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Abstract. The purpose of this paper, we prove convergence theorems of the modified
viscosity inexact Mann iteration process for a family of asymptotically quasi-nonexpansive
type mappings in CAT (0) spaces. We also show that the limit of the modified viscosity
inexact Mann iteration {xn} solves the solution of some variational inequality.

1. Introduction

Let C be a nonempty subset of a metric space (X, d) and Y be a nonempty
subset of C.

(1) The mapping T : C → C is said to be nonexpansive respect to Y if for
each x ∈ C and y ∈ Y,

d(Tx, Ty) ≤ d(x, y).

If Y = C, T is called nonexpansive and if Y = F (T ) = {x ∈ C : Tx =
x}, T is called quasi-nonexpansive.

(2) The mapping T is said to be asymptotically nonexpansive respect to
Y if there exists a sequence {kn} of positive real numbers such that
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kn → 1 and for all x ∈ C and y ∈ Y,
d(Tnx, Tny) ≤ knd(x, y).

If Y = C, T is called asymptotically nonexpansive and if Y = F (T ),
T is called asymptotically quasi-nonexpansive.

(3) The mapping T is said to be asymptotically nonexpansive type respect
to Y if

lim sup
n→∞

sup
y∈Y

(d(Tnx, Tny)− d(x, y)) ≤ 0,

for all x ∈ C. If Y = C, T is called asymptotically nonexpansive type
and if Y = F (T ), T is called asymptotically quasi-nonexpansive type.

It is clear that nonexpansive mappings(quasi-nonexpansive mappings) and
asymptotically nonexpansive mappings(asymptotically quasi-nonexpansive ma-
ppings) are asymptotically nonexpansive type mappings (resp. asymptotically
quasi-nonexpansive type mappings).

(4) The sequence {Tn} of self mappings on C is called a family of asymptot-
ically nonexpansive mappings respect to Y if for each Ti, there exists a
sequence {kn,i} of positive real numbers such that kn,i → 1, as n→∞,
and for all x ∈ C and y ∈ Y,

d(Tni x, T
n
i y) ≤ kn,id(x, y).

If Y = C, the sequence {Tn} is called a family of asymptotically nonex-
pansive mappings and if Y =

⋂∞
n=1 F (Tn), the sequence {Tn} is called

a family of asymptotically quasi-nonexpansive mappings.

(5) The sequence {Tn} of self mappings on C is called a family of asymp-
totically nonexpansive type mappings respect to Y if each Ti satisfies

lim sup
n→∞

sup
y∈Y

(d(Tni x, T
n
i y)− d(x, y)) ≤ 0,

for all x ∈ C. If Y = C, the sequence {Tn} is called a family of asymp-
totically nonexpansive type mappings and if Y =

⋂∞
n=1 F (Tn), the

sequence {Tn} is called a family of asymptotically quasi-nonexpansive
type mappings.

(6) A mapping f : C → C is called contractive respect to Y with coefficient
k ∈ (0, 1) if for each x ∈ C and y ∈ Y,

d(f(x), f(y)) ≤ kd(x, y).

If Y = C, f is called a contraction with coefficient k ∈ (0, 1). f has a
unique fixed point when C is a nonempty, closed, and subset of a com-
plete metric space was guaranteed by Banach’s contraction principle
[2].
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The existence theorems of fixed points and convergence theorems for various
mappings in CAT (0) spaces have been investigated by many authors [1, 8, 10,
12, 17], [19]-[24], [27], [29]-[34].

Let us to introduce the CAT (0) spaces.

Let (X, d) be a metric space. A geodesic path joining p1 ∈ X to p2 ∈ X (or,
a geodesic from p1 to p2) is a mapping g from a closed interval [0, l] ⊂ R to X
such that g(0) = p1, g(l) = p2, and

d(g(t), g(t′)) = |t− t′|, ∀ t, t′ ∈ [0, l].

In particular, g is an isometry and d(p1, p2) = l. The image α of g is said
to be a geodesic segment (or, metric segment) joining p1 and p2. When it is
unique, this geodesic segment is denoted by [p1, p2]. The space (X, d) is called
a geodesic space if every two points of X are joined by a geodesic segment, and
X is called uniquely geodesic segment if there is exactly one geodesic segment
joining p1 and p2 for each p1, p2 ∈ X. A subset Y ⊆ X is called convex if Y
includes every geodesic segment joining any two of its points.

A geodesic triangle 4(p1, p2, p3) is a geodesic metric space (X, d) consists
of three vertices of 4(the points p1, p2, p3 ∈ X) and the edges of 4(a geodesic
segment between each pair of vertices). A comparison triangle for the geodesic
triangle 4(p1, p2, p3) in (X, d) is a triangle 4̄(p1, p2, p3) = 4(p̄1, p̄2, p̄3) in R2

such that

dR2(p̄i, p̄j) = d(pi, pj), i, j ∈ {1, 2, 3}.

A comparison triangle for the geodesic triangle always exists(see, [4], [30]).

A geodesic metric space is called a CAT (0) space(this term is due to Gro-
mov [15] and it is an acronym for Cartan, Aleksandrov and Toponogov) if all
geodesic triangles of appropriate size satisfy the following CAT (0) comparison
axiom.

Let 4 be a geodesic triangle in (X, d) and let 4̄ ⊂ R2 be a comparison
triangle for 4. Then 4 is said to satisfy the CAT (0) inequality if for
all vertices p1, p2 ∈ 4 and all comparison points p̄1, p̄2 ∈ 4̄,

d(p1, p2) ≤ dR2(p̄1, p̄2).

Let p, p1, p2 are points in CAT (0) space, if p0 is the midpoint of the segment
[p1, p2], which we will denote by p1⊕p2

2 , then the CAT (0) inequality implies

d2
(
p,
p1 ⊕ p2

2

)
= d2(p, p0) ≤

1

2
d2(p, p1) +

1

2
d2(p, p2)−

1

4
d2(p1, p2).

This inequality is called the (CN) inequality ([6]).
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Remark 1.1. A geodesic metric space (X, d) is a CAT (0) space if and only
if satisfies the (CN) inequality (cf. [4, p.163]).

The above (CN) inequality has been extended as

d2(p, αp1 ⊕ (1− α)p2) ≤ αd2(p, p1) + (1− α)d2(p, p2)

− α(1− α)d2(p1, p2), ∀ p, p1, p2 ∈ X
(CN∗)

for all 0 ≤ α ≤ 1 ([12]).

In the recent years, CAT (0) spaces have attracted many researchers as
they treated a very important role in different directions of geometry and
mathematics (see [4], [5], [7], [14], [23]). Some examples of CAT (0) spaces are
pre-Hilbert spaces (see [4]), R-trees (see [23]), Euclidean buildings (see [5]), the
complex Hilbert ball with a hyperbolic metric (see [14]), Hadamard manifolds
and many others. Complete CAT (0) spaces are often called Hadamard spaces
(see [23]).

It is well known that a normed linear space satisfies the (CN) inequality if
and only if it satisfies the parallelogram identity, that is, it is a pre-Hilbert
space ([4]). Hence it is not so unusual to have an inner product-like notion in
Hadamard spaces. In [3], they introduced the concept of quasilinearization as
follows:

Let us usually denote a pair (x, y) ∈ X2 = X×X by −→xy and call it a vector.
Then quasilinearization is defined as a mapping 〈·, ·〉 : X2 ×X2 → R by

〈−→xy,−→uv〉 =
1

2
(d2(x, v) + d2(y, u)− d2(x, u)− d2(y, v)), ∀x, y, u, v ∈ X.

It is easily seen that

〈−→xy,−→uv〉 = 〈−→uv,−→xy〉, 〈−→xy,−→uv〉 = −〈−→yx,−→uv〉
and

〈−→xy,−→uv〉 = 〈−→xw,−→uv〉+ 〈−→wy,−→uv〉
for all x, y, u, v, w ∈ X. We say that X satisfies the Cauchy-Schwarz inequality
if

〈−→xy,−→uv〉 ≤ d(x, y)d(u, v), ∀x, y, u, v ∈ X. (1.1)

Remark 1.2. A geodesically connected metric space is a CAT (0) space if and
only if it satisfies the Cauchy-Schwarz inequality([3, Corollary 3]).

In [10], they introduced the concept of duality mapping in CAT (0) spaces,
by using the concept of quasilinearization, and studied its relation with subd-
ifferential. Also they proved a characterization of metric projection in CAT (0)
spaces as follows.
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Theorem 1.3. ([10, Theorem 2.4]) Let C be a nonempty convex subset of a
complete CAT (0) space X. Then

p = PCx ⇔ 〈−→yp,−→px〉 ≥ 0, ∀ y ∈ C
for all x ∈ X and p ∈ C.

Let C be a nonempty closed subset of a CAT (0) space X and let T : C → C
be an asymptotically nonexpansive type mapping. The Krasnoselski-Mann
iteration starting from x1 ∈ C is defined by

xn+1 = αnT
n(xn)⊕ (1− αn)xn, n ≥ 1, (1.2)

where {αn}is a sequence in [0, 1]. In 2011, Zhang and Cui [35] consider the
convergence of the above iteration (1.2) for continuous mappings of asymptot-
ically nonexpansive mappings.

In 2016, Ranjbar and Khatibzadeh [29] extended the results of Zhang and
Cui [35] to a family of asymptotically quasi-nonexpansive mappings in the
setting of complete CAT (0) spaces. They consider the sequence given by the
modified inexact Mann iteration

xn+1 = αnPyn ⊕ (1− αn)TnnPyn, d(yn, xn) ≤ en, x0 ∈ C, (1.3)

where {Tn} is a family of asymptotically nonexpansive type self-mappings
on a closed and convex subset C of a complete CAT (0) space X, {αn} ⊂
[0, 1], {en} ⊂ R and P is the nearest point projection on C. They prove 4-
convergence of the sequence given by (1.3) to be a common fixed point of the
sequence {Tn} under appropriate assumptions on {αn} and {en} in complete
CAT (0) spaces.

In 2015, using the concept of quasilinearization, Wangkeeree et al. [34]
proved the strong convergence theorems of the following Moudafi’s viscosity
iterations for an asymptotically nonexpansive mapping T : for given a contrac-
tion mapping f defined on C and 0 < αn < 1, let xn ∈ C be the unique fixed
point of the contraction x 7→ αnf(x)⊕ (1− αn)Tnx, that is,

xn = αnf(xn)⊕ (1− αn)Tnxn, ∀n ≥ 1 (1.4)

and x1 ∈ C is arbitrary chosen and

xn+1 = αnf(xn)⊕ (1− αn)Tnxn, ∀n ≥ 1. (1.5)

They proved the iterative schemes {xn} defined by (1.4) and (1.5) strongly
convergent to the same point x̄ ∈ F (T ) with x̄ = PF (T )f(x̄) which is the
unique solution of the variational inequality

〈
−−−→
x̄f(x̄), xx̄〉 ≥ 0, x ∈ F (T ),

where F (T ) = {x : Tx = x}.
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The purpose of this paper is to prove convergence theorems of the modified
viscosity inexact Mann iteration process

xn+1 = αnf(Pyn)⊕ (1− αn)Tnn (Pyn),

d(yn, xn) ≤ en,
x0 ∈ C (1.6)

for a family of asymptotically quasi-nonexpansive type mappings {Tn} in
CAT (0) spaces, where f is given contraction mapping and P is the nearest
point projection on C. We also show that the limit of the modified viscosity
inexact Mann iteration {xn} generated by (1.6) solves the solution of some
variational inequality.

2. Preliminaries

Throughout this paper, N denotes the set of all positive integers. Let C
be a nonempty subset of a metric space (X, d). F :=

⋂∞
n=1 F (Tn), where

F (Tn) = {x : Tnx = x} denotes the set of fixed points of Tn.

We write (1 − t)p1 ⊕ tp2 for the unique point p in the geodesic segment
joining from p1 to p2 such that

d(p, p1) = td(p1, p2) and d(p, p2) = (1− t)d(p1, p2).

We also denote by [p1, p2] the geodesic segment joining from p1 to p2, that is,
[p1, p2] = {(1− t)p1⊕ tp2 : t ∈ [0, 1]}. A subset C of a CAT (0) space is convex
if [p1, p2] ⊂ C for all p1, p2 ∈ C.

Now, we give the concept of 4-convergence and its some basic properties.

Kirk and Panyanak [24] insisted the concept of 4-convergence in CAT (0)
spaces that was introduced by Lim [25] in 1976 is very similar to the weak
convergence in a Banach space setting.

Let {xn} be a bounded sequence in CAT (0) spaces X. For p ∈ X, we set

r(p, {xn}) = lim sup
n→∞

d(p, xn).

The asymptotic radius Ar({xn}) of {xn} is given by

Ar({xn}) = inf {r(p, {xn}) : p ∈ X}

and the asymptotic center Ac({xn}) of {xn} is the set

Ac({xn}) = {p ∈ X : r(p, {xn}) = Ar({xn})} .

It is well known that asymptotic center Ac({xn}) consists of exactly one point
(see, e.g., [11, Proposition 7, p.767]) in a complete CAT (0) space.
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Definition 2.1. ([24]) A sequence {xn} in a complete CAT (0) space X is said
to 4-converge to x ∈ X if x is the unique asymptotic center of {un} for every
subsequence {un} of {xn}, that is, Ac({un}) = {x}. In this case one can write

xn
4−→ x or 4− lim

n→∞
xn = x

and call x the 4-limit of {xn}.

The concept of4-convergence has been studied by many authors and extend
the notion of weak convergence of Hilbert space to CAT (0) spaces.

Lemma 2.2. ([12]) Let X be a CAT (0) space, p1, p2, z ∈ X and t ∈ [0, 1].
Then

d2(tp1 ⊕ (1− t)p2, z) ≤ td2(p1, z) + (1− t)d2(p2, z)− t(1− t)d2(p1, p2).

Lemma 2.3. ([28]) Let {an}, {bn}, {cn} and {λn} are nonnegative sequences
such that

an+1 ≤ (1 + λn)an + bn, n ≥ 1

with
∑∞

n=1 λn < ∞ and
∑∞

n=1 bn < ∞. Then limαn exists. Moreover, if
lim infn→∞ αn = 0, then limn→∞ an = 0.

Lemma 2.4. ([24]) Every bounded sequence in a complete CAT (0) space al-
ways has a 4-convergent subsequence.

Remark 2.5. In a CAT (0) space, strong convergence in the metric implies
4-convergence (see, [17, 19]).

Lemma 2.6. ([17, Theorem 2.6]) Let X be a complete CAT (0) space, {xn}
be a sequence in X and x ∈ X. Then {xn} 4-converges to x if and only if

lim sup
n→∞

〈−−→xxn,−→xy〉 ≤ 0, ∀ y ∈ X.

The following two useful lemmas can be found in [34].

Lemma 2.7. ([34]) Let X be a complete CAT (0) space. Then the following
inequality holds

d2(p, r) ≤ d2(q, r) + 2〈−→pq,−→pr〉, ∀ p, q, r ∈ X.

Lemma 2.8. ([34]) Let X be a CAT (0) space. For any l ∈ (0, 1) and x, y ∈ X,
let

xl = lx⊕ (1− l)y.
Then, for all u, v ∈ X,
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(i) 〈−→xlu,−→xlv〉 ≤ l〈−→xu,−→xlv〉+ (1− l)〈−→yu,−→xlv〉,
(ii) 〈−→xlu,−→xv〉 ≤ l〈−→xu,−→xv〉+ (1− l)〈−→yu,−→xv〉 and
〈−→xlu,−→yv〉 ≤ l〈−→xu,−→yv〉+ (1− l)〈−→yu,−→yv〉.

3. Main results

In this section, we prove the convergence of the modified viscosity inexact
Mann iteration {xn} generated by (1.6) such that the family {Tn} of asymp-
totically (quasi-)nonexpansive type self-mappings on subset C in a CAT (0)
space (X, d) satisfies the following condition:

For subsequence {Tnj} of {Tn} and {xnj} ⊂ C such that

xnj

4−→ x and d(xnj , T
nj
nj xnj )→ 0.

Then x ∈ F =
∞⋂
n=1

F (Tn). (3.1)

Theorem 3.1. Suppose that C is a closed and convex subset of a complete
CAT (0) space (X, d) and {Tn} is a family of asymptotically nonexpansive
type self-mappings on C such that F :=

⋂∞
n=1 F (Tn) 6= ∅. Let {αn} ⊂ [0, 1],

{en} ⊂ [0,∞) and {yn} ⊂ X be sequences such that the modified viscosity
inexact Mann iteration {xn} is generated by (1.6). Suppose

∑∞
n=1 en < ∞

and {αn} ⊂ [a, b] with a, b ∈ (0, 1). Then we have the following statements.

(i) Let {Tn} be a sequence of asymptotically nonexpansive type mappings
such that the condition (3.1) is satisfied. Set

cni = max{0, supx,y∈C(d(Tni x, T
n
i y)− d(x, y))}.

If
∑∞

n=1 cnn <∞,
∑∞

n=1 αn <∞, d(xn, xn+1) = o(αn) and limn→∞
cnn
αn

= limn→∞
en
αn

= 0, then {xn} is convergent to q ∈ F ;

(ii) Let en ≡ 0 and {Tn} be a sequence of asymptotically quasi-nonexpansive
type mappings such that the condition (3.1) is satisfied. Set

cni = max{0, sup{(d(Tni x, T
n
i p)− d(x, p)) : x ∈ C, p ∈ F}.

If
∑∞

n=1 cnn <∞,
∑∞

n=1 αn <∞, d(xn, xn+1) = o(αn) and limn→∞
cnn
αn

= limn→∞
en
αn

= 0, then {xn} is convergent to q ∈ F . Moreover,

x∗ = PFf(x∗),

which is equivalent to the following variational inequality

〈
−−−−−→
x∗f(x∗),

−−→
xx∗〉 ≥ 0, ∀x ∈ F =

∞⋂
n=1

F (Tn). (3.2)



Convergence of modified viscosity inexact Mann iteration for variational inequality1135

Proof. Let {Tn} be a sequence of asymptotically quasi-nonexpansive type map-
pings. Suppose q ∈ F ⊂ C. Then

d(xn+1, q) = d(αnf(Pyn)⊕ (1− αn)Tnn (Pyn), q)

≤ αnd(f(Pyn), f(q)) + αnd(f(q), q) + (1− αn)d(Tnn (Pyn), q)

≤ ααnd(Pyn, q) + αnd(f(q), q) + (1− αn)(cnn + d(Pyn, q))

≤ d(yn, q) + αnd(f(q), q) + (1− αn)cnn

≤ d(xn, q) + en + αnd(f(q), q) + cnn,

so, by the assumption and Lemma 2.3, limn→∞ d(xn, q) exists for all q ∈ F
and {xn}, {yn} and {Pyn} are bounded. Also are {f(Pyn)} and {Tn(Pyn)}.
I. We claim that limn→∞ d(xn, T

n
n xn) = 0.

We have

d(xn+1, T
n
n (Pyn)) = d(αnf(Pyn)⊕ (1− αn)Tnn (Pyn), Tnn (Pyn))

≤ αnd(f(Pyn), Tnn (Pyn)). (3.3)

Since

d(f(Pyn), Tnn (Pyn)) ≤ d(f(Pyn), xn+1) + d(xn+1, T
n
n (Pyn))

= d(f(Pyn), αnf(Pyn)⊕ (1− αn)Tnn (Pyn))

+ d(xn+1, T
n
n (Pyn))

≤ (1− αn)d(f(Pyn), Tnn (Pyn)) + d(xn+1, T
n
n (Pyn)),

we obtain

αnd(f(Pyn), Tnn (Pyn)) ≤ d(xn+1, T
n
n (Pyn)). (3.4)

Since
∑∞

n=1 αn <∞, from (3.3) and (3.4), we have

lim
n→∞

αnd(f(Pyn), Tnn (Pyn)) = lim
n→∞

d(xn+1, T
n
n (Pyn))

= 0. (3.5)

From (3.5), we get

d(xn+1, xn) = d(αnf(Pyn)⊕ (1− αn)Tnn (Pyn), xn)

≤ αnd(f(Pyn), xn) + (1− αn)d(Tnn (Pyn), xn)

≤ αn[d(f(Pyn), Tnn (Pyn)) + d(Tnn (Pyn), xn)]

+ (1− αn)d(Tnn (Pyn), xn)

= αnd(f(Pyn), Tnn (Pyn)) + d(xn, T
n
n (Pyn))

→ 0. (3.6)
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Since

d(xn, T
n
n xn) ≤ d(xn, xn+1) + d(xn+1, T

n
n (Pyn)) + d(Tnn (Pyn), Tnn xn)

= d(xn, xn+1) + d(xn+1, T
n
n (Pyn)) + cnn + d(Pyn, xn)

≤ d(xn, xn+1) + d(xn+1, T
n
n (Pyn)) + cnn + d(yn, xn)

= d(xn, xn+1) + d(xn+1, T
n
n (Pyn)) + cnn + en,

from (3.5) and (3.6), we obtain

lim
n→∞

d(xn, T
n
n xn) = 0. (3.7)

Since {xn} is bounded, by Lemma 2.4, there exists a subsequence {xnj} of {xn}
which 4-converges to x∗. Therefore, from (3.7), the condition (3.1) guaranties
that x∗ ∈ F .
II. Next, we will show that {xn} contains a subsequence converging strongly
to x∗ such that x∗ = PFf(x∗), which is equivalent to the following variational
inequality

〈
−−−−−→
x∗f(x∗),

−−→
xx∗〉 ≥ 0, ∀x ∈ F =

∞⋂
n=1

F (Tn).

II-1. It follows from Lemma 2.8 (i) that

d2(xnj , x
∗) = 〈

−−−→
xnjx

∗,
−−−→
xnjx

∗〉

≤ αnj 〈
−−−−−−−→
f(Pynj )x

∗,
−−−→
xnjx

∗〉+ (1− αnj )〈
−−−−−−−−−→
T
nj
nj (Pynj )x

∗,
−−−→
xnjx

∗〉

≤ αnj 〈
−−−−−−−→
f(Pynj )x

∗,
−−−→
xnjx

∗〉+ (1− αnj )d(T
nj
nj (Pynj ), x

∗)d(xnj , x
∗)

≤ αnj 〈
−−−−−−−→
f(Pynj )x

∗,
−−−→
xnjx

∗〉+ (1− αnj )cnjnjd(xnj , x
∗)

+ (1− αnj )d(Pynj , x
∗)d(xnj , x

∗)

≤ αnj 〈
−−−−−−−→
f(Pynj )x

∗,
−−−→
xnjx

∗〉+ (1− αnj )cnjnjd(xnj , x
∗)

+ (1− αnj )(d(xnj , x
∗) + enj )d(xnj , x

∗),

thus

αnjd
2(xnj , x

∗) ≤ αnj 〈
−−−−−−−→
f(Pynj )x

∗,
−−−→
xnjx

∗〉+ (1−αnj )(cnjnj +enj )d(xnj , x
∗),
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d2(xnj , x
∗) ≤ 〈

−−−−−−−→
f(Pynj )x

∗,
−−−→
xnjx

∗〉+
(1− αnj )

αnj

(cnjnj + enj )d(xnj , x
∗)

= 〈
−−−−−−−−−→
f(Pynj )f(x∗),

−−−→
xnjx

∗〉+ 〈
−−−−−→
f(x∗)x∗,

−−−→
xnjx

∗〉

+
(1− αnj )

αnj

(cnjnj + enj )d(xnj , x
∗)

≤ d(f(Pynj ), f(x∗))d(xnj , x
∗) + 〈

−−−−−→
f(x∗)x∗,

−−−→
xnjx

∗〉

+
(1− αnj )

αnj

(cnjnj + enj )d(xnj , x
∗)

≤ α(d(xnj , x
∗) + enj )d(xnj , x

∗) + 〈
−−−−−→
f(x∗)x∗,

−−−→
xnjx

∗〉

+
(1− αnj )

αnj

(cnjnj + enj )d(xnj , x
∗)

and

(1− α)d2(xnj , x
∗) ≤ αenjd(xnj , x

∗) + 〈
−−−−−→
f(x∗)x∗,

−−−→
xnjx

∗〉

+
(1− αnj )

αnj

(cnjnj + enj )d(xnj , x
∗).

Hence

d2(xnj , x
∗) ≤

(
α

1− α
enj +

1− αnj

1− α
·
cnjnj + enj

αnj

)
d(xnj , x

∗)

+
1

1− α
〈
−−−−−→
f(x∗)x∗,

−−−→
xnjx

∗〉. (3.8)

Since {xnj} is 4-convergent to x∗, by Lemma 2.6, we have

lim sup
n→∞

〈
−−−−−→
f(x∗)x∗,

−−−→
xnjx

∗〉 ≤ 0.

It follows from (3.8) that {xnj} converges strongly to x∗. Since

d(ynj , x
∗) ≤ d(ynj , xnj ) + d(xnj , x

∗) = enj + d(xnj , x
∗),

{ynj} converges strongly to x∗.

II-2. Next, we show that x∗ solves the variational inequality (3.2).
Let q ∈ F . Since
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d2(Pynj , q) ≤ d2(ynj , q)

≤ (d(ynj , xnj ) + d(xnj , xnj+1) + d(xnj+1, q))
2

≤ 2d2(ynj , xnj ) + 2d2(xnj , xnj+1) + d2(xnj+1, q)

+ 2{d(ynj , xnj )d(xnj , xnj+1) + d(xnj , xnj+1)d(xnj+1, q)

+ d(xnj+1, q)d(ynj , xnj )}, (3.9)

applying Lemma 2.2 and (3.9),

d2(xnj+1, q) = d2(αnjf(Pynj )⊕ (1− αnj )T
nj
nj (Pynj ), q)

≤ αnjd
2(f(Pynj ), q) + (1− αnj )d

2(T
nj
nj (Pynj ), q)

− αnj (1− αnj )d
2(f(Pynj ), T

nj
nj (Pynj ))

≤ αnjd
2(f(Pynj ), q)

+ (1− αnj )[c
2
njnj

+ d2(Pynj , q) + 2cnjnjd(Pynj , q)]

− αnj (1− αnj )d
2(f(Pynj ), T

nj
nj (Pynj ))

≤ αnjd
2(f(Pynj ), q)

+ (1− αnj )[c
2
njnj

+ 2e2nj
+ 2d2(xnj , xnj+1) + d2(xnj+1, q)

+ 2{cnjnjd(xnj , xnj+1) + d(xnj , xnj+1)d(xnj+1, q)

+ cnjnjd(xnj+1, q)}+ 2cnjnjd(Pynj , q)]

− αnj (1− αnj )d
2(f(Pynj ), T

nj
nj (Pynj )).

So,

αnj (1− αnj )d
2(f(Pynj ), T

nj
nj (Pynj )) + αnjd

2(xnj+1, q)

≤ αnjd
2(f(Pynj ), q) + (1− αnj )[c

2
njnj

+ 2e2nj
+ 2d2(xnj , xnj+1)

+ 2{cnjnjd(xnj , xnj+1) + d(xnj , xnj+1)d(xnj+1, q)

+ cnjnjd(xnj+1, q)}+ 2cnjnjd(Pynj , q)],

we have

(1− αnj )d
2(f(Pynj ), T

nj
nj (Pynj )) + d2(xnj+1, q)

≤ d2(f(Pynj ), q) +
1− αnj

αnj

[c2njnj
+ 2e2nj

+ 2d2(xnj , xnj+1)

+ 2{cnjnjd(xnj , xnj+1) + d(xnj , xnj+1)d(xnj+1, q)

+ cnjnjd(xnj+1, q)}+ 2cnjnjd(Pynj , q)]. (3.10)
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Since xnj → x∗ and (3.5), we have T
nj
nj (Pynj )→ x∗. Take limit on both sides

in (3.10), from assumptions and continuity of the metric distance d, we obtain

d2(f(x∗), x∗) + d2(x∗, q) ≤ d2(f(x∗), q).

Hence

0 ≤ 1

2
[d2(x∗, x∗) + d2(f(x∗), q)− d2(x∗, q)− d2(f(x∗), x∗)]

= 〈
−−−−−→
x∗f(x∗),

−→
qx∗〉, ∀ q ∈ F ,

that is, x∗ solves the inequality (3.2).

III. Finally, we will show the uniqueness of the solution of the variational
inequality of Equation (3.2). Assume there exists a subsequence {xnj} of
{xn} which 4-converges to ω by the same argument. We know that ω ∈ F
and solves the variational inequality of Equation (3.2), that is,

〈
−−−−−→
x∗f(x∗),

−−→
x∗ω〉 ≤ 0 (3.11)

and

〈
−−−−→
ωf(ω),

−−→
ωx∗〉 ≤ 0. (3.12)

From (3.11) and (3.12), we can obtain

0 ≥ 〈
−−−−−→
x∗f(x∗),

−−→
x∗ω〉 − 〈

−−−−→
ωf(ω),

−−→
x∗ω〉

= 〈
−−−−→
x∗f(ω),

−−→
x∗ω〉+ 〈

−−−−−−−→
f(ω)f(x∗),

−−→
x∗ω〉 − 〈

−−→
ωx∗,

−−→
x∗ω〉 − 〈

−−−−→
x∗f(ω),

−−→
x∗ω〉

= 〈
−−→
x∗ω,

−−→
x∗ω〉 − 〈

−−−−−−−→
f(ω)f(x∗),

−−→
ωx∗〉

≥ 〈
−−→
x∗ω,

−−→
x∗ω〉 − d(f(ω), f(x∗))d(ω, x∗)

≥ d2(x∗, ω)− αd2(ω, x∗)
= (1− α)d2(x∗, ω).

Since 0 < α < 1, we have

d(x∗, ω) = 0,

so

x∗ = ω.

Hence {xn} converges strongly to x∗, which solves the variational inequality
of Equation (3.2). �

If we have P = I (Identity mapping), we get the following result.
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Corollary 3.2. Suppose that C is a closed and convex subset of a complete
CAT (0) space (X, d) and {Tn} is a family of asymptotically nonexpansive
type self-mappings on C such that F :=

⋂∞
n=1 F (Tn) 6= ∅. Let {αn} ⊂ [0, 1],

{en} ⊂ [0,∞) and {yn} ⊂ X be sequences such that the modified viscosity
inexact Mann iteration {xn} is generated by

xn+1 = αnf(yn)⊕ (1− αn)Tnn (yn),

d(yn, xn) ≤ en,
x0 ∈ C,

where f is given contraction mapping. Suppose
∑∞

n=1 en < ∞ and {αn} ⊂
[a, b] with a, b ∈ (0, 1). Then we have the following statements.

(i) Let {Tn} be a sequence of asymptotically nonexpansive type mappings
such that the condition (3.1) is satisfied. Set

cni = max{0, supx,y∈C(d(Tni x, T
n
i y)− d(x, y))}.

If
∑∞

n=1 cnn <∞,
∑∞

n=1 αn <∞, d(xn, xn+1) = o(αn) and limn→∞
cnn
αn

= limn→∞
en
αn

= 0, then {xn} is convergent to q ∈ F ;

(ii) let en ≡ 0 and {Tn} be a sequence of asymptotically quasi-nonexpansive
type mappings such that the condition (3.1) is satisfied. Set

cni = max{0, sup{(d(Tni x, T
n
i p)− d(x, p)) : x ∈ C, p ∈ F}.

If
∑∞

n=1 cnn <∞,
∑∞

n=1 αn <∞, d(xn, xn+1) = o(αn) and limn→∞
cnn
αn

= limn→∞
en
αn

= 0, then {xn} is convergent to q ∈ F . Moreover,

x∗ = F ∩ F (f),

which is equivalent to the following variational inequality

〈
−−−−−→
x∗f(x∗),

−−→
xx∗〉 ≥ 0, ∀x ∈ F =

∞⋂
n=1

F (Tn), (3.13)

where F (f) = {x∗ ∈ C : x∗ = f(x∗)}.

If we have f = I(: Identity mapping), we get the following result.

Corollary 3.3. Suppose that C is a closed and convex subset of a complete
CAT (0) space (X, d) and {Tn} is a family of asymptotically nonexpansive
type self-mappings on C such that F :=

⋂∞
n=1 F (Tn) 6= ∅. Let {αn} ⊂ [0, 1],

{en} ⊂ [0,∞) and {yn} ⊂ X be sequences such that the modified inexact Mann
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iteration {xn} is generated by

xn+1 = αnP (yn)⊕ (1− αn)Tnn (Pyn),

d(yn, xn) ≤ en,
x0 ∈ C,

where f is given contraction mapping. Suppose
∑∞

n=1 en < ∞ and {αn} ⊂
[a, b] with a, b ∈ (0, 1). Then we have the following statements.

(i) Let {Tn} be a sequence of asymptotically nonexpansive type mappings
such that the condition (3.1) is satisfied. Set

cni = max{0, supx,y∈C(d(Tni x, T
n
i y)− d(x, y))}.

If
∑∞

n=1 cnn <∞,
∑∞

n=1 αn <∞, d(xn, xn+1) = o(αn) and limn→∞
cnn
αn

= limn→∞
en
αn

= 0, then {xn} is convergent to q ∈ F ;

(ii) Let en ≡ 0 and {Tn} be a sequence of asymptotically quasi-nonexpansive
type mappings such that the condition (3.1) is satisfied. Set

cni = max{0, sup{(d(Tni x, T
n
i p)− d(x, p)) : x ∈ C, p ∈ F}.

If
∑∞

n=1 cnn <∞,
∑∞

n=1 αn <∞, d(xn, xn+1) = o(αn) and limn→∞
cnn
αn

= limn→∞
en
αn

= 0, then {xn} is convergent to q ∈ F .

Remark 3.4. Corollary 3.2 and 3.3 are generalization and improvement of
the results of [34] and [29], respectively.

4. Open problem

For a real number κ, a CAT (κ) space is defined by a geodesic metric space
whose geodesic triangle is sufficiently thinner than the corresponding triangle
in a model space with curvature κ.

For κ = 0, the 2-dimensional model space M2
κ = M2

0 is the Euclidean space
R2 with the metric induced from the Euclidean norm. For κ > 0, M2

κ is the 2-
dimensional sphere 1√

κ
S2 whose metric is length of a minimal great arc joining

each two points. For κ < 0, M2
κ is the 2-dimensional hyperbolic space 1√

−κH
2

with the metric defined by a usual hyperbolic distance. For more details about
the properties of CAT (κ) spaces (see, [4], [13], [22]).

Open Problem. It will be interesting to obtain a generalization of both
Theorem 3.1, Corollary 3.2 and Corollary 3.3 to CAT (κ) space.
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