• Title/Summary/Keyword: fixed-point theorems

Search Result 431, Processing Time 0.017 seconds

CONVERGENCE THEOREMS OF MIXED TYPE IMPLICIT ITERATION FOR NONLINEAR MAPPINGS IN CONVEX METRIC SPACES

  • Kyung Soo, Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.903-920
    • /
    • 2022
  • In this paper, we propose and study an implicit iteration process for a finite family of total asymptotically quasi-nonexpansive mappings and a finite family of asymptotically quasi-nonexpansive mappings in the intermediate sense in convex metric spaces and establish some strong convergence results. Also, we give some applications of our result in the setting of convex metric spaces. The results of this paper are generalizations, extensions and improvements of several corresponding results.

CONVERGENCE OF MODIFIED VISCOSITY INEXACT MANN ITERATION FOR A FAMILY OF NONLINEAR MAPPINGS FOR VARIATIONAL INEQUALITY IN CAT(0) SPACES

  • Kyung Soo Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.4
    • /
    • pp.1127-1143
    • /
    • 2023
  • The purpose of this paper, we prove convergence theorems of the modified viscosity inexact Mann iteration process for a family of asymptotically quasi-nonexpansive type mappings in CAT(0) spaces. We also show that the limit of the modified viscosity inexact Mann iteration {xn} solves the solution of some variational inequality.

EXISTENCE RESULTS FOR POSITIVE SOLUTIONS OF NON-HOMOGENEOUS BVPS FOR SECOND ORDER DIFFERENCE EQUATIONS WITH ONE-DIMENSIONAL p-LAPLACIAN

  • Liu, Yu-Ji
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.135-163
    • /
    • 2010
  • Motivated by [Science in China (Ser. A Mathematics) 36 (2006), no. 7, 721?732], this article deals with the following discrete type BVP $\LARGE\left\{{{\;{\Delta}[{\phi}({\Delta}x(n))]\;+\;f(n,\;x(n\;+\;1),{\Delta}x(n),{\Delta}x(n + 1))\;=\;0,\;n\;{\in}\;[0,N],}}\\{\;{x(0)-{\sum}^m_{i=1}{\alpha}_ix(n_i) = A,}}\\{\;{x(N+2)-\;{\sum}^m_{i=1}{\beta}_ix(n_i)\;=\;B.}}\right.$ The sufficient conditions to guarantee the existence of at least three positive solutions of the above multi-point boundary value problem are established by using a new fixed point theorem obtained in [5]. An example is presented to illustrate the main result. It is the purpose of this paper to show that the approach to get positive solutions of BVPs by using multifixed-point theorems can be extended to treat nonhomogeneous BVPs. The emphasis is put on the nonlinear term f involved with the first order delta operator ${\Delta}$x(n).

STRONG AND Δ-CONVERGENCE OF A FASTER ITERATION PROCESS IN HYPERBOLIC SPACE

  • AKBULUT, SEZGIN;GUNDUZ, BIROL
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.209-219
    • /
    • 2015
  • In this article, we first give metric version of an iteration scheme of Agarwal et al. [1] and approximate fixed points of two finite families of nonexpansive mappings in hyperbolic spaces through this iteration scheme which is independent of but faster than Mann and Ishikawa scheme. Also we consider case of three finite families of nonexpansive mappings. But, we need an extra condition to get convergence. Our convergence theorems generalize and refine many know results in the current literature.

A HYBRID METHOD FOR A COUNTABLE FAMILY OF LIPSCHITZ GENERALIZED ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS AND AN EQUILIBRIUM PROBLEM

  • Cholamjiak, Prasit;Cholamjiak, Watcharaporn;Suantai, Suthep
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.335-351
    • /
    • 2013
  • In this paper, we introduce a new iterative scheme for finding a common element of the fixed points set of a countable family of uniformly Lipschitzian generalized asymptotically quasi-nonexpansive mappings and the solutions set of equilibrium problems. Some strong convergence theorems of the proposed iterative scheme are established by using the concept of W-mappings of a countable family of uniformly Lipschitzian generalized asymptotically quasi-nonexpansive mappings.

ABSORBING PAIRS FACILITATING COMMON FIXED POINT THEOREMS FOR LIPSCHITZIAN TYPE MAPPINGS IN SYMMETRIC SPACES

  • Gopal, Dhananjay;Hasan, Mohammad;Imdad, Mohammad
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.385-397
    • /
    • 2012
  • The purpose of this paper is to improve certain results proved in a recent paper of Soliman et al. [20]. These results are the outcome of utilizing the idea of absorbing pairs due to Gopal et al. [6] as opposed to two conditions namely: weak compatibility and the peculiar condition initiated by Pant [15] to ascertain the common fixed points of Lipschitzian mappings. Some illustrative examples are also furnished to highlight the realized improvements.

COMMON FIXED POINTS FOR WEAKENED COMPATIBLE MAPPINGS SATISFYING THE GENERALIZED ϕ-WEAK CONTRACTION CONDITION

  • Jain, Deepak;Kumar, Sanjay;Jung, Chahn Yong
    • The Pure and Applied Mathematics
    • /
    • v.26 no.2
    • /
    • pp.99-110
    • /
    • 2019
  • In this paper, we prove some common fixed point theorems for pairs of weakened compatible mappings (subcompatible and occasionally weakly compatible mappings) satisfying a generalized ${\phi}-weak$ contraction condition involving various combinations of the metric functions. In fact, our results improve the results of Jain et al.. Also we provide an example for validity of our results.

CONVERGENCE THEOREMS OF THE ITERATIVE SEQUENCES FOR NONEXPANSIVE MAPPINGS

  • Kang, Jung-Im;Cho, Yeol-Je;Zhou, Hai-Yun
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.321-328
    • /
    • 2004
  • In this paper, we will prove the following: Let D be a nonempty of a normed linear space X and T : D -> X be a nonexpansive mapping. Let ${x_n}$ be a sequence in D and ${t_n}$, ${s_n}$ be real sequences such that (i) $0\;{\leq}\;t_n\;{\leq}\;t\;<\;1\;and\;{\sum_{n=1}}^{\infty}\;t_n\;=\;{\infty},\;(ii)\;(a)\;0\;{\leq}\;s_n\;{\leq}\;1,\;s_n\;->\;0\;as\;n\;->\;{\infty}\;and\;{\sum_{n=1}}^{\infty}\;t_ns_n\;<\;{\infty}\;or\;(b)\;s_n\;=\;s\;for\;all\;n\;{\geq}\;1\;and\;s\;{\in}\;[0,1),\;(iii)\;x_{n+1}\;=\;(1-t_n)x_n+t_nT(s_nTx_n+(1-s_n)x_n)\;for\;all\;n\;{\geq}\;1.$ Then, if the sequence {x_n} is bounded, then $lim_{n->\infty}\;$\mid$$\mid$x_n-Tx_n$\mid$$\mid$\;=\;0$. This result improves and complements a result of Deng [2]. Furthermore, we will show that certain conditions on D, X and T guarantee the weak and strong convergence of the Ishikawa iterative sequence to a fixed point of T.

EXISTENCE, MULTIPLICITY AND UNIQUENESS RESULTS FOR A SECOND ORDER M-POINT BOUNDARY VALUE PROBLEM

  • Feng, Yuqiang;Liu, Sang-Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.483-492
    • /
    • 2004
  • Let : [0, 1] $\times$ [0, $\infty$) $\longrightarrow$ [0, $\infty$) be continuous and a ${\in}$ C([0, 1], [0, $\infty$)),and let ${\xi}_{i}$ $\in$ (0, 1) with 0 < {\xi}$_1$ < ${\xi}_2$ < … < ${\xi}_{m-2}$ < 1, $a_{i}$, $b_{i}$ ${\in}$ [0, $\infty$) with 0 < $\Sigma_{i=1}$ /$^{m-2}$ $a_{i}$ < 1 and $\Sigma_{i=1}$$^{m-2}$ < l. This paper is concerned with the following m-point boundary value problem: $\chi$″(t)+a(t) (t.$\chi$(t))=0,t ${\in}$(0,1), $\chi$'(0)=$\Sigma_{i=1}$ $^{m-2}$ /$b_{i}$$\chi$'(${\xi}_{i}$),$\chi$(1)=$\Sigma_{i=1}$$^{m-2}$$a_{i}$$\chi$(${\xi}_{i}$). The existence, multiplicity and uniqueness of positive solutions of this problem are discussed with the help of two fixed point theorems in cones, respectively.

FINITE-DIFFERENCE BISECTION ALGORITHMS FOR FREE BOUNDARIES OF AMERICAN OPTIONS

  • Kang, Sunbu;Kim, Taekkeun;Kwon, Yonghoon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.1-21
    • /
    • 2015
  • This paper presents two algorithms based on the Jamshidian equation which is from the Black-Scholes partial differential equation. The first algorithm is for American call options and the second one is for American put options. They compute numerically free boundary and then option price, iteratively, because the free boundary and the option price are coupled implicitly. By the upwind finite-difference scheme, we discretize the Jamshidian equation with respect to asset variable s and set up a linear system whose solution is an approximation to the option value. Using the property that the coefficient matrix of this linear system is an M-matrix, we prove several theorems in order to formulate a bisection method, which generates a sequence of intervals converging to the fixed interval containing the free boundary value with error bound h. These algorithms have the accuracy of O(k + h), where k and h are step sizes of variables t and s, respectively. We prove that they are unconditionally stable. We applied our algorithms for a series of numerical experiments and compared them with other algorithms. Our algorithms are efficient and applicable to options with such constraints as r > d, $r{\leq}d$, long-time or short-time maturity T.