• 제목/요약/키워드: finite element error estimates

검색결과 75건 처리시간 0.025초

A POSTERIORI L(L2)-ERROR ESTIMATES OF SEMIDISCRETE MIXED FINITE ELEMENT METHODS FOR HYPERBOLIC OPTIMAL CONTROL PROBLEMS

  • Hou, Tianliang
    • 대한수학회보
    • /
    • 제50권1호
    • /
    • pp.321-341
    • /
    • 2013
  • In this paper, we discuss the a posteriori error estimates of the semidiscrete mixed finite element methods for quadratic optimal control problems governed by linear hyperbolic equations. The state and the co-state are discretized by the order $k$ Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise polynomials of order $k(k{\geq}0)$. Using mixed elliptic reconstruction method, a posterior $L^{\infty}(L^2)$-error estimates for both the state and the control approximation are derived. Such estimates, which are apparently not available in the literature, are an important step towards developing reliable adaptive mixed finite element approximation schemes for the control problem.

Lp error estimates and superconvergence for finite element approximations for nonlinear parabolic problems

  • LI, QIAN;DU, HONGWEI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제4권1호
    • /
    • pp.67-77
    • /
    • 2000
  • In this paper we consider finite element mathods for nonlinear parabolic problems defined in ${\Omega}{\subset}R^d$ ($d{\leq}4$). A new initial approximation is taken. Optimal order error estimates in $L_p$ for $2{\leq}p{\leq}{\infty}$ are established for arbitrary order finite element. One order superconvergence in $W^{1,p}$ for $2{\leq}q{\leq}{\infty}$ are demonstrated as well.

  • PDF

ERROR ESTIMATES OF MIXED FINITE ELEMENT APPROXIMATIONS FOR A CLASS OF FOURTH ORDER ELLIPTIC CONTROL PROBLEMS

  • Hou, Tianliang
    • 대한수학회보
    • /
    • 제50권4호
    • /
    • pp.1127-1144
    • /
    • 2013
  • In this paper, we consider the error estimates of the numerical solutions of a class of fourth order linear-quadratic elliptic optimal control problems by using mixed finite element methods. The state and co-state are approximated by the order $k$ Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise polynomials of order $k(k{\geq}1)$. $L^2$ and $L^{\infty}$-error estimates are derived for both the control and the state approximations. These results are seemed to be new in the literature of the mixed finite element methods for fourth order elliptic control problems.

FINITE VOLUME ELEMENT METHODS FOR NONLINEAR PARABOLIC PROBLEMS

  • LI, QIAN;LIU, ZHONGYAN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제6권2호
    • /
    • pp.85-97
    • /
    • 2002
  • In this paper, finite volume element methods for nonlinear parabolic problems are proposed and analyzed. Optimal order error estimates in $W^{1,p}$ and $L_p$ are derived for $2{\leq}p{\leq}{\infty}$. In addition, superconvergence for the error between the approximation solution and the generalized elliptic projection of the exact solution (or and the finite element solution) is also obtained.

  • PDF

RECOVERY TYPE A POSTERIORI ERROR ESTIMATES IN FINITE ELEMENT METHODS

  • Zhang, Zhimin;Yan, Ningning
    • Journal of applied mathematics & informatics
    • /
    • 제8권2호
    • /
    • pp.327-343
    • /
    • 2001
  • This is a survey article on finite element a posteriori error estimates with an emphasize on gradient recovery type error estimators. As an example, the error estimator based on the ZZ patch recovery technique will be discussed in some detail.

FINITE VOLUME ELEMENT METHODS FOR NONLINEAR PARABOLIC INTEGRODIFFERENTIAL PROBLEMS

  • Li, Huanrong;Li, Qian
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제7권2호
    • /
    • pp.35-49
    • /
    • 2003
  • In this paper, finite volume element methods for nonlinear parabolic integrodifferential problems are proposed and analyzed. The optimal error estimates in $L^p\;and\;W^{1,p}\;(2\;{\leq}\;p\;{\leq}\;{\infty})$ as well as some superconvergence estimates in $W^{1,p}\;(2\;{\leq}\;p\;{\leq}\;{\infty})$ are obtained. The main results in this paper perfect the theory of FVE methods.

  • PDF

A PRIORI ERROR ESTIMATES FOR THE FINITE ELEMENT APPROXIMATION OF AN OBSTACLE PROBLEM

  • Ryoo, Cheon-Seoung
    • Journal of applied mathematics & informatics
    • /
    • 제7권1호
    • /
    • pp.175-181
    • /
    • 2000
  • The purpose of this to measure, with explicit constants as small as possible, a priori error bounds for approximation by picewise polynomials. These constants play an important role in the numerical verification method of solutions for obstacle problems by using finite element methods .

QUADRATURE BASED FINITE ELEMENT METHODS FOR LINEAR PARABOLIC INTERFACE PROBLEMS

  • Deka, Bhupen;Deka, Ram Charan
    • 대한수학회보
    • /
    • 제51권3호
    • /
    • pp.717-737
    • /
    • 2014
  • We study the effect of numerical quadrature in space on semidiscrete and fully discrete piecewise linear finite element methods for parabolic interface problems. Optimal $L^2(L^2)$ and $L^2(H^1)$ error estimates are shown to hold for semidiscrete problem under suitable regularity of the true solution in whole domain. Further, fully discrete scheme based on backward Euler method has also analyzed and optimal $L^2(L^2)$ norm error estimate is established. The error estimates are obtained for fitted finite element discretization based on straight interface triangles.

[ $L_p$ ] ERROR ESTIMATES AND SUPERCONVERGENCE FOR FINITE ELEMENT APPROXIMATIONS FOR NONLINEAR HYPERBOLIC INTEGRO-DIFFERENTIAL PROBLEMS

  • Li, Qian;Jian, Jinfeng;Shen, Wanfang
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제9권1호
    • /
    • pp.17-29
    • /
    • 2005
  • In this paper we consider finite element methods for nonlinear hyperbolic integro-differential problems defined in ${\Omega}\;{\subset}\;R^d(d\;{\leq}\;4)$. A new initial approximation of $u_t(0)$ is taken. Optimal order error estimates in $L_p$ for $2\;{\leq}\;p\;{\leq}\;{\infty}$ are established for arbitrary order finite element. One order superconvergence in $W^{1,p}$ for $2\;{\leq}\;p\;{\leq}\;{\infty}$ are demonstrated as well.

  • PDF

장애물 접촉문제에서의 지역 A Posteriori 오차계산 (Local A Posteriori Error Estimates for Obstacle Contact Problems)

  • 이춘열
    • 한국정밀공학회지
    • /
    • 제15권5호
    • /
    • pp.120-127
    • /
    • 1998
  • Differential inequalities occurring in problems of obstacle contact problems are recast into variational inequalities and analyzed by finite element methods. A new a posteriori error estimator, which is essential in adaptive finite element method, is introduced to capture the errors in finite element approximations of these variational inequalities. In order to construct a posteriori error estimates, saddle point problems are introduced using Lagrange parameters and upper bounds are provided. The global upper bound is localized by a special mixed formulation, which leads to upper bounds of the element errors. A numerical experiment is performed on an obstacle contact problem to check the effectivity index both in a local and a global sense.

  • PDF