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ABSTRACT. This paper presents two algorithms based on the Jamshidian equation which is

from the Black-Scholes partial differential equation. The first algorithm is for American call

options and the second one is for American put options. They compute numerically free bound-

ary and then option price, iteratively, because the free boundary and the option price are coupled

implicitly.

By the upwind finite-difference scheme, we discretize the Jamshidian equation with respect

to asset variable s and set up a linear system whose solution is an approximation to the option

value. Using the property that the coefficient matrix of this linear system is an M -matrix, we

prove several theorems in order to formulate a bisection method, which generates a sequence of

intervals converging to the fixed interval containing the free boundary value with error bound

h. These algorithms have the accuracy of O(k + h), where k and h are step sizes of variables

t and s, respectively. We prove that they are unconditionally stable.

We applied our algorithms for a series of numerical experiments and compared them with

other algorithms. Our algorithms are efficient and applicable to options with such constraints

as r > d, r ≤ d, long-time or short-time maturity T .

1. INTRODUCTION

The main stream of earlier option contracts was concerned with European options, but the

option markets nowadays has been related to American options. Unlike European option,
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American option may be exercised at any moment before its maturity time. Hence at each

time t, it is very important to know the option price depending on the asset price s. Addition-

ally, we have to know the optimal asset price s in order to decide whether to exercise the option

right.

As an approach to these questions, the Black-Scholes equation has been used widely [2].

Most of the models for pricing American options have been derived from parabolic free bound-

ary problems which are related with the Black-Scholes equations or with variational inequal-

ities [7, 8]. At each time t, let S(t) be the asset price optimal to exercise the option right.

The curve S(t) is called the free boundary or the optimal exercise curve of the option. Op-

tion price depends on the time variable t and the underlying asset variable s. Because option

price and free boundary are the solutions of implicitly coupled equations, option price can not

be computed without knowing the free boundary S(t). Unfortunately, no explicit formula of

the free boundary has been obtained yet. In option markets, Binomial Tree methods [3] have

been widely used in setting the option price, which is assumed to be independent of the free

boundary.

Assume that the underlying asset pays a continuous dividend d > 0 with a risk-free interest

rate r > 0. Let T denote the date of maturity, σ > 0 the constant volatility of the underlying

asset, and E the exercise price. Let C(t, s) be the price of an American call option and Sc(t)
its free boundary. Similarly, let P (t, s) be the price of an American put option and Sp(t) be its

free boundary.

The Jamshidian equation [5] option offers a particular approach to pricing the values of

American options. This equation is a non-homogeneous Black-Scholes equation of a parabolic

partial differential equation in the infinite domain D∞ = {(t, s) ∣∣ 0 < t < T, 0 < s < ∞}.
Let H(x) be the Heaviside function

H(x) =

{
0 for x < 0,
1 for x ≥ 0.

(1.1)

Let (x)+ = max(x, 0). It is shown in [5, 6] that the American call-option price C(t, s) with

exercise price E satisfies the Jamshidian equation

∂C

∂t
+

1

2
σ2s2

∂2C

∂s2
+ (r − d)s

∂C

∂s
− rC = −(ds− rE)+H(s− Sc(t)) on D∞, (1.2)

subject to the terminal condition of the pay-off function

C(T, s) = max(s− E, 0).

Similarly, the American put-option price P (t, s) with exercise price E satisfies the Jamshid-

ian equation

∂P

∂t
+

1

2
σ2s2

∂2P

∂s2
+ (r − d)s

∂P

∂s
− rP = −(rE − ds)+H(Sp(t)− s) on D∞, (1.3)
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subject to the terminal condition of the pay-off function

P (T, s) = max(E − s, 0).

A semi-explicit formula for an American call option was presented in Ševčoviç [10]. For

numerical approximations to C(t, s), the Jamshidian equation (1.2) was solved explicitly with

already somehow [6] known approximations to the free boundary.

Because of the relation of C(t, s) and Sc(t) in the Jamshidian equation (1.2), the option

price should be computed in connection with the values of the free boundary, which is the most

difficult part in pricing an American option. This problem has been overcome partially by

Kholodnyi [6]. In his work, he derived a semilinear Black-Scholes equation for an American

option and proved the existence and the uniqueness of the solution.

In this paper, unlike other explicit numerical schemes, Algorithm 3.10 for American call

options computes iteravively the implicit solution (C(t, s), Sc(t)) of System (2.4)– (2.5). A

bisection method implementing fixed-point iterations computes the free boundary Sc(t) and

then finite-difference upwind methods computes the option price C(t, s). The free boundary

Sc(t) is treated as a fixed point.

This paper is organized as follows. In Section 2, we shall review the Jamshidian equation

for American options to derive an implicitly coupled system of the Jamshidian equation and

the free boundary equation. The existence and the uniqueness of the solution to this system

was analyzed in Kholodnyi [6].

In Section 3, by using the upwind finite-difference scheme, we shall discretize the Jamshid-

ian equation and set up a linear system. The coefficient matrix of this system is an M -matrix.

We shall use the theory of M -matrix to derive Theorem 3.9, which generates a sequence of

intervals converging to the fixed interval which contains Sc(t) with error bound h. The free

boundary Sc(t) is treated as a fixed point. We shall present two main algorithms. Algorithm

3.10 is for American call options and Algorithm 3.11 is for American put options.

In Section 4, we shall report the numerical results computed by our algorithms for a series

of American call and put options to compare the algorithms with the method in Ševčoviç [10]

and the binomial tree method. We tested various model problems with such as r > d, r ≤ d,

long-time and short-time maturities.

In Section 5, we shall make some remarks on the conclusion and discuss about application

of our algorithms to some other research area.

2. THE IMPLICIT SYSTEM FOR OPTION PRICE AND FREE BOUNDARY

In this section, after reviewing the Jamshidian equation [5] which comes from the Black-

Scholes equation, we shall derive an implicitly coupled system of the option price and the free

boundary.
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Let us introduce some properties of the free boundary Sc(t) for an American call-option

price C(t, s). Although any explicit formula of Sc(t) has not yet been known, there are several

well-known results [1, 10, 12]:

(P1) At the maturity time T , the free boundary Sc(t) is independent of σ and satisfies the

condition Sc(T ) = max(E,
r

d
E).

(P2) The free boundary Sc(t) is a nonincreasing function.

(P3) The free boundary Sc(t) can be defined by Sc(t) = inf{ s ∣∣ C(t, s) = s− E for s ≥
Sc(T )}.

(P4) The free boundary Sc(t) has the lower and upper bounds such that

Sc(T ) ≤ Sc(t) ≤ Su =
λE

λ− 1
for t ∈ [0, T ],

where

λ =
σ2/2− r + d+

√
(σ2/2− r + d)2 + 2σ2r

σ2
.

By the definition in Property (P3), the free boundary Sc(t) divides the infinite region D∞
into Dc and De as in Figure 1; D∞ = Dc ∪De ([1, 12]), where

Dc = {(t, s) ∣∣ 0 < t < T, 0 < s < Sc(t)},
De = {(t, s) ∣∣ 0 < t < T, Sc(t) ≤ s < ∞)}.

We call De the exercise region where early exercise of option right is optimal and Dc the
continuation region where it is not optimal.

On the continuation region Dc, the call-option price C(t, s) is greater than the pay-off func-

tion and is the solution of the Black–Scholes equation:{
C(t, s) > max(s− E, 0), (t, s) ∈ Dc.

∂C
∂t + 1

2σ
2s2 ∂

2C
∂s2

+ (r − d)s∂C∂s − rC = 0, (t, s) ∈ Dc .
(2.1)

On the exercise region De, the call-option price C(t, s) is the pay-off function; C(t, s) =
s− E. Plugging the pay-off function s− E into C(t, s) of the above equation, we have

∂C

∂t
+

1

2
σ2s2

∂2C

∂s2
+ (r − d)s

∂C

∂s
− rC = rE − ds.

Hence, we have{
C(t, s) = s− E, (t, s) ∈ De,

∂C
∂t + 1

2σ
2s2 ∂

2C
∂s2

+ (r − d)s∂C∂s − rC = rE − ds, (t, s) ∈ De.
(2.2)
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0 T
0

Su

Exercise region: C(t,s) = s − E
BS C(t,s) = rE − ds 

Free boundary S
c
(t)

Continuation region: C(t,s)>(s − E)+
BS C(t,s) = 0 

FIGURE 1. Free boundary: continuation region and exercise region.

From Properties (P1)– (P2), it follows that for s ≥ Sc(t)

ds− rE ≥ dSc(T )− rE ≥ 0. (2.3)

Hence,

rE − ds = −(ds− rE) ≤ 0, (t, s) ∈ De.

Using the Heaviside function H in (1.1) and the free boundary Sc(t), we can represent the

differential equations in (2.1)– (2.2) by one equation over one region D∞ = Dc ∪De:

∂C

∂t
+

1

2
σ2s2

∂2C

∂s2
+ (r − d)s

∂C

∂s
− rC = −(ds− rE)+H(s− Sc(t)), (t, s) ∈ D∞.

This equation is called the Jamshidian equation [5, 6]. It can not be solved until the free

boundary Sc(t) is given.

For computations we need to restrict the infinite domain D∞ to a finite domain. Using the

upper bound Su in Property (P4), let us choose a sufficiently large underlying asset value S
with S > Su and take the finite domain

D = {(t, s) ∣∣ 0 < t < T, 0 < s < S} ⊃ Dc.

Since C(t, s) > s− E on Dc, for practical computations we replace the definition of the free

boundary in Property (P3) by

Sc(t) = inf{ s ∣∣ C(t, s) ≤ s− E for s ≥ Sc(T )}, (t, s) ∈ D,
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where “=” is replaced by “≤”.

In this paper, we shall consider the following system with the Jamshidian equation and the

free boundary, for (t, s) ∈ D,

∂C

∂t
+

1

2
σ2s2

∂2C

∂s2
+ (r − d)s

∂C

∂s
− rC = (rE − ds)H(s− Sc(t)), (2.4)

Sc(t) = inf{ s ∣∣ C(t, s) ≤ s− E for s ≥ Sc(T )}, (2.5)

subject to the terminal and boundary conditions

Sc(T ) = max(E,
r

d
E), C(T, s) = max(s− E, 0) for 0 ≤ s ≤ S, (2.6)

C(t, 0) = 0, C(t, S) = S − E, for 0 ≤ t ≤ T. (2.7)

Let φ be the function defined by

φ(u) = inf{ s ∣∣ C(t, s;u) ≤ s− E for s ≥ Sc(T )}, (2.8)

where

∂C(t, s;u)

∂t
+

1

2
σ2s2

∂2C(t, s;u)

∂s2
+ (r − d)s

∂C(t, s;u)

∂s
−rC(t, s;u) = (rE − ds)H(s− u).

Then, the free boundary Sc(t) in (2.4)– (2.5) is a fixed point of φ such that Sc(t) = φ(Sc(t)).

Similarly for the American put option, we consider the system coupled with the Jamshidian

equation and the free boundary, for (t, s) ∈ D,

∂P

∂t
+

1

2
σ2s2

∂2P

∂s2
+ (r − d)s

∂P

∂s
− rP = (ds− rE)H(Sp(t)− s), (2.9)

Sp(t) = sup{ s ∣∣ P (t, s) ≤ E − s for s ≤ Sp(T )}, (2.10)

subject to the terminal and boundary conditions

Sp(T ) = min(E,
r

d
E), P (T, s) = max(E − s, 0) for 0 ≤ s ≤ S, (2.11)

P (t, 0) = E, P (t, S) = 0, for 0 ≤ t ≤ T. (2.12)

Let ψ be the function defined by

ψ(u) = sup{ s ∣∣ P (t, s;u) ≤ E − s for s ≤ Sp(T )}, (2.13)

where

∂P (t, s;u)

∂t
+

1

2
σ2s2

∂2P (t, s;u)

∂s2
+ (r − d)s

∂P (t, s;u)

∂s
−rP (t, s;u) = (ds− rE)H(u− s).

Then, the free boundary Sp(t) in (2.9)– (2.10) is a fixed point of ψ such that Sp(t) = ψ(Sc(t)).
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3. NUMERICAL ALGORITHMS

In this section, we shall present Algorithm 3.10 to solve numerically the implicit system

(2.4)– (2.7) of American call options. Also, we shall present Algorithm 3.11 for American put

options. These algorithms are unconditionally stable.

Let us choose two positive integers N and M . Let k = T/N and h = S/M as the step

sizes of time variable t and underlying asset variable s, respectively. Divide the interval [0, T ]
into N sub-intervals with the grid points

tj = jk, j = N,N − 1, · · · , 0, (3.1)

and the interval [0, S] into M sub-intervals with the grid points

si = ih, i = 0, 1, · · · ,M. (3.2)

Plugging the forward-difference scheme

∂C(tj , si)

∂t
=

C(tj+1, si)− C(tj , si)

k
+O(h),

the central-difference scheme

∂2C(tj , si)

∂s2
=

C(tj , si−1)− 2C(tj , si) + C(tj , si+1)

h2
+O(h2),

and the up-wind scheme

∂C(tj , si)

∂s
= Dν(C(tj , si)) +O(k),

where

Dν(C(tj , si)) =

⎧⎪⎪⎨
⎪⎪⎩

C(tj , si+1)− C(tj , si)

h
if r ≥ d,

C(tj , si)− C(tj , si−1)

h
if r < d,

(3.3)

into the Jamshidian equation (2.4) and neglecting the O-small terms, we approximate the sys-

tem (2.4)– (2.7) by the following discrete system (3.4)– (3.7) for unknown values cji ≈ C(tj , si)

and sjc ≈ Sc(tj) with already known values cj+1
i and sj+1

c : for j = N − 1, · · · , 0 and

i = 1, 2 · · · ,M − 1

cj+1
i − cji

k
+

1

2
σ2s2i

cji−1 − 2cji + cji+1

h2
+ (r − d)siD

ν(cji )− rcji

= (rE − dsi)H(si − sjc), (3.4)

sjc = min{ si
∣∣ cji ≤ si − E for si ≥ sj+1

c }, (3.5)
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with terminal and boundary conditions

sNc = Sc(tN ) = max(E,
r

d
E), cNi = max(si − E, 0), (3.6)

cj0 = 0, cjM = sM − E, for j = N − 1, . . . , 1, 0. (3.7)

Since local truncation errors are O(h2), O(h), and O(k), the finite-difference equation (3.4) is

consistent with the Jamshidian equation (2.4) if ∂2C/∂t2(t, s) and ∂4C/∂s4(t, s) are continu-

ous.

Collecting the like terms of cji−1, cji , and cji+1 in the left-side and all the other terms in the

right-side gives the linear equations, for i = 1, 2, . . . ,M ,

ai,i−1c
j
i−1 + aiic

j
i + ai+1,ic

j
i+1 = cj+1

i + kbi, (3.8)

where

ai,i−1 = k

(
−σ2i2

2
+ min(0, r − d)i

)
,

aii = 1 + k
(
σ2i2 + |r − d|i+ r

)
,

ai,i+1 = k

(
−σ2i2

2
−max(0, r − d)i

)
,

bi = (dsi − rE)H(si − sjc).

Using the boundary conditions in (3.7), let us add two more equations

cj0 = cj+1
0 and cjM = cj+1

M . (3.9)

Let cj = (0, cj1, . . . , c
j
M−1, sM − E)t and b = (0, b1, . . . , bM−1, 0)

t be the column vectors

such that

cj =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
...

cji
...

sM − E

⎤
⎥⎥⎥⎥⎥⎥⎦
, b =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
...

(dsi − rE)H(si − sjc)
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Using the equations (3.8) and (3.9), we set up the following system (3.10)– (3.11) with un-

known value sjc and vector cj : for j = N − 1, N − 2, . . . , 0

Acj = cj+1 + kb(sjc), (3.10)

sjc = min{ si
∣∣ cji ≤ si − E for si ≥ sj+1

c }, (3.11)
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where A = (aij) is the tri-diagonal (M + 1)× (M + 1) matrix such that

A =

⎡
⎢⎢⎢⎢⎣

1 0
a10 a11 a12

ai−1,i aii ai,i+1

aM−1,M−2 aM−1,M−1 aM−1,M

0 1

⎤
⎥⎥⎥⎥⎦ ,

In order to solve the above system for sjc and cj , let us introduce the theory of M -matrix [9].

Let x = (x1, . . . , xn)
t be a column vector and L = (lij) be an n× n matrix. Let

x ≥ 0 if and only if xi ≥ 0 for all i,

and

L ≥ 0 if and only if lij ≥ 0 for all i and j.

Definition 3.1. ([9]) A matrix L is an M -matrix, if its entries lij satisfy lij ≤ 0 for i 	= j
and its inverse L−1 exists with L−1 ≥ 0.

Let us use the vector and matrix norms defined by

‖x‖∞ = max
1≤i≤n

|xi|, ‖L‖∞ = max
1≤i≤n

n∑
j=1

|lij |.

The following theorem can be found in [9].

Theorem 3.2. (M-criterion, [9]) Let the matrix L satisfy lij ≤ 0 for i 	= j. Then L is an
M -matrix if and only if there exists a vector e > 0 such that Le > 0. Furthermore, if L is an
M -matrix, then there exists its inverse matrix L−1 with

‖L−1‖∞ ≤ ‖e‖∞
mini(Le)i

.

Theorem 3.3. The matrix A in (3.10) is an M -matrix. Furthermore, there exists its inverse
matrix A−1 with ‖A−1‖∞ ≤ 1.

Proof. Clearly, the tridiagonal matrix A satisfies the condition aij ≤ 0 for i 	= j. For the

column vector e = (1, 1, · · · , 1)t > 0, since r ≥ 0 we have

Ae ≥ (1, 1 + rk, . . . , 1 + rk, 1)t > 0.

Hence, by Theorem 3.2 the matrix A is an M -matrix. Furthermore,

‖A‖∞ ≤ ‖e‖∞
mini(Ae)i

=
‖e‖∞
(Ae)1

= 1.

This completes the proof. �
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Since A is nonsingular, the linear system system (3.10) can be written as

cj = A−1cj+1 + kA−1b(sjc), j = N − 1, N − 2, . . . , 0. (3.12)

Theorem 3.4. The problem to compute cj by (3.12) is unconditionally stable with respect to
the time-marching iteration j. This means that the initial error does not grow as j increases.
The step sizes k and h can be taken independently.

Proof. It is enough to prove that the spectral radius λ(A) ≤ 1. By Theorem 3.3, the matrix

A is an M -matrix with ‖A−1‖∞ ≤ 1. It is well-known that λ(A) ≤ ‖A−1|∞. Hence,

λ(A) ≤ 1. This completes the proof. �

3.1. Fixed-Point Iteration and Fixed Interval. Define a column vector b(u) with a variable

u by

b(u) =

⎡
⎢⎢⎢⎢⎢⎣

0
(ds1 − rE)H(s1 − u)

...

(dsM−1 − rE)H(sM−1 − u)
0

⎤
⎥⎥⎥⎥⎥⎦ . (3.13)

Specifying the dependency on variables cj and sjc, we rewrite the system (3.10)– (3.11) as{
cj(sjc) = A−1cj+1 + kA−1b(sjc),

sjc(c
j) = min{si

∣∣ cji (sjc) ≤ si − E for si ≥ Sc(T )},
(3.14)

for each j = N − 1, N − 2, · · · , 0.

Define the function φh of variable u by

φh(u) = min{ si
∣∣ cji (u) ≤ si − E for si ≥ Sc(T )}, (3.15)

where

cj(u) = A−1cj+1 + kA−1b(u) (3.16)

is defined with the terminal and boundary conditions in (3.6)– (3.7). Then, the free boundary

sjc is a fixed point of the function φh such that sjc = φh(s
j
c).

As for American put options, the free boundary sjp is a fixed point of the function ψh defined

by

ψh(u) = max{ si
∣∣ pji (u) ≤ E − si for si ≤ Sp(T )}, (3.17)

where

pj(u) = A−1pj+1 + kA−1b(u) (3.18)

is defined with the terminal and boundary conditions in (2.11)– (2.12).

Remark. Note that φh(u) and ψh(u) belong to the finite set {s0, s1, . . . , sM}.
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Theorem 3.5. For each u ≥ Sc(T ), the column vector cj(u) in (3.16) becomes positive:

cj(u) ≥ 0, j = N − 1, · · · , 1, 0. (3.19)

Proof. By (3.6), we have cN ≥ 0. Suppose that cj+1 ≥ 0 for j = N − 1, N − 2, . . . , 0.

From (2.3),

dsi − rE ≥ 0 if si ≥ u ≥ Sc(T ), i = 1, 2, . . . ,M − 1. (3.20)

This gives

bji (u) = (dsi − rE)H(si − u)

=

{
dsi − rE if si ≥ u,
0 if si < u,

≥ 0.

Consequently, bj(u) ≥ 0 for u ≥ Sc(T ). From Theorem 3.3, A is an M -matrix. Hence,

A−1 > 0. Therefore,

cj(u) = A−1(cj+1 + kbj(u)) ≥ 0.

This complete the proof. �

Theorem 3.6. (Inverse-Monotone) Let u1 ≥ Sc(T ) and u2 ≥ Sc(T ) be two numbers. If
u1 ≤ u2, then

cj(u1) ≥ cj(u2), j = N − 1, · · · , 1, 0. (3.21)

Proof. By (2.3), we have dsi − rE ≥ 0 for si ≥ u1. Hence,

bji (u1)− bji (u2) = (dsi − rE){H(si − u1)−H(si − u2)}
=

{
dsi − rE if u1 ≤ si < u2,
0 otherwise,

≥ 0,

for each i = 1, 2, . . . ,M − 1.

Thus, the inequality A−1 ≥ 0 gives

cj(u1)− cj(u2) = kA−1
(
bj(u1)− bj(u2)

)
= kA−1

(
0, bj1(u1)− bj1(u2), . . . , b

j
M−1(u1)− bjM−1(u2), 0

)t
≥ 0,

for each j = N − 1, N − 2, . . . , 0. This completes the proof. �
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Theorem 3.7. (Fixed Interval Theorem) Let ξ be the fixed point at time tj of the function φ in
(2.8). If h and k are sufficiently small, then there exists an interval [hq, h(q + 1)] = [sq, sq+1]
which has the properties:

ξ ∈ [sq, sq+1] and φh(u) ∈ [sq, sq+1] for each u ∈ [sq, sq+1]. (3.22)

This interval [sq, sq+1] is called the fixed interval of φh.

Proof. Since ξ is a fixed point of φ, there exists a number δ > 0 such that, for each δ1 < δ,

φ(u) ∈ [ξ − δ1, ξ + δ1] for each u ∈ [ξ − δ1, ξ + δ1].

Note that the component cji of the vector cj approximates C(tj , si) with error bound O(k+h).
Hence, if k and h are sufficiently small, then there exists a positive number δ2 with δ2 < δ1
such that

φh(u) ∈ [ξ − δ2, ξ + δ2] for each u ∈ [ξ − δ2, ξ + δ2].

For each h, there exists an unique interval [sq, sq+1] that contains ξ. Since the interval is

contained in [ξ − δ2, ξ + δ2] for sufficiently small h, we may assume that φh[sq, sq+1] ⊂
[sq, sq+1]. This completes the proof. �

Let us define the distance between an interval and a number ζ by

‖[a, b]− ζ‖∞ = max
w∈[a,b]

|w − η|.

Theorem 3.8. (Bracket Theorem) Let k and h be sufficiently small and [sq, sq+1] be the fixed
interval of φh. Then at time tj , we have

ξ ∈ [sq, sq+1] ⊂ [min(u, φ(u))− h, max(u, φ(u)) + h] for each u ≥ Sc(T ). (3.23)

Proof. Since both ξ and φh(ξ) are in the fixed interval [sq, sq+1],

sq ≤ ξ ≤ sq+1 and sq ≤ φh(ξ) ≤ sq+1.

(i) If u ∈ [sq, sq+1], then both u and φh(u) are in the fixed interval [sq, sq+1]. Hence,

[sq, sq+1] ⊂ [min(u, φ(u))− h, max(u, φ(u)) + h].

(ii) If Sc(T ) ≤ u < sq, then u ≤ ξ. By the inverse-monotone theorem 3.6, we have

φh(ξ) ≤ φh(u). Thus sq+1 ≤ φh(ξ) + h ≤ φh(u) + h. Hence,

[sq, sq+1] ⊂ [u, φh(u) + h] ⊂ [u− h, φ(u) + h].

(iii) If sq+1 < u, then ξ ≤ u. Thus φh(u) ≤ φh(ξ). Since φh(u)− h ≤ φh(ξ)− h ≤ sq,

[sq, sq+1] ⊂ [φ(u), u+ h] ⊂ [φ(u)− h, u+ h].
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Consequently, we have

[sq, sq+1] ⊂ [min(u, φ(u))− h, max(u, φ(u)) + h].

This completes the proof. �

3.2. Bisection Method. Choose a number u0 with Sc(T ) ≤ u0 ≤ S as an initial approxima-

tion to ξ = Sj
c and let I0 = [a0 − h, b0 + h] where

a0 = min(u0, φh(u0)) and b0 = max(u0, φh(u0)).

Then by (3.23) in Theorem 3.8, ξ ∈ [sq, sq+1] ⊂ I0.

Choose the mid point of I0 and denote it by u0 = (a0 + b0)/2. Again by (3.23) in Theorem

3.8, we have ξ ∈ [sq, sq+1] ⊂ [min(u0, φ(u0))− h, max(u0, φh(u0)) + h]. Hence,

ξ ∈ [sq, sq+1] ⊂ ([min(u0, φ(u0))− h, max(u0, φh(u0)) + h] ∩ I0)

If u0 < φh(u0), then set a1 = u0 and b1 = b0; otherwise, set a1 = a0 and b1 = u0. Let

I1 = [a1 − h, b1 + h], then ξ ∈ [sq, sq+1] ⊂ I1 ⊂ I0. Continuing this process n times, we

obtain a sequence of intervals {I0, I1, I2, . . . In} such that

ξ ∈ [sq, sq+1] ⊂ In ⊂ In−1 ⊂ · · · ⊂ I0, (3.24)

where In = [an−h, bn+h]. Since bn−an = (b0−a0)/2
n, we have |In| = |[an−h, bn+h]| =

(b0 − a0)/2
n + 2h. So far we have proved the following theorem.

Theorem 3.9. (Bisection Method) If h and k are sufficiently small, then the intervals in (3.24)
have the properties:

(i) |In| = (b0 − a0)/2
n + 2h for each n = 1, 2, . . . .

(ii) Since ξ ∈ In, ‖In − ξ‖∞ ≤ |In| for each n = 1, 2, . . . .

Now, we formulate the main algorithm 3.10, which implements the bisection method in

Theorem 3.9 to produce numerical values of sjc and cj , where sjc ≈ Sc(tj) and cji ≈ C(tj , si).

Algoritm 3.10. (Americal call option)

for j = N − 1, · · · , 1, 0
Choose an initial approximation u0 with Sc(T ) ≤ u0 ≤ S;
Compute cj(u0);
Compute φh(u0);
ua := min(u0, φh(u0));
ub := max(u0, φh(u0));
while (ub − ua ≥ ε)

uc := (ua + ub)/2;
Compute cj(uc);
Compute φh(uc);
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if (uc < φh(uc))
ua := uc;

else
ub := uc;

end
uc := (ua + ub)/2;
sjc := uc;
Compute cj(uc);
end

Since the free boundary Sc(t) is a nondecreasing function of t, sj+1
c ≥ Sc(T ). Thus at time

tj , the already computed value sj+1
c is recommended as a good initial approximation u0.

For American put options, we formulate the following algorithm:

Algoritm 3.11. (American put option)

for j = N − 1, · · · , 1, 0
Choose an initial value u0 with 0 < u0 ≤ Sp(T );
Compute pj(u0);
Compute ψh(u0);
ua := min(u0, ψh(u0));
ub := max(u0, ψh(u0));
while (ub − ua ≥ ε)

uc := (ua + ub)/2;
Compute pj(uc);
Compute ψh(uc);
if (uc < ψh(uc))

ua := uc;
else

ub := uc;
end

uc := (ua + ub)/2;
sp(tj) := uc;
Compute pj(uc);
end

4. NUMERICAL EXPERIMENTS

In this section, we tested Algorithm 3.10 and Algorithm 3.11 for American options with

various parameters as well as with short-time maturity T and long-time maturity T . We shall

report the numerical outputs computed by these Algorithms and compare them with the outputs

computed by other methods. All numerical computations were done with C-Language. Most of
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the comparisons were done together with Binomial Tree method, which is popular for pricing

American options.

Using the outputs done with American call options, we present Tables 1– 4 and Figures 2–

5. And also, with American put option, we present Table 5 and Figure 6. In Figures 2– 6, all

graphs have been plotted by linear interpolations obtained with numerical values on the grid

points.

4.1. Numerical Results for American Call Option. In Table 1, in the upper block we dupli-

cate the numerical outputs out of [10], where computations were done for parameters σ = 0.2,

r = 0.1, d = 0.05, E = 10, and the maturity T = 1. The free boundary value Sc(0) = 22.3754
was reported there. To compare Algorithm 3.10 with the algorithm in [10] fairly, we took the

same parameters σ, r, d, E, and T . With the numbers S = 25, M = 200, N = 200, and

ε = 0.5h, we tested Algorithm 3.10 and got the numerical value s0c = 22.4401 of the free

boundary Sc(0). In the lower block, we present the numerical outputs computed by Algorithm

3.10 and the output done by Binomial Tree method [4] with 100 depth of the tree.

In Figure 2, we plot the graphs of the output computed by Algorithm 3.10, with numerical

values of free boundary Sc(t) in the left-side, and with numerical values of option price C(0, s)
in the right-side. We plot together four graphs of free boundary obtained with M = N = 200,

400, 800, and 1600. For M = N = 1600 we had the numerical value sc(0) = 22.3833 of the

free boundary Sc(0).

TABLE 1. An American call option: numerical values of C(0, s).

method \ s 15 18 20 21 22.3754

Method of [10] (Table 1, [10]) 5.15 8.09 10.03 11.01 12.37

Trinomial Tree (Table 1, [10]) 5.15 8.09 10.03 11.01 12.37

Other Finite Difference (Table 1, [10]) 5.49 8.48 10.48 11.48 12.48

Analytic Approximation (Table 1, [10]) 5.23 8.10 10.04 11.02 12.38

method \ s 15 18 20 21 22.4401

Algorithm 3.10 5.2316 8.0936 10.0304 11.0106 12.4399

Binomial Tree 5.2308 8.0932 10.0301 11.0105 12.4401

Comparing the numerical values in Table 1, we see that the outputs of our Algorithm 3.10 are

likely best among all the methods for pricing the American call option. Since the algorithm uses

tridiagonal systems, it is fast and accurate. We see that the values C(0, s) done by Algorithm

3.10 are as accurate as those by Binary Tree.

In Figure 2, the graphs of the free boundary are non-increasing. They have staircases, but

seem to converge with the expected O(k + h)-error bound. For large asset variable s > E, the

graph of the price C(0, s) is sufficiently close to that of the pay-off function max(s− E, 0).
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FIGURE 2. An American call option: numerical values of Sc(t) and of C(0, s)
by Algorithm 3.10.

4.2. Numerical Results for Long-time American Call Option. We tested Algorithm 3.10

for a long-time American call option, with the numbers T = 100, S = 30, M = 30000,

N = 40000, and ε = 0.5h. We took the parameters σ = 0.2, r = 0.1, d = 0.05 and E = 10.

Property (P4) produced the upper bound Su = 26.4339 of the free boundary Sc(t). On the

other hand, Algorithm 3.10 produced the numerical value s0c = 26.4346 of the free boundary

Sc(0).

In Table 2, Algorithm 3.10 produced the numerical values of C(0, s) as accurately as Bi-

nomial Tree method did with 5000 depth of the tree. Algorithm 3.10 seems to be reliable and

stable for the numerical computations a long maturity T .

In Figure 3, Algorithm 3.10 plots graphs for numerical values for the free boundary Sc(t)
and the option price C(0, s). The graph of Sc(t) is non-increasing. For large asset variable

s > E, the graph of C(0, s) is sufficiently close to that of the pay-off function. Algorithm 3.10

behave correctly for the long-time American call option.

TABLE 2. A long-time American call option: numerical values of C(0, s).

method \ s 15 18 21 24 26.4346

Algorithm 3.10 6.6061 8.8573 11.3497 14.0690 16.4346

Binomial Tree 6.6042 8.8551 11.3484 14.0675 16.4346
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FIGURE 3. A long-time American call option: numerical values of Sc(t) and

of C(0, s) by Algorithm 3.10.

4.3. Numerical Results for Short-time American Call Option. We tested Algorithm 3.10

for a short-time American call option with numbers T = 1
365 , S = 25, M = N = 5000,

ε = 0.5h. The short-time behavior of Sc(t) for r > d is known in [12] as

Sc(t) ≈ rE

d

(
1 + ξ0

√
1

2
σ2(T − t) + · · ·

)
for ξ0 = 0.9034. (4.1)

We took parameters σ = 0.2, r = 0.1, d = 0.05, and E = 10. Algorithm 3.10 produced the

numerical value s0c = 20.1336 of Sc(0), while Approximation (4.1) did Sc(0) = 20.1337.

In Table 3, Algorithm 3.10 produced numerical values of C(0, s) as accurately as Binomial

Tree method did with 5000 depth of the tree.

In Figure 4, the graph of Sc(t) obtained by Algorithm 3.10 is non-increasing and close within

the accuracy to the graph done by Approximation (4.1). Algorithm 3.10 behaves correctly for

the short-time American call option.

TABLE 3. A short-time American call option: numerical values of C(0, s).

method \ s 10 12 15 18 20.1336

Algorithm 3.10 0.04244 2.00110 5.00069 8.00027 10.1336

Binomial Tree 0.04244 2.00110 5.00068 8.00027 10.1336
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FIGURE 4. A short-time American call option: numerical values of Sc(t) by

Algorithm 3.10 and Approximation (4.1)

4.4. Numerical Results for American Call Option with r < d. We tested Algorithm 3.10

for an American call option with the parameters σ = 0.45, r = 0.05, d = 0.1, and E = 10.

In this case r < d. We took the numbers T = 1, S = 20, M = N = 2000, and ε = 0.5h.

Algorithm 3.10 produced the numerical value s0c = 17.5073 of the free boundary Sc(0).

In Table 4, Algorithm 3.10 produced numerical values of C(0, s) as accurate as Binomial

Tree method with 1000 depth of the tree.

In Figure 5, the numerical values of Sc(t) and C(0, s) computed by Algorithm 3.10 behave

correctly for the American call option with r < d

TABLE 4. An American call option for r < d: numerical values of C(0, s).

method \ s 8 10 12 15 17 17.5073

Algorithm 3.10 0.6393 1.5085 2.7441 5.1372 7.0052 7.5073

Binomial Tree 0.6392 1.5082 2.7443 5.1372 7.0052 7.5073

4.5. Numerical Results for American Put Option. Finally, we tested Algorithm 3.11 for the

American put option in the case r > d. We took parameters σ = 0.35, r = 0.07, d = 0.01
(r > d), E = 10, and numbers T = 1, S = 30.0, M = N = 3000, ε = 0.5h. Algorithm 3.11

produced the numerical value s0p = 6.6048 of the free boundary Sp(0).

In Table 5, the numerical values of P (0, s) computed by Algorithm 3.11 are as accurate as

those computed by Binomial Tree method with 1000 depth of the tree.
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FIGURE 5. An American call option for r < d: numerical values of Sc(t) and

of C(0, s) by Algorithm 3.10.

In Figure 6, the graph of numerical values of Sp(t) is non-decreasing. when s is small

with s < E, the graph of numerical values of P (0, s) is close to that of the pay-off function

max(E − s, 0) . Algorithm 3.11 behaves correctly for the American put option with r > d.

TABLE 5. An American put option for r > d: numerical values of P (0, s) by

Algorithm 3.11.

method \ s 6.6048 7 9 10 11 12

Algorithm 3.11 3.3952 3.0183 1.5967 1.1347 0.7968 0.5542

Binomial Tree 3.3952 3.0182 1.5966 1.1344 0.7968 0.5542

5. CONCLUSIONS

In this paper, we present two numerical algorithms. Algorithm 3.10 is for American call

options and Algorithm 3.11 is for American put option. Those algorithms compute numeri-

cal values of option price and free boundary. We showed that the system is unconditionally

stable. The option-price values are computed by the linear system derived by an upwind finite-

difference scheme to the Jamshidian equation (2.4), with O(k + h)-error bound. The free

boundary values related with the option price are computed by a bisection method, which gen-

erates a sequence of intervals converging to the fixed interval containing the free boundary

value within the error h.

Algorithms 3.10 is applicable to American call options not only with a wide range of param-

eters r and d but also with short-time and long-time maturities. It produced numerical values
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FIGURE 6. An American put option for r > d: numerical values of Sp(t) and

of P (0, s) by Algorithm 3.11.

of option price and free boundary as accurately and efficiently as Binomial Tree method did.

Also, Algorithm 3.11 for an American put option showed the same performance.

Both algorithms are applicable to the volatility depending on time variable t and asset-price

variable s. Hence, these algorithms can be used in estimating the local volatility with market

data of option prices.
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