One can introduce a Riemannian metric § = gy and a linear connection V"
(called Chern connection) on the tangent bundle over U as follows:

0 9]
V:ii e Ffj(x,v)w.
From the torsion freeness and almost g-compatibility of Chern connection we
have

(2.1) viY - VYV X = [X,Y],

(22) X-gv(Y,2) =gv(VXY,2) +gv(Y,VxZ) +2Cy (VX V.Y, 2),
here Cy = Cyji (7, v)dr’ ® dr? @ da®, and it satisfies
(2.3) Cy(V,X,Y)=0.

Given a Finsler manifold (M, F), the dual Finsler metric F* on M is defined

by
. )
F*(&;) = sup ==,
&)= R FY)
and the corresponding fundamental tensor is defined by
g*kl(é—) _ 182F*2(§) )
2 080G
The Legendre transformation | : TM — T*M is defined by
_ gy (Ya ')a Y 7£ 0
) = { 0, Y =0.

It is well-known that for any x € M, the Legendre transformation is a smooth
diffeomorphism from T, M\0 onto T M\0, and it is norm-preserving, namely,
F(Y)=F*((Y)),VY € TM. Consequently, ¢ (Y) = g* (I(Y)).

Now let f : M — R be a smooth function on M. The gradient of f is defined
by Vf = 171(df). Thus we have

df(X):gi(vf’X)a X eTM.

Let U = {x € M : Vf]|, # 0}. We define the Hessian H(f) of f on U as
follows:

VE e T M,

H(f)(X,Y) = XY(f) = VY'Y(f), VXY € TM|y.
It is known that H(f) is symmetric, and it can be rewritten as (see [17])
(2.4) H())(X,Y) = gvs (VY VY,

It should be noted that the notion of Hessian defined here is different from that
in [13]. In that case H(f) is in fact defined by

H(f)(X,X)=X-X-(f) - VX X(f),
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and there is no definition for H(f)(X,Y) if X # Y. The advantage of our
definition is that H(f) is a symmetric bilinear form and we can treat it by
using the theory of symmetric matrix.

Let v(t), 0 <t <1 be a geodesic with unit speed velocity field T. A vector
field J along v is called a Jacobi field if it satisfies the following equation

VEIVET +RY(J,T)T = 0.

J is called normal if gr(T,J) = 0. For vector fields X and Y along ~, the
index form I,(X,Y) is defined by

L(X,Y) = /0 l (gr(VIX,VLY) — gr(RT (X, T)T,Y)) dt.

Let r = dr(p, ) be the distance function from p € M. Suppose that r is smooth
at g€ M, and X € T,M. Then we have

(2.5) H(r)(X, X) = L,(J, J),

here v is the minimal geodesic from p to ¢, and J is the unique Jacobi field
determined by J(0) =0, J(r(q)) = X (see e.g., (4.1) of [17]).

A wolume form dp on Finsler manifold (M, F') is nothing but a global non-
degenerate n-form on M. In local coordinates we can express du as dy =
o(x)dz! A--- Adz™. For y € T,M\0, define

&t (91,7, 9))

7(y) :=log e

7 is called the distortion of (M, F,du). To measure the rate of distortion along
geodesics, we define
. d .
S(y) = 7(y) = o [r(7(t)=o
where 7(t) is the geodesic with 4(0) = y. S is called the S-curvature [12, 13], and
it is an important measure of the non-Riemannian curvature for Finsler man-
ifolds. In what follows we consider the Finsler manifold (M, F, du) equipped
with a volume form du. Let X € TM. The divergence div(X) of X is defined
as
d(X |dp) = div(X)dp.
For a given smooth function f : M — R, the Laplacian Af of f is defined by
Af =div(Vf) =div(I~'(df)). We have:

Lemma 2.1 ([17]). Let (M, F,du) be a Finsler n-manifold, and f : M - R a
smooth function on M. Then onU = {x € M : V|, # 0} we have

Af = H(f)(easea) = S(VF) = trg H(f) = S(V]),

where e1,. .., e, 15 a local gy ¢-orthonormal frame on U.
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3. Weighted Hessian comparison theorems
Motivated by Lemma 2.1 we define the weighted Hessian f[(f) of a smooth
fonU={xe€M:Vf|, #0} by

7 S(V/)

(1) HOEY) = HHEY) - = Hhe, (X7), ¥XY e TM,

then it is clear that H(f) is still a symmetric bilinear form with

(3.2) Af = trg s H(f).
In the following we shall consider the weighted Hessian of distance function

r =dp(p,-) from a fixed point p € M. We note that the gradient Vr is a unit
geodesic field where r is smooth.

Lemma 3.1. Let r = dp(p,-) be smooth at ¢ € M, and X,Y € T,M. Then
H(r)(X,Y) = H(r) (X", Y1),

where X+ := X — gy, (Vr, X)Vr.

Proof. By the definition of angular metric form it is clear that hy,(X,Y) =

hy,(X+, Y1), thus we need only to prove H(r)(X,Y) = H(r)(X+,Y1). Since
H(r) is a symmetric bilinear form, we have

H(r)(X,Y) = H@r) (Xt + g (Vr, X)Vr, Yt + gv, (Vr,Y)Vr)
= H(r)(XY") +gv (Vr, X)H(r)(Vr,Y)
+ gv (Vr,Y)H(r)(Vr, X 1)
+gv(Vr, X)gv, (Vr,Y)H(r)(Vr,Vr).
Recall that Vr is a geodesic field, by (2.4) one has
H(r)(Vr,-) = gur(Vy,Vr,-) =0,
and so we are done. O
By Lemma 3.1 we need only to consider H (r) on the normal space with

respect to the radial geodesic field Vr. Now we are ready to prove the weighted
Hessian comparison theorem as follows.

Theorem 3.2. Let (M, F,du) be a forward complete Finsler n-manifold, r =
dr(p,-), the distance function from a fixed point p. Suppose that for some
1 < N < n, the flag curvature K and S-curvature S of M satisfy
S(V) (8(V))? N-1
K(V;W — < .
VW)t o) " = DV = ) F2(V) S no1
where S is the geodesic differentiation of S. Then, for any vector field X on M,
the following inequality holds whenever r is smooth (r < w/+/c when ¢ > 0) :

()X, %) > ~—

¢, YV,WeTM,

. Cfc(T) (gV’l“(X7 X) - gvT(VT, X)Q) ’
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where

V¢ cot+/er, c>0;
cto(r) =< 1 c=0;

r?

v/—c-coth/—cr, c¢<DO.

Proof. Suppose that r is smooth at ¢ € M, and ~ : [0,]] — M is the unique
minimal geodesic from p to ¢, where | = r(q). Let J = J(r), 0 < r < [ be the
unique normal Jacobi field along v with J(0) = 0 and J(I) = X+ (q). Then by
Lemma 3.1, (2.5) and (3.1) we have

H(r)(X(q), X (q))

S(Vr)lg

(3.3) = - ——ev (X (), X ()

l
+ / [gvr(Vord, VIrd) — g (J, J)K(Vr; J)] dr.
0

On the other hand, integrating by parts we get

1
/O gvr(J,J) - S(Vr)dr

l
S(Vr)ger ()] [ — / 2g, (VY1], J)S(Vr)dr

l
= S(V)|, - gr (X (9), X (q)) — / 2g0, (VY0 J)S(Vr)dr,

which together with (3.3) yields

H(r)(X(q), X(q))

n—1

l .
(34) - /0 lgw(Vg;J’ Vord) = gvr(J,J) <K(V7«; J)+ S(VT)>

p— 1gvr(v§:J, J)S(Vr)} dr.

Plugging

285, (VY1 J)S(Vr) < 2/S(Vr)|y/gvr (. Devr (VI I, V)

< BV gert ) (0 ) - g0 (V5. VL)
into (3.4) we have
(3.5) H(r)(X(q), X (q))

l

N —1

> / { g0, (VI I, V0T
0 n*l
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| B g

=

>

f\

— [gvr (Vurd, Vrd) — c- g (J, J)] dr.

Let E4(r), —1(r), En(r) = Vr be gy,-orthonormal frame that is parallel

along Y, and El (l) ﬁi)‘](l)) Write

J(r)y=J () E(r) 4+ + I () Enoa(r), 0<r <L

Let (M,g) be a Riemannian space form of constant ¢, and V be the corre-
sponding Levi-Civita connection. Fix a normal geodesic 7 : [0,{] — M, and
construct a vector field Y along 7 by

Y(r)=J'r)Ey(r) + -+ TN () Enea(r), 0<7 <,

where Ei(r),...,E,_1(r), E,(r) = 7 be the g-orthonormal frame that is par-
allel along 7. By construction we clearly have, for any 0 < r <,

gvr (S J)(r) = (J'(r)? + -+ (J"H(r)? =g(V.Y)(r),
gvr (Vord, Vord)(r) = (J1(r)? + -+ (J" 1 (r)? = g(V5Y, VY ) (1),
thus by (3.5) we get

— l - -
()X X(@) > 5= [ [#7:5.9:7) -5V 7)) dr

(3.6) - T L(V.Y),

where I is the index form on 7. Since (M,g) has constant curvature c, the
Jacobi field J on 7 with J(0) =0 =Y (0) and J(I) = Y (1) = v/gv.-(J(1), J()) -
E1(1) is given by

Tr) = 2 - Ve (T T0) - B,
where
% sin +/ct, c>0;
s5.(t) =< t, c=0;

c<0.
Now by Index Lemma (see e.g., [2]) and (3.6) we finally obtain

A()(X (@), X(@) > 2 B(TY) > 5= 5(7,7)
= ML, 70) = Y e gen (1), )
N -1
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N -1

= ——<te(r(0)) (v (X(9), X(0)) — gvr (V7. X(9))°) -

Theorem 3.3. Let (M, F,du) be a forward complete Finsler n-manifold, r =
dr(p,-), the distance function from a fized point p. Suppose that for some
N > n, the flag curvature K and S-curvature S of M satisfy

Sv)  swpr  _N-1
(n—1F2(V) (n—1)(N-n)F2(V)~ n-1
Then, for any vector field X on M, the following inequality holds whenever r

18 smooth:

Aoy, x) < Y=L

K(V; W)+ ¢, YV,W eTM.

n_1 ' th(r) (gVT(XaX) - gvT(VT,X)Q) .
Proof. Suppose that r is smooth at ¢ € M, and let ,J be as in the proof
of Theorem 3.2. Let Y = Y(r) be a parallel vector field along v such that
Y (l) = X*(q), and construct a vector field W along ~ by
5¢(7)
= = Y
W= W) = 50,
then W(0) = 0 = J(0), W(l) = Y(I) = J(I). By Index Lemma, Lemma 3.1,
(2.5) and (3.1) we have
~ S(Vr
H)(X(0). X(0) = ~ SV igq, (x4 (g), x4 (@) + 1,(2,)
S(Vr
< - SWhego, wan, Wy + 1,ovw)

1
= gur(X (), X" (q)) {%

l
e (0~ ) KT w) dr] |

By the similar argument as in the proof of Theorem 3.2 we see that

l
_ Sibv_r)ﬂq + (Sc(ll))2 /0 ((5/0(7’))2 _ (56(7,))2 'K(Vr; W)) 0
: _ .

(sc(1))? n—1
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N -1

n—1

N-1 1 !
< e ()2 — ¢ 2 = .
~ n — 1 (Hc(l))Q /0 [(Sc(r)) c (SC(T)) } dT th(T(q))
Now the theorem follows easily. O

Theorem 3.2 and Theorem 3.3 recommend us to introduce the notions of
weighted curvatures as follows.

Definition 3.4. Let (M, F,du) be a Finsler n-manifold with volume form dy,
and y,u € T, M be linearly independent. For any N € (1,n) U (n,c0), the
weighted flag curvature is defined by
S(y) (S(y)?
Ky(y;u) = K(y;u) + — .
i) = KU+ /)~ m- DO - )
We write Ky > ¢ (resp. Ky < ¢) if Kny(y;u) > ¢ (resp. Ky (y;u) < ¢) holds
for any linearly independent vectors y,u € T, M and z € M. Similarly, given
N € (1,n) U (n,00), the weighted Ricci curvature is defined by

Ricy(y) = i Kn(y;e;) = Ric(y) + lfg((yy)) - (N(_SE,Ly));%y)’

where e1,...,e,-1,6, = Yy is a gy-orthogonormal basis for the corresponding
tangent space. We write Ricy > ¢ (resp. Ricy < ¢) if Ricy(y) = ¢ (resp.
Ricy(y) < ¢) for any nonzero y € T, M and x € M.

Remark 3.5. (1) The notion of weighted Ricci curvature Ricy(N € (n,o0))
was first introduced by Ohta from view point of curvature-dimension condition
[9]. Here we introduce the weighted Ricci curvature based on the weighted flag
curvature from view point of comparison geometry. When N € (n,00), the
notion of Ricy above coincides with that of [9].

(2) Tt is clear that

Vi ) = KOy, Jig, Riew(s) = Rieo)

thus we can define

S(y) : : S(y)

(TL 7 1)F2(y)’ Rlcoo(y) - Rlc(y) + FQ(y)a

as defined for Ricy in [10]; As for the case N = n, limy_,, Ky (y;u) or
limy_, Ricy(y) cannot be finite unless S(y)=0. In fact, when S = 0, then
the weighted flag curvature and the weighted Ricci curvature are reduced to
usual flag curvature and Ricci curvature for any N € (1,00). As a result, we
may replace the weighted curvatures by usual curvatures and put N = n in all
results of the present paper for Finsler manifolds with vanishing S-curvature.

Koo (y;u) = K(y;u) +

By using the notions of weighted curvatures we can rewrite Theorem 3.2 and
Theorem 3.3 as follows.
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Theorem 3.2'. Let (M, F,du) and r = dp(p,-) as above. Suppose that for
some 1 < N < n, the weighted flag curvature satisfies Ky < % -c. Then for

any vector field X on M, the following inequality holds whenever r is smooth
(r < mw/y/c when ¢ > 0):

(X, x) > 2=

1 cte(r) (gvr (X, X) — gvr(Vr, X)?).

Theorem 3.3'. Let (M, F,du) and r = dp(p,-) as above. Suppose that for
some N > n, the weighted flag curvature of M satisfies Ky > %@. Then, for
any vector field X on M, the following inequality holds whenever r is smooth:

Hr) (%, x) < 2=

k() (gvr(X,X) — gv, (Vr,X)?).

4. Laplacian comparison theorems

In this section we shall derive some Laplacian comparison theorems for dis-
tance functions. First of all, we have following result by (3.2) and Theorem
3.2.

Theorem 4.1. Let (M, F,du) be a forward complete Finsler n-manifold, r =
dr(p,-), the distance function from a fized point p. Suppose that for some
1 < N < n, the weighted flag curvature of M satisfies Ky < % -c. Then
the inequality Ar > (N — 1)ct.(r) holds whenever r is smooth (r < 7w/+/c when
c>0).

Secondly, the following Laplacian comparison theorem can be verified simi-
larly as Theorem 3.3 which was first obtained by [10].

Theorem 4.2. Let (M, F,du) be a forward complete Finsler n-manifold. Sup-
pose that for some N > n, the weighted Ricci curvature of M satisfies Ricy >
(N —1)c. Then Ar < (N —1) - ct.(r) holds whenever r is smooth.

To establish next comparison theorem, we need the following lemma.

Lemma 4.3. Let X be a local vector field on an open set U of p € M with
gvr(X,X)=1,gv,(Vr,X)=0. Then H(r)(X,X)~ L asr — 0%,

Proof. Let b and ¢ be the lower bound and upper bound of flag curvature on
U, respectively. Then by Hessian comparison theorem [17] we have

cto(r) < H(r)(X, X) < cty(r).

Note that H(r)(X, X) = H(r)(X, X) — Lv;) and ct.(r) ~ < asr — 07 for any

n—

¢, we easily get the result. (I

Now we are ready to prove the following Laplacian comparison theorem in
terms of upper bounds on the weighted Ricci curvature.
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Theorem 4.4. Let (M, F,du) be a forward complete Finsler n-manifold with
nonpositive flag curvature. Suppose that the weighted Ricci curvature satisfies
Ricy < (N+1—n)c <0 for somen—1 < N <n. Then Ar > (N+1—n)ct.(r)
holds whenever r is smooth.

Proof. Suppose that r is smooth at ¢ € M, and v : [0,7(q)] — M be the
unique minimal geodesic from p to q. We choose the local gv,-orthonormal
frame Fy,...,FE,_1,E, = Vr that is parallel along v, then by (2.1)-(2.4) we
have

d d ”

- (H()(Ei, Ey)) = —gvr (VEVT, B))
= gvr (VO VE Vr, Ej)
= gvr (R (Vr, E)Vr By) + gy (V5 V7 E; )
= —gv, (RVT(EZ-, Vr)Vr, Ej) —8vr (VVVTVTVT E; )

=—gv, (RVT(EZ-, Vr)Vr, E< - ngT VE Vr, Ek) gvr (VEZVT, Ej)
= —gv. (RV"(E;, Vr)Vr, E) ZH (Ei, Ey,) - H(r)(Ex, E;),

and thus

d
(4.1) - (try, H(r)) = ~Ric(Vr) - ;(H(r)(EZ—, Ej))2.
Now since M has nonpositive flag curvature, by Hessian comparison theorem
[17] we see that the eigenvalues of (H(r)(E;, E;))i<i,j<n—1 are all positive,
which together with (4.1) implies that

di(trer(r)) > —Ric(Vr) — (try, H(r))%
r
Consequently,
(4.2) diAr > —Ric(Vr) — S(Vr) — (Ar 4+ S(Vr))2.
r
Furthermore we have
N+1-n 9 n—N 9
. . < ——

(4.3) 2Ar - S(Vr) p— (S(Vr)* + Niio n(Ar)
Combining (4.2) and (4.3) it is easy to get

d 1

—Ar > —Ri - (Ar)?

AT Ricy (Vr) Nl 7n( )%,

which together with Ricy < (N + 1 — n)c yields

d 1 1 2
S YN [y ———
dr(N+1n T) ¢ (N+1n T)
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Note that
Leto(r) = e~ (et (),
we have
(4.4) 4 <;Ar - ctc(r)) > — <;Ar>2 + (cte(r))?.
dr \N+1—n N+1—n
Putting
Ar) = — Ar—cto(r), B(r) = — 2 Ar +cto(r),
N+1-—n N+1-—n
then (4.4) becomes
dA
(4.5) o + AB > 0.

By Lemma 4.3 we see that A(r) — +o00 as r — 01, thus there is € > 0 such
that A(r) > 0,Vr € (0,¢]. On the other hand, from (4.5) we have

2 (ames ([ Bes)) 20

A(r) exp ( / ' B(s)ds) > A(e) = 0.

which yields

Therefore,
Ar = (N +1—n)cte(r). 0

5. Volume comparison theorems

In this section we shall use the Laplacian comparison theorems to derive
some volume comparison theorems for Finsler manifolds.

Let (M, F,dp) be a Finsler manifold. Fix p € M, let I, = {v € T,M :
F(v) =1} be the indicatrix at p. For v € I, the cut-value c(v) is defined by

c(v) = sup{t > 0 : dr(p, exp,(tv)) = t}.
Then, we can define the tangential cut locus C(p) of p by C(p) := {c(v)v :
c(v) < oo,v € I}, the cut locus C(p) of p by C(p) = exp, C(p), and the
injectivity radius i, at p by i, = inf{c(v) : v € I, }, respectively. It is known
that C(p) has zero Hausdorff measure in M. Also, we set D, = {tv : 0 < t <
c(v),v € I} and D), = exp,D,. Let B,(R) be the forward geodesic ball of
M with radius R centered at p. The volume of B,(R) with respect to du is
defined by
vol(Bp(R)) = / du .
Bp(R)

In order to compute the volume, we need polar coordinates on D,. Let 0¢,
a =1,...,n—1be the local coordinates that are intrinsic to I,. For any q € D),
the polar coordinates of ¢ are defined by (r,0) = (r(q),0'(q),...,0" 1(q)),

where r(q) = F(v), 0%(q) = 0%(5(), and v = exp,(q). Writing dp =
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o(r,0)dr AdO* A---NO""L := o (r,0)dr AdB, by the by the definition of Laplacian
we have (see [17])

0
1 Ar = —1 .
(5.1) r 5 ogo

For r > 0, let D,(r) C I, be defined by
D,(r) ={vel,:rveDy}.

It is easy to see that D,(r1) C Dp(r2) for 11 > ry and D, (r) = I, for r < ip.
Since C(p) has zero Hausdorff measure in M, we have

vol(B,(R)) = / dp = / dp
By(R) By(R)ND,

R
:/ exp,,(du) :/ dr/ o(r,0)do.
EXP;1 (Bp(R))ND, 0 Dy (r)

For real numbers ¢ and A, let

Vea(r) = / s. (1) Ldt.
0
Now we are ready to prove the following;:

Theorem 5.1. Let (M, F,du) be a forward complete Finsler n-manifold which
satisfies Ky < % - ¢ for some 1 < N < n. Then the function

vol(B,(r))
Ven(r)

is monotone increasing for 0 < r < i,, where iy, is the injectivity radius of p.

Proof. By (5.1), Theorem 4.1 and the assumptions of the theorem, we have
0 d
o logo > (N — 1)cte(r) = . logs.(r)N 71,
thus the function
J; o(r,0)do
Sc(r)N-1

is monotone increasing about (< i,). Now by the standard argument [4], the
function

Jo Ji, o6, 0)dtdd  o1B,(r))

Jo se®N-1dt  Ven(r)

is also monotone increasing for R < iy,. O

The following theorem can be shown similarly using Theorem 4.4.
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Theorem 5.2. Let (M, F,du) be a complete and simply connected Finsler
n-manifold with nonpositive flag curvature. If the weighted Ricci curvature
satisfies Ricy < (N +1—n)e <0 for somen—1< N <n, then the function
vol(B,(r))
‘/C,N+27n(7")
1S monotone increasing.

The following theorem was first obtained in [9], and here we provide another
proof using Laplacian comparison theorem.

Theorem 5.3. Let (M, F,du) be a forward complete Finsler n-manifold. Sup-
pose that for some N > n, the weighted Ricci curvature of M satisfies Ricy >
(N —1)c. Then the function
vol(B,(r))
Ven(r)
s monotone decreasing in .

Proof. By (5.1), Theorem 4.2 and the assumptions of the theorem, we have

% logo < (N — 1)cte(r) = %bgsc(r)]v*l,

thus the function
a(r,0)

so(r)N-1
is monotone decreasing about r. Noting that D,(R) C D,(r) for R > r > 0,
we have for R > r > 0,

o o(r,0)do
% _ / %d@} / %d@
5c(r) D,(r) EC(T) D, (R) 55(7’)

a(R,0) Ib (R) o(R,0)do
df = —=
D

LRy S(R)YN=1 s (RN
namely,
po(T) o(r,0)do
Sc(r)N-t
is also monotone decreasing. Now the theorem can be verified easily. (]

A theorem due to Calabi and Yau states that the volume of any complete
noncompact Riemannian manifold with nonnegative Ricci curvature has at
least linear growth [3, 18]. This result has been generalized to Finsler manifolds
by [15], where we establish a similar result in terms of weighted Ricci curvature.
For this purpose we need the notion of reversibility for Finsler manifolds. For
a given Finsler manifold (M, F), the reversibility Ap of (M, F) is defined by
(see [11])

F(X)
Ar = XngE}v)f(\o F(-X)
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(M, F) is called reversible if Ap = 1. It is clear that the induced distance
function dr of F' satisfies

dr(p,q) < Ardr(q,p), Vp,q € M.

Now we can prove:

Theorem 5.4. Let (M, F,du) be a complete noncompact Finsler n-manifold
with Ricy = 0 for some N > n, then M must have infinite volume. Further-
more, if M has finite reversibility, then the volume vol(By,(R)) of the forward
geodesic ball has at least linear growth:

vol(B,(R)) > c(p)R.

Proof. Since M is complete and noncompact, there is a geodesic 7 : (—oo, 0] —
M such that v(0) = p, dp(y(—t2), v(—t1)) = ta — t1,Vta > ¢1 > 0. Denote by
B, (r) = {z € M : dp(x,p) < r} be the backward geodesic ball of radius r
centered at p, then by the triangle inequality it is easy to see that

(5.2) B,(1)n B;(l) C By—py(t+ 1)\ By—p(t—1), Vt>1.
Since Ricy > 0 for some N > n, by Theorem 5.3 we have

VOI(B,Y(_t) (R)) < VOI(B,Y(_t) (T))
RN = rN ’

Vr < R,

and consequently,

(5.3) vol(By (1)) = RN _ N

(5.2) and (5.3) yields

vol(By(_y(t—1)) > < (vol(By(_p(t+1)) = vol(By(_p (t—1)))

vol(B,(1) N B, (1)).

Since
(t—1)N 1

A TN =N 2N
there is a constant § > 0 such that
(t—1N

t+ DN —(t—1)N

>0t, Vt>1,

and thus
(5.4) vol(B,Y(,t) (t—1)) = 0t - vol(B,(1) N Bp_(l)).

It follows that M has infinite volume. Furthermore, if M has finite reversibility
AFr, then again by the triangle inequality we easily see that

By(—y(t—1) C By, (Ar(t = 1)) C B, (2Apt) C By(22%1),
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and which together with (5.4) yields
vol(B,(2A%:t)) = 6t - vol(B,(1) N B, (1)) := c(p) - 2A%t,

where c(p) is a constant depending on p. Letting R = 2)\%4t we obtain the
desired inequality. (I

Remark 5.5. The second conclusion of Theorem 5.4 has been verified recently
in [19] by a different argument.

6. The first eigenvalue

In this section we shall study the first eigenvalue on Finsler manifolds with
weighted bounded curvature. Let (M, F, du) be a Finsler n-manifold, Q@ C M a
domain with compact closure and nonempty boundary 9f2. The first eigenvalue
A1(9) of 2 is defined by (see [13], page 176)

F*(df))*d
FEL? o(D\{0} Jo F2dp
where L7 4(€2) is the completion of C§°(Q). If ©; C Q are bounded domains,

then A1(Q1) = A\ (Q2) > 0. Thus, if Q3 C Q3 C --- C M be bounded domains
so that |JQ; = M, then the following limit

1—00

exists, and it is independent of the choice of {€2;}. The following lemma is
crucial in this section.

Lemma 6.1 ([17]). Let (M, F,dp) be a Finsler manifold with finite reversibility
Ar, 2 C M a domain with compact closure and nonempty boundary, and X a
vector field on Q so that || X ||co = supg F(X) < 0o and infq div(X) > 0. Then

(@) > [infgdier
1 = .

227 ([ X loo
By Lemma 6.1 we can prove:

Theorem 6.2. Let (M, F,du) be a forward complete Finsler n-manifold with
finite reversibility Ap. Let By(R) be the forward geodesic ball of M with radius
R centered at p, and R < 1, where i, denotes the injectivity radius about p.
We have:

(1) if the weighted flag curvature satisfies Ky < % -¢ < 0 for some
1 < N < n, then
(N — 1)*(cte(R))?

N ’

(2) if M has nonpositive flag curvature and the weighted Ricci curvature

satisfies Ricy < (N +1—n)e <0 for somen—1< N <n, then

(N +1—n)2(cto(R))?
N '

A(Bp(R)) =

Mi(By(R)) >
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Proof. We shall only prove (1), (2) can be verified similarly. For R > ¢ > 0, let
Qe = Bp(R)\Bp(€e). Then r = dp(p,-) is smooth on €, and thus X = Vr is a
smooth vector field on Q.. Noting that F'(X) = F(Vr) =1 and divX = Ar,
we deduce from Theorem 4.1 and Lemma 6.1 that
(N —1)%(cte(R))?

4N2,

A1 (Qe) 2

Letting ¢ — 0, we get the desired inequality. ([

Mckean [7] proved that if (M, g) is a complete and simply connected Rie-

mannian n-manifold with sectional curvature K < —a?, then \; (M) > %
Afterwards, this result was extended by Ding in [5] for Riemannian manifolds
with nonpositive curvature and Ricci curvature bounded from above by a neg-
ative constant. These results has been generalized into Finsler manifolds in
[15, 17], and by Theorem 6.2 we have the following result in terms of weighted
curvatures.

Theorem 6.3. Let (M, F,du) be a forward complete and simply connected
Finsler n-manifold with finite reversibility Ap and nonpositive flag curvature.
We have:

(1) if the weighted flag curvature satisfies Ky < —%aQ(a > 0) for some
1 < N < n, then
(N —1)%a*

PPV

(2) if the weighted Ricci curvature satisfies Ricy < —(N +1—n)a?(a > 0)
for somen —1< N <n, then

A (M) >

(N +1—n)%a?
M) > —————
M (M) 4N,

7. Weighted curvature and fundamental group

In this section we shall study the relationship between weighted curvature
and fundamental group of Finsler manifolds. Let us first recall some basic
facts about universal covering space and fundamental group. Let (M, F') be
a Finsler n-manifold, and f M — M be the universal covering space. A
homeomorphism ¢ : M — M is called a deck transformation of the coving
mapping f if f oy = f. The set of deck transformations I' obviously form
a group nuder composition. One checks that the deck transformation group
I‘ acts properly dlscontlnuously on M. If we endow the pulled-back metric

= f*F on M, then f : (M F) > (M, F) is a local isometry, and it is easy
to check that each v € T' is an isometry, and (M, F') and (]T/f, ﬁ) have the same
reversibility and uniformity constant. It is also clear that if (M, F') is (forward)
complete, then so is (M, F) (see [14]).
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Given p € M, let m(M,p) be the fundamental group of M based at p,
namely, the homotopy classes of loops v : [0,1] — M € C° satisfying v(0) =
(1) = p. Tt is well-known that the deck transformation group T is isomorphic
to m1(M,p), and T' acts transitively on f~!(p) for each p € M [4]. In the
following, we shall identify 71 (M, p) with the deck transformation group I.
Given any point p € M, for each v € T" & 71 (M, p), the geometric norm |||
associated with p is defined by

vl = dz(p,7(P)),

where p is any point in the fiber f~*(p), and dg is the distance function on M
induced by F. It is known that the geometric norm ||7|| equals the length of a
shortest loop representing v € w1 (M, p), which is a geodesic loop. Also, the set
AX) ={y eT:||v| < A} is finite for any A > 0, and it is natural to propose
the following definition [16].

Definition 7.1. The counting function N (M) of the fundamental group I'
m1(M,p) of (M, F) is defined by

NQA) =AM =ty el vl <Ak
I" is said to have exponential growth if

log N (A
lim sup L()

> 0.
A—00 A

T is said to have polynomial growth of order < « if N(A\) < constant - A*.

Remark 7.2. Let TV C (M, p) be any finitely generated subgroup with a set
of generators S = {v1,...,7}. The counting function n(\) of I considered in
[1, 8, 14] is defined by

n(A) =#{y eI : [y] <A},

where || is the minimum length of v as a word in {~1,...,7%}. The advantage
of our definition is that it does not demand that I' is finitely generated.

The following lemma is crucial to study weighted curvature and fundamental
group, it can be verified by using the fundamental domain of covering mapping
[16].

Lemma 7.3. Let (M,F) be a forward complete Finsler manifold and f :
(M,F) — (M, F) denote its universal covering projection with deck transfor-
mation group I'. Fixp € M, and p € f~1(p). Then
(1) the counting function of T' satisfies
1(B5(A
(7.1) N < YUBA £ R))

< —2P2 7 YA > 0,R > 0;
vol(B,(R))
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(2) if (M, F) has finite reversibility, namely, Ap := maxgep A(z) < 00, then

(7.2) Ny s (Eﬁ(ﬁ)),
vol (B, (7))

where E,;(R) is the forward geodesic ball in (M, F) centered at p with radius
R.

Now we can prove:

Theorem 7.4. Let (M, F,du) be a forward complete Finsler n-manifold with
weighted Ricci curvature satisfying Ricy > 0 for some N > n. If there exists
p € M such that vol(B,(R)) > C-R* for some constant C and 0 < k < N, then
m1(M) has polynomial growth of order < N —k. In particular, the fundamental
group of any forward complete noncompact Finsler manifold with weighted Ricci
curvature satisfying Ricy > 0 for some N > n and finite reversibility must
have polynomial growth of order < N — 1.

Proof. Fix p € f~!(p). Then we have by Theorem 5.3,
vol(B,(R))
TZ;V <vol(By(l)), VR>1,
which together with (7.1) yields

vol(By(2R)) _ 2vol(B,(1))

N(R) < < -RNTF,
(R) vol(B,(R)) c
Thus I" 2 w1 (M) has polynomial growth of order < N — k. Now the second
assertion easily follows from Theorem 5.4. O

Theorem 7.5. Let (M, F,du) be a forward complete Finsler n-manifold with
nonpositive flag curvature and finite reversibility. Suppose one of the following
two conditions holds:

(1) the weighted flag curvature of M satisfies Ky < —% -a® for some
1 < N < n, and vol(Bp(R)) < c¢-exp((N — 1)bR) for some p e M, ¢ > 0 and
0<b<a;

(2) the weighted Ricci curvature satisfies Ricy < —(N +1 —n)a? for some
n—1< N <n, and vol(B,(R)) < c-exp((N + 1 —n)bR) for some p € M,
c>0and0<b<a.

Then w1 (M) has exponential growth.

Proof. We shall only prove (1), (2) can be verified similarly. It is clear by the
curvature assumption that the injectivity radius of the universal covering space
(M, F) is infinite, thus by Theorem 6.1 we have

vol(By(R)) __ vol(By(1))
Vo n(R) ~ Vo @)’

=d, VR>1,
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which together with (7.2) yields

og ey o8 (1 (Br (7)) s (vl (20 (25%) )

A - A A

log V_g2 (—HXF) (N—1)b logd—1
, g oge
> — A 1 AF.
3 o + y , VA>14Ap
Recall that

R inh at N-1
VfaZ,N(R):/ (sm a) it
0

a

1 R N_
> W/l exp((N — 1)at) (1 — exp(—2at))~ " dt
(1 — exp(—2a)) !
(N —1)2N-1gN
for all R > 1, we have
log N()) > (N—-1)(a—0b) n g,
A 1+ Ar A
where C'is a constant. Hence,
log N()) S (N —1)(a—0)

[exp((N = 1)aR) — exp((N —1)a)]

YA > 14 Ap,

lim su > > 0,
)\~>oop A 1+ )\F
namely, 7 (M) has exponential growth. O

Remark 7.6. Theorem 7.4 and Theorem 7.5 can be viewed as weighted curva-
ture version of corresponding results of [16]. Since we do not demand that the
fundamental group is finitely generated or the manifold is compact, they are
new even for Riemannian manifolds.

8. Gromov simplicial norms

In this last section we shall provide an upper bound for Gromov simplicial
norms of reversible Finsler manifolds in terms of weighted Ricci curvature. For
this purpose, let us first recall the notion of Gromov simplicial norms [6, 13].
Let M be a topological space, and Ci(M) the k-th complex of real singular
chains ¢ = Zl rio;, where o; : A¥ — M are k-dimensional simplices and r; are
the real numbers which are all, but finite, zero. Denote by Hy(M), the real
singular homology group of M. The L' norm on Cy(M) is defined by

Hclll = Z |Ti|a Ve = ZHO}' S Ck(M)

| -1l induces a pseudo-norm || - || in Hy(M) as follows. For a class z € Hi(M),
|z] is given by
2]l = inf llellr.



COMPARISON THEOREMS WITH WEIGHTED CURVATURE BOUNDS 623

I -]l is called the Gromov simplicial norm. Assume that M is an n-dimensional
closed oriented manifold, for the fundamental class [M] € H,(M), we set
[|M]| := [|[M]]]. The constant |M]|| is called the Gromouv simplicial volume.
Gromov prove the following

Lemma 8.1 ([6, 13]). Let (M,F) be an n-dimensional closed oriented re-

versible Finsler manifold, and m : (M,ﬁ) — (M, F) the universal covering
space with pulled back metric. Then, for any z € Hy(M),

{ A(S5z(r))

k
< k!'mi 1
21 < #aniy sup volBH(Bz(r))] volsa(z),

TEM
where Bz(r) and Sz(r) are the geodesic ball and geodesic sphere of (M, F) with
radius r centered at T respectively, volgy is the volume about to the Busemann-

Hausdorff volume form, and A(Sz(r)) = “volgy(Bz(r)). In particular,

[ A(S3(r))

M| < n!mi Il (M).
||M]] < n!min sup VOlBH(Bz(T))] volg s (M)

TeM
By Lemma 8.1 and the volume comparison theorem (Theorem 5.3) we can
easily obtain:

Theorem 8.2. Let (M,F) be an n-dimensional closed oriented reversible
Finsler manifold endowed with the Busemann-Hausdorff volume form. Sup-
pose that weighted Ricci curvature satisfies Ricy > —(N — 1) for some N > n.
Then for any z € Hi(M) one has

2] < kYN — 1)*volpw ().
In particular,
1M < n!(N —1)"volgu (M).
Proof. By Theorem 5.3 we see that the function
volp (Bz(r))
J sinh™ "¢t
is non-increasing. Noticing that A(Sz(r)) = diTvolBH(Bg(r)), we have
A(Sz(r)) . sinh™~tr
volgg (Bz(r)) fOT sinh™ 1 tdt”

Since N1
h V-
lim ——— = N1,
r—oo [sinh™ T tdt
the conclusion follows easily by Lemma 8.1. O
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