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A POSTERIORI L
∞(L2)-ERROR ESTIMATES OF

SEMIDISCRETE MIXED FINITE ELEMENT METHODS FOR

HYPERBOLIC OPTIMAL CONTROL PROBLEMS

Tianliang Hou

Abstract. In this paper, we discuss the a posteriori error estimates of
the semidiscrete mixed finite element methods for quadratic optimal con-
trol problems governed by linear hyperbolic equations. The state and the
co-state are discretized by the order k Raviart-Thomas mixed finite ele-
ment spaces and the control is approximated by piecewise polynomials of
order k(k ≥ 0). Using mixed elliptic reconstruction method, a posteriori
L
∞(L2)-error estimates for both the state and the control approxima-

tion are derived. Such estimates, which are apparently not available in
the literature, are an important step towards developing reliable adaptive
mixed finite element approximation schemes for the control problem.

1. Introduction

In recent years, there is a growing demand for designing reliable and ef-
ficient space-time algorithms for numerical computations of both linear and
nonlinear time dependent partial differential equations. Most of these al-
gorithms are based on a posteriori error estimators which provide appropri-
ate tools for adaptive mesh refinements. The theory of a posteriori analysis
of finite element methods for parabolic problems is well-developed (see, e.g.,
[3, 4, 19, 22, 27, 29, 36, 40]). Surprisingly, there has been considerably less
work on the error control of finite element methods for second order hyperbolic
problems, despite the substantial amount of research in the design of finite el-
ement methods for the wave problem (see, e.g., [6, 7, 8, 11, 20]). A posteriori
bounds for standard implicit time-stepping finite element approximations to
the linear wave equation have been proposed and analyzed (but only in very
specific situations) by Adjerid [1]. Also, Bernardi and Süli [12] derive rigor-
ous a posteriori L∞(H1)-error bounds, using energy arguments. We note that
goal-oriented-error estimation for wave problems (via duality techniques) is also
available [9, 10], while some earlier work on a posteriori estimates for first order
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hyperbolic systems have been studied in the time semidiscrete setting [37], as
well as in the fully discrete one [26].

It is well known that finite element approximation of the optimal control
problems has been an important and hot topic in engineering design work, and
has been extensively studied in literature [14, 24, 25, 31, 34, 39]. For the optimal
control problems governed by elliptic or parabolic state equations, a priori
error estimates of finite element approximations were studied in, for example,
[2, 23, 28, 30, 33, 35, 38]. There also exist lots of works concentrating on the
adaptivity of various optimal control problems (see, e.g., [14, 23, 30, 33, 35, 34]).

In many control problems, the objective functional contains the gradient of
the state variables. Thus, the accuracy of the gradient is important in numeri-
cal discretization of the coupled state equations. Mixed finite element methods
are appropriate for the state equations in such cases since both the scalar vari-
able and its flux variable can be approximated to the same accuracy by using
such methods (see, for example, [13]). When the objective functional contains
the gradient of the state variable, mixed finite element methods should be used
for discretization of the state equation with which both the scalar variable
and its flux variable can be approximated in the same accuracy. Recently,
in [16, 17, 18] the authors have done some primary works on a priori, super-
convergence and a posteriori error estimates error estimates for linear elliptic
optimal control problems by mixed finite element methods. However, there
doesn’t seem to exist any work on a posteriori error analysis of mixed finite
element approximation for hyperbolic problems in the literature, especially for
hyperbolic optimal control problems.

In this article, we shall investigate a posteriori error estimates of the semidis-
crete mixed finite element approximation for hyperbolic optimal control prob-
lems. Combining the idea about the elliptic construction of [36] with our hy-
perbolic optimal control problems, we define the mixed elliptic construction
for the state and the co-state variables. Using the mixed elliptic construction
method, we derive a posteriori L∞(L2)-error estimates for both the state and
the control approximation.

The optimal control problem that we are interested in is as follows:

min
u∈K⊂U

{

1

2

∫ T

0

(

‖ppp− pppd‖
2 + ‖y − yd‖

2 + ‖u‖2
)

dt

}

(1)

ytt(x, t) + divppp(x, t) = f(x, t) + u(x, t), x ∈ Ω, t ∈ J,(2)

ppp(x, t) = −A(x)∇y(x, t), x ∈ Ω, t ∈ J,(3)

y(x, t) = 0, x ∈ ∂Ω, t ∈ J,(4)

y(x, 0) = y0(x), x ∈ Ω,(5)

yt(x, 0) = y1(x), x ∈ Ω,(6)

where the bounded open set Ω ⊂ R2 is a convex polygon with the boundary
∂Ω, J = [0, T ]. Let K be a closed convex set in U = L2(J ;L2(Ω)), f, yd ∈
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L2(J ;L2(Ω)), pppd ∈ (L2(J ;L2(Ω)))2, y0 ∈ H2(Ω) and y1 ∈ H1(Ω). We assume
that the coefficient matrix A(x) = (aij(x))2×2 ∈W 1,∞(Ω̄;R2×2) is a symmetric
2×2-matrix and there are constants c1, c2 > 0 satisfying for any vectorX ∈ R2,
c1‖X‖2

R2 ≤ XtAX ≤ c2‖X‖2
R2 . K is a set defined by

K =

{

u ∈ U :

∫ T

0

∫

Ω

u dxdt ≥ 0

}

.

In this paper, we adopt the standard notation Wm,p(Ω) for Sobolev spaces
on Ω with a norm ‖ · ‖m,p given by ‖v‖pm,p =

∑

|α|≤m ‖Dαv‖pLp(Ω), a semi-

norm | · |m,p given by |v|pm,p =
∑

|α|=m ‖Dαv‖pLp(Ω). We set Wm,p
0 (Ω) = {v ∈

Wm,p(Ω) : v|∂Ω = 0}. For p = 2, we denote Hm(Ω) = Wm,2(Ω), Hm
0 (Ω) =

Wm,2
0 (Ω), and ‖ · ‖m = ‖ · ‖m,2, ‖ · ‖ = ‖ · ‖0,2.
We denote by Ls(0, T ;Wm,p(Ω)) the Banach space of all Ls integrable func-

tions from J intoWm,p(Ω) with norm ‖v‖Ls(J;Wm,p(Ω)) =
(

∫ T

0 ||v||sWm,p(Ω)dt
)

1

s

for s ∈ [1,∞), and the standard modification for s = ∞. Similarly, one can
define the spaces H1(J ;Wm,p(Ω)) and Ck(J ;Wm,p(Ω)). The details can be
found in [32]. In addition C denotes a general positive constant independent
of h.

The plan of this paper is as follows. In Section 2, we shall construct the
semidiscrete mixed finite element approximation for the optimal control prob-
lems (1)-(6), then we introduce some projection operators and define mixed
elliptic constructions. Using mixed elliptic reconstructions, we derive a pos-
teriori error estimates of mixed finite element approximation for the control
problem in Section 3. Finally, we give a conclusion and some future works.

2. Mixed methods of optimal control problems

In this section, we shall construct the semidiscrete mixed finite element
approximation for the hyperbolic optimal control problem (1)-(6). To fix the
idea, we shall take the state spaces LLL = L2(J ;VVV ) and Q = L2(J ;W ), where VVV
and W are defined as follows:

VVV = H(div; Ω) =
{

vvv ∈ (L2(Ω))2, divvvv ∈ L2(Ω)
}

, W = L2(Ω).

The Hilbert space VVV is equipped with the following norm:

‖vvv‖H(div;Ω) =
(

‖vvv‖20,Ω + ‖divvvv‖20,Ω
)1/2

.

Let α = A−1, we recast (1)-(6) as the following weak form: find (p, y, u) ∈
LLL×Q×K such that

min
u∈K⊂U

{

1

2

∫ T

0

(

‖ppp− pppd‖
2 + ‖y − yd‖

2 + ‖u‖2
)

dt

}

,(7)

(αppp,vvv)− (y, divvvv) = 0, ∀ vvv ∈ VVV , t ∈ J,(8)

(ytt, w) + (divppp, w) = (f + u,w), ∀ w ∈W, t ∈ J,(9)
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y(x, 0) = y0(x), ∀ x ∈ Ω,(10)

yt(x, 0) = y1(x), ∀ x ∈ Ω.(11)

It follows from [31] that the optimal control problem (7)-(11) has a unique
solution (ppp, y, u), and that a triplet (ppp, y, u) is the solution of (7)-(11) if and
only if there is a co-state (qqq, z) ∈ LLL × Q such that (ppp, y,qqq, z, u) satisfies the
following optimality conditions:

(αppp,vvv)− (y, divvvv) = 0, ∀ vvv ∈ VVV , t ∈ J,(12)

(ytt, w) + (divppp, w) = (f + u,w), ∀ w ∈W, t ∈ J,(13)

y(x, 0) = y0(x), ∀ x ∈ Ω,(14)

yt(x, 0) = y1(x), ∀ x ∈ Ω,(15)

(αqqq,vvv)− (z, divvvv) = −(ppp− pppd, vvv), ∀ vvv ∈ VVV , t ∈ J,(16)

(ztt, w) + (divqqq, w) = (y − yd, w), ∀ w ∈W, t ∈ J,(17)

z(x, T ) = 0, ∀ x ∈ Ω,(18)

zt(x, T ) = 0, ∀ x ∈ Ω,(19)
∫ T

0

(u+ z, ũ− u)dt ≥ 0, ∀ ũ ∈ K,(20)

where (·, ·) is the inner product of L2(Ω).
Due to the special structure of our control constraintK, we are able to derive

an important relationship between the optimal control u and the optimal co-
state z. This relationship is a key to our analysis.

Lemma 2.1. Let (y,ppp, z, qqq, u) be the solution of (12)-(20). Then we have u =
max{0, z̄} − z, where

z̄ =

∫ T

0

∫

Ω
zdxdt

∫ T

0

∫

Ω
1dxdt

denotes the integral average on Ω× J of the function z.

Let Th be regular triangulations of Ω. hτ is the diameter of τ and h =
maxhτ . Further, let Eh be the set of element sides of the triangulation Th
with Γh = ∪ Eh. Let VVV h×Wh ⊂ VVV ×W denote the Raviart-Thomas space [21]
associated with the triangulations Th of Ω. Pk denotes the space of polynomials
of total degree at most k (k ≥ 0). Let VVV (τ) = {vvv ∈ P 2

k (τ) + x · Pk(τ)},
W (τ) = Pk(τ). We define

VVV h := {vvvh ∈ VVV : ∀ τ ∈ Th, vvvh|τ ∈ VVV (τ)},

Wh := {wh ∈W : ∀ τ ∈ Th, wh|τ ∈W (τ)},

Kh := L2(J ;Wh) ∩K.
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The mixed finite element discretization of (7)-(11) is as follows: compute
(ppph, yh, uh) ∈ L2(J ;VVV h)× L2(J ;Wh)×Kh such that

min
uh∈Kh

{

1

2

∫ T

0

(

‖ppph − pppd‖
2 + ‖yh − yd‖

2 + ‖uh‖
2
)

dt

}

,(21)

(αppph, vvvh)− (yh, divvvvh) = 0, ∀ vvvh ∈ VVV h, t ∈ J,(22)

(yh,tt, wh) + (divppph, wh) = (f + uh, wh), ∀ wh ∈Wh, t ∈ J,(23)

yh(x, 0) = yh0 (x), ∀ x ∈ Ω,(24)

yh,t(x, 0) = yh1 (x), ∀ x ∈ Ω,(25)

where yh0 (x) ∈ Wh and yh1 (x) ∈ Wh are two approximations of y0 and y1. The
optimal control problem (21)-(25) again has a unique solution (ppph, yh, uh), and
that a triplet (ppph, yh, uh) is the solution of (21)-(25) if and only if there is a
co-state (qqqh, zh) ∈ L2(J ;VVV h)×L2(J ;Wh) such that (ppph, yh, qqqh, zh, uh) satisfies
the following optimality conditions:

(αppph, vvvh)− (yh, divvvvh) = 0, ∀ vvvh ∈ VVV h, t ∈ J,(26)

(yh,tt, wh) + (divppph, wh) = (f + uh, wh), ∀ wh ∈ Wh, t ∈ J,(27)

yh(x, 0) = yh0 (x), ∀ x ∈ Ω,(28)

yh,t(x, 0) = yh1 (x), ∀ x ∈ Ω,(29)

(αqqqh, vvvh)− (zh, divvvvh) = −(ppph − pppd, vvvh), ∀ vvvh ∈ VVV h, t ∈ J,(30)

(zh,tt, wh) + (divqqqh, wh) = (yh − yd, wh), ∀ wh ∈ Wh, t ∈ J,(31)

zh(x, T ) = 0, ∀ x ∈ Ω,(32)

zh,t(x, T ) = 0, ∀ x ∈ Ω,(33)
∫ T

0

(uh + zh, ũh − uh)dt ≥ 0, ∀ ũh ∈ Kh.(34)

Similar to Lemma 2.1, we can derive the following relationship between the
control approximation uh and the co-state approximation zh:

uh = max{0, zh} − zh,(35)

where zh =
∫

T

0

∫
Ω
zhdxdt∫

T

0

∫
Ω
1dxdt

denotes the integral average on Ω× J of the function

zh.
In the rest of the paper, we shall use some intermediate variables. For any

control function uh ∈ Kh, we define the state solution

(ppp(uh), y(uh), qqq(uh), z(uh))

satisfies

(αppp(uh), vvv)− (y(uh), divvvv) = 0, ∀ vvv ∈ VVV , t ∈ J,(36)

(ytt(uh), w) + (divppp(uh), w) = (f + uh, w), ∀ w ∈W, t ∈ J,(37)

y(uh)(x, 0) = y0(x), ∀ x ∈ Ω,(38)
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yt(uh)(x, 0) = y1(x), ∀ x ∈ Ω,(39)

(αqqq(uh), vvv)− (z(uh), divvvv) = −(ppp(uh)− pppd, vvv), ∀ vvv ∈ VVV , t ∈ J,(40)

(ztt(uh), w) + (divqqq(uh), w) = (y(uh)− yd, w), ∀ w ∈ W, t ∈ J,(41)

z(uh)(x, T ) = 0, ∀ x ∈ Ω,(42)

zt(uh)(x, T ) = 0, ∀ x ∈ Ω,(43)

where the exact solutions y(uh) and z(uh) satisfy the zero boundary condition.
Define the errors as follows:

ey = y(uh)− yh, eppp = ppp(uh)− ppph,

ez = z(uh)− zh, eqqq = qqq(uh)− qqqh.

Then, from (26)-(27), (30)-(31), (36)-(37) and (40)-(41), the above errors satisfy
the following equations

(αeppp, vvv)− (ey, divvvv) = −r1(vvv), ∀ vvv ∈ VVV ,(44)

(ey,tt, w) + (diveppp, w) = −r2(w), ∀ w ∈W,(45)

(αeqqq, vvv)− (ez, divvvv) = −(eppp, vvv)− r3(vvv), ∀ vvv ∈ VVV ,(46)

(ez,tt, w) + (diveqqq, w) = (ey, w) − r4(w), ∀ w ∈ W,(47)

where the residuals r1-r4 are given as follows:

r1(vvv) := (αppph, vvv)− (yh, divvvv),(48)

r2(w) := (yh,tt, w) + (divppph, w)− (f + uh, w),(49)

r3(vvv) := (αqqqh, vvv) + (ppph − pppd, vvv)− (zh, divvvv),(50)

r4(w) := (zh,tt, w) + (divqqqh, w)− (yh − yd, w).(51)

We now introduce mixed elliptic reconstructions ỹ(t), z̃(t) ∈ H1
0 (Ω) and

p̃pp(t), q̃qq(t) ∈ VVV of yh, zh and ppph, qqqh for t ∈ [0, T ], respectively.
For given yh, zh, ppph and qqqh, let mixed elliptic reconstructions ỹ(t), z̃(t) ∈

H1
0 (Ω) and p̃pp(t), q̃qq(t) ∈ VVV satisfy

(α(p̃pp− ppph), vvv)− (ỹ − yh, divvvv) = −r1(vvv), ∀ vvv ∈ VVV ,(52)

(div(p̃pp− ppph), w) = −r2(w), ∀ w ∈ W,(53)

(α(q̃qq − qqqh), vvv)− (z̃ − zh, divvvv) = −(p̃pp− ppph, vvv)− r3(vvv), ∀ vvv ∈ VVV ,(54)

(div(q̃qq − qqqh), w) = (ỹ − yh, w)− r4(w), ∀ w ∈W.(55)

Since r1(vvvh) = r3(vvvh) = 0 ∀ vvvh ∈ VVV h, r2(wh) = r4(wh) = 0 ∀ wh ∈ Wh,
we note that yh and ppph are standard mixed elliptic projection of ỹ and p̃pp,
respectively, zh and qqqh are nonstandard mixed elliptic projection of z̃ and q̃qq.

Using mixed elliptic reconstructions, we now rewrite:

eppp = (p̃pp− ppph)− (p̃pp− ppp(uh)) := ηppp − ξppp,

ey = (ỹ − yh)− (ỹ − y(uh)) := ηy − ξy,

eqqq = (q̃qq − qqqh)− (q̃qq − qqq(uh)) := ηqqq − ξqqq,
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ez = (z̃ − zh)− (z̃ − z(uh)) := ηz − ξz .

Let Ph : W → Wh be the orthogonal L2(Ω)-projection into Wh [5], which
satisfies:

(Phw − w, χ) = 0, w ∈W, χ ∈Wh,(56)

‖Phw − w‖0,q ≤ C‖w‖t,qh
t, 0 ≤ t ≤ k + 1, if w ∈ W ∩W t,q(Ω),(57)

‖Phw − w‖−r ≤ C‖w‖th
r+t, 0 ≤ r, t ≤ k + 1, if w ∈ Ht(Ω).(58)

Next, recall the Fortin projection (see [13] and [21]) Πh : VVV → VVV h, which
satisfies: for any qqq ∈ VVV

(div(Πhqqq − qqq), wh) = 0, ∀ qqq ∈ VVV , wh ∈Wh,(59)

‖qqq −Πhqqq‖0,q ≤ Chr‖qqq‖r,q, 1/q < r ≤ k + 1, ∀ qqq ∈ VVV ∩ (W r,q(Ω))2,(60)

‖div(qqq −Πhqqq)‖0 ≤ Chr‖divqqq‖r, 0 ≤ r ≤ k + 1, ∀ divqqq ∈ Hr(Ω).(61)

We have the commuting diagram property

(62) div ◦Πh = Ph ◦ div : VVV →Wh and div(I −Πh)VVV ⊥Wh,

where and after, I denotes identity operator.

3. A posteriori error estimates

In this section we study a posteriori error estimates for the mixed finite
element approximation to the hyperbolic optimal control problems.

Let (ppp, y,qqq, z, u) and (ppph, yh, qqqh, zh, uh) be the solutions of (12)-(20) and
(26)-(34), respectively. We decompose the errors as follows:

ppp− ppph = ppp− ppp(uh) + ppp(uh)− ppph := rppp + eppp,

y − yh = y − y(uh) + y(uh)− yh := ry + ey,

qqq − qqqh = qqq − qqq(uh) + qqq(uh)− qqqh := rqqq + eqqq,

z − zh = z − z(uh) + z(uh)− zh := rz + ez.

From (12)-(13), (16)-(17), (36)-(37) and (40)-(41), we derive the error equa-
tions:

(αrppp, vvv)− (ry , divvvv) = 0, ∀ vvv ∈ VVV ,(63)

(ry,tt, w) + (divrppp, w) = (u− uh, w), ∀ w ∈ W,(64)

(αrqqq , vvv)− (rz , divvvv) = −(rppp, vvv), ∀ vvv ∈ VVV ,(65)

(rz,tt, w) + (divrqqq, w) = (ry , w), ∀ w ∈ W.(66)

Lemma 3.1. Let rppp, ry, rqqq and rz satisfy (63)-(66). Then there is a constant

C > 0 independent of h such that

‖rppp‖L∞(J;L2(Ω)) + ‖ry,t‖L∞(J;L2(Ω)) ≤ C‖u− uh‖L2(J;L2(Ω)),(67)

‖ry‖L∞(J;L2(Ω)) + ‖rz‖L∞(J;L2(Ω)) ≤ C‖u− uh‖L2(J;L2(Ω)).(68)
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Proof. Letting t = 0 and vvv = rppp(0) in (63), since ry(0) = 0, consequently we
find that rppp(0) = 0. Differentiate (63) with respect to t, we obtain

(αrppp,t, vvv)− (ry,t, divvvv) = 0, ∀ vvv ∈ VVV .(69)

Setting vvv = rppp and w = ry,t as the test functions and add the two relations of
(69) and (64), we have

(αrppp,t, rppp) + (ry,tt, ry,t) = (u − uh, ry,t).(70)

Then, using ǫ-Cauchy inequality, we derive

1

2

d

dt
(‖α

1

2 rppp‖
2 + ‖ry,t‖

2) ≤ C‖u− uh‖
2 + C‖ry,t‖

2.(71)

On integrating (71) with respect to time from 0 to t, using the Gronwall’s
lemma, the assumption on A and rppp(0) = 0, we have

‖ry,t‖L∞(J;L2(Ω)) + ‖rppp‖L∞(J;L2(Ω)) ≤ C‖u− uh‖L2(J;L2(Ω)).(72)

Since ry − ry(0) =
∫ t

0 ry,sds, using (72), we have

‖ry‖ ≤ C‖ry,t‖L2(J;L2(Ω)) ≤ C‖u− uh‖L2(J;L2(Ω)).(73)

We integrate (66) with respect to time from t to T and use the symbol:

ψ̌(t) :=

∫ T

t

ψ(s)ds(74)

to obtain

−(rz,t, w) + (divřqqq , w) = (řy , w), ∀ w ∈ W.(75)

Choose w = rz in (75) and vvv = řqqq in (65) respectively, then add the resulting
equations to get

−
1

2

d

dt
(‖rz‖

2 + ‖α
1

2 řqqq‖
2) = (řy , rz)− (rppp, řqqq).(76)

Note that

‖řy‖ ≤ C‖ry‖L2(J;L2(Ω)).(77)

Integrating (76) with respect to time from t to T , using Cauchy inequality and
Gronwall’s lemma, we arrive at

‖rz‖L∞(J;L2(Ω)) ≤ C‖ry‖L2(J;L2(Ω)) + C‖rppp‖L2(J;L2(Ω)).(78)

By (72), (73) and (78), we derive (67) and (68). �

Now, let us derive the a posteriori error estimates for the control u.

Lemma 3.2. Let (y,ppp, z, qqq, u) and (yh, ppph, zh, qqqh, uh) be the solutions of (12)-
(20) and (26)-(34), respectively. Assume that (uh + zh)|τ ∈ H1(τ) and that

exists w ∈ Kh such that
∣

∣

∣

∣

∣

∫ T

0

(uh + zh, w − u)dt

∣

∣

∣

∣

∣

≤ C

∫ T

0

∑

τ

hτ |uh + zh|H1(τ)‖u− uh‖L2(τ)dt.
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Then we have

‖u− uh‖L2(J;L2(Ω)) ≤ Cη1 + C‖zh − z(uh)‖L2(J;L2(Ω)),(79)

where

η1 =

(

∫ T

0

∑

τ

h2τ |uh + zh|
2
H1(τ)dt

)
1

2

.

Proof. It follows from (20) and (34) that

‖u− uh‖
2
L2(J;L2(Ω)) =

∫ T

0

(u − uh, u− uh)dt

=

∫ T

0

(u+ z, u− uh)dt+

∫ T

0

(uh + zh, uh − u)dt

+

∫ T

0

(zh − z(uh), u− uh)dt+

∫ T

0

(z(uh)− z, u− uh)dt

≤

∫ T

0

(uh + zh, w − u)dt+

∫ T

0

(zh − z(uh), u− uh)dt

+

∫ T

0

(z(uh)− z, u− uh)dt

= : I1 + I2 + I3.(80)

From the assumption above, it easy to see that

I1 =

∫ T

0

(uh + zh, w − u)dt

≤ C(δ)η21 + δ‖u− uh‖
2
L2(J;L2(Ω)),(81)

where δ is an arbitrary small positive number, C(δ) is dependent on δ−1. More-
over, it is clear that

I2 =

∫ T

0

(zh − z(uh), u− uh)dt

≤ C(δ)‖zh − z(uh)‖
2
L2(J;L2(Ω)) + δ‖u− uh‖

2
L2(J;L2(Ω)).(82)

Now we turn to I3. Note that

y(x, 0)− y(uh)(x, 0) = yt(x, 0)− yt(uh)(x, 0) = 0

and
z(x, T )− z(uh)(x, T ) = zt(x, T )− zt(uh)(x, T ) = 0.

Then from (12)-(13), (16)-(17), (36)-(37) and (40)-(41), we have

I3 =

∫ T

0

(u− uh, z(uh)− z)dt

=

∫ T

0

(

((y − y(uh))tt, z(uh)− z) + (div(ppp− ppp(uh)), z(uh)− z)
)

dt
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=

∫ T

0

d

dt
((y − y(uh))t, z(uh)− z)dt−

∫ T

0

((y − y(uh))t, (z(uh)− z)t)dt

+

∫ T

0

(α(qqq(uh)− qqq), ppp− ppp(uh))dt+

∫ T

0

(ppp(uh)− ppp,ppp− ppp(uh))dt

=

∫ T

0

d

dt
((z(uh)− z)t, y − y(uh))dt −

∫ T

0

((z(uh)− z)t, (y − y(uh))t)dt

+

∫ T

0

(α(ppp− ppp(uh)), qqq(uh)− qqq)dt+

∫ T

0

(ppp(uh)− ppp,ppp− ppp(uh))dt

=

∫ T

0

(

((z(uh)− z)tt, y − y(uh)) + (y − y(uh), div(qqq(uh)− qqq))
)

dt

+

∫ T

0

(ppp(uh)− ppp,ppp− ppp(uh))dt

=

∫ T

0

(

(ppp(uh)− ppp,ppp− ppp(uh)) + (y(uh)− y, y − y(uh))
)

dt

≤ 0.(83)

Thus, we obtain from (80)-(83) that which proves (79). �

Remark 3.1. Let w in Lemma 3.2 be such that w = πcu, where

πcv(t)|x∈τ =

∫

τ

v(x, t)dx/|τ |, ∀ v ∈ U,

where |τ | is the measure of the element τ . Then it follows that w ∈ Kh and
∣

∣

∣

∣

∣

∫ T

0

(uh + zh, w − u)dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0

(uh + zh, π
cu− u)dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0

(uh + zh − πc(uh + zh), π
c(u− uh)− (u − uh))dt

∣

∣

∣

∣

∣

≤ C

∫ T

0

∑

τ

hτ |uh + zh|H1(τ)‖u− uh‖L2(τ)dt.

Hence, the assumption in Lemma 3.2 is satisfied.

From the equations (52)-(55), we can see that:

Lemma 3.3. Let mixed elliptic reconstructions ỹ, p̃pp, z̃ and q̃qq satisfy (52)-(55).
Then the following properties hold true:

αp̃pp = −∇ỹ, αq̃qq + p̃pp− pppd = −∇z̃.(84)
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Using (52)-(55) in (44)-(47), we derive the error equations:

(αξppp, vvv)− (ξy, divvvv) = 0, ∀ vvv ∈ VVV ,(85)

(ξy,tt, w) + (divξppp, w) = (ηy,tt, w), ∀ w ∈ W,(86)

(αξqqq , vvv)− (ξz, divvvv) = −(ξppp, vvv), ∀ vvv ∈ VVV ,(87)

(ξz,tt, w) + (divξqqq, w) = (ξy, w) + (ηz,tt, w), ∀ w ∈W.(88)

Lemma 3.4. Let ξy and ξppp satisfy (85)-(86). Then we have the following

estimates:

‖ξppp‖L∞(J;L2(Ω)) + ‖ξy,t‖L∞(J;L2(Ω))

≤ C(‖ηy,t(0)‖+ ‖ηy,tt‖L2(J;L2(Ω)) + ‖ηppp(0)‖

+ ‖y1 − yh1 ‖+ ‖A∇y0 + ppph(0)‖),(89)

‖ξy‖L∞(J;L2(Ω))

≤ C(‖y0 − yh0 ‖+ ‖y1 − yh1 ‖+ ‖ηy(0)‖+ ‖ηy,t‖L2(J;L2(Ω))),(90)

‖ξppp,t‖L∞(J;L2(Ω)) + ‖ξy,tt‖L∞(J;L2(Ω))

≤ C(‖div(A∇y0) + divppph(0)‖ + ‖divηppp(0)‖

+ ‖A∇y1 + ppph,t(0)‖+ ‖ηppp,t(0)‖

+ ‖ηy,tt(0)‖+ ‖ηy,ttt‖L2(J;L2(Ω))).(91)

Proof. Firstly, we differentiate the equation (85) with respect to t, and obtain

(αξppp,t, vvv)− (ξy,t, divvvv) = 0, ∀ vvv ∈ VVV .(92)

Choose vvv = ξppp and w = ξy,t as the test functions and add the two relations of
(92) and (86). Then, using ǫ-Cauchy inequality, we derive

1

2

d

dt
(‖α

1

2 ξppp‖
2 + ‖ξy,t‖

2) ≤
1

2
‖ηy,tt‖

2 +
1

2
‖ξy,t‖

2.(93)

On integrating (93) with respect to time from 0 to t, using the assumption on
A, we find that

‖ξy,t‖
2 + ‖ξppp‖

2 ≤ C

∫ t

0

‖ηy,tt‖
2ds+ C

∫ t

0

‖ξy,t‖
2ds

+ C‖ξy,t(0)‖
2 + C‖ξppp(0)‖

2.(94)

Applying the Gronwall’s lemma to (94), we get

‖ξy,t‖L∞(J;L2(Ω)) + ‖ξppp‖L∞(J;L2(Ω))

≤ C(‖ξy,t(0)‖+ ‖ξppp(0)‖+ ‖ηy,tt‖L2(J;L2(Ω))).(95)

Note that

‖ξppp(0)‖ ≤ ‖ppp(uh)(0)− ppph(0)‖+ ‖ηppp(0)‖

≤ ‖A∇y0 + ppph(0)‖+ ‖ηppp(0)‖.(96)
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Integrate (86) with respect to time from 0 to t and use the symbol:

φ̂(t) :=

∫ t

0

φ(s)ds(97)

to find that

(ξy,t, w) + (divξ̂ppp, w) = (yh1 − y1, w) + (ηy,t, w), ∀ w ∈ W.(98)

Set w = ηy in (98) and vvv = ξ̂ppp in (85). Then add the resulting equations and
use Cauchy-Schwarz and Young’s inequalities to obtain

d

dt
(‖ξy‖

2 + ‖α
1

2 ξ̂ppp‖
2) ≤ C(‖yh1 − y1‖

2 + ‖ηy,t‖
2 + ‖ξy‖

2).(99)

Integrating with respect to time from 0 to t, we arrive at

‖ξy‖ ≤ C(‖ξy(0)‖+ ‖y1 − yh1‖+ ‖ηy,t‖L2(J;L2(Ω))).(100)

Let t = 0 and w = ξy,tt(0) in (86), we can derive

‖ξy,tt(0)‖ ≤ C(‖divξppp(0)‖+ ‖ηy,tt(0)‖).(101)

Differentiating the equations (85) and (86) respect to t, we get

(αξppp,tt, vvv)− (ξy,tt, divvvv) = 0, ∀ vvv ∈ VVV ,(102)

(ξy,ttt, w) + (divξppp,t, w) = (ηy,ttt, w), ∀ w ∈W.(103)

Choosing vvv = ξppp,t and w = ξy,tt as the test functions and add the two relations
of (102)-(103), using Cauchy inequality, we find that

1

2

d

dt
(‖α

1

2 ξppp,t‖
2 + ‖ξy,tt‖

2) ≤
1

2
‖ηy,ttt‖

2 +
1

2
‖ξy,tt‖

2.(104)

Integrating (104) with respect to time from 0 to t, using Gronwall’s lemma, we
arrive at

‖ξppp,t‖L∞(J;L2(Ω)) + ‖ξy,tt‖L∞(J;L2(Ω))

≤ C(‖ξy,tt(0) + ‖ξppp,t(0)‖+ ‖ηy,ttt‖L2(J;L2(Ω))).(105)

Note that

‖divξppp(0)‖ ≤ ‖div(ppp(uh)(0))− divppph(0)‖+ ‖divηppp(0)‖

≤ ‖div(A∇y0) + divppph(0)‖+ ‖divηppp(0)‖(106)

and

‖ξppp,t(0)‖ ≤ ‖pppt(uh)(0)− ppph,t(0)‖+ ‖ηppp,t(0)‖

≤ ‖A∇y1 + ppph,t(0)‖+ ‖ηppp,t(0)‖.(107)

Combining (95)-(96), (100)-(101) with (105)-(107), we complete the proof. �
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Lemma 3.5. Let ξz and ξqqq satisfy (87)-(88). Then we have the following

estimates:

‖ξqqq‖L∞(J;L2(Ω)) + ‖ξz,t‖L∞(J;L2(Ω))

≤ C(‖ξz,t(T )‖+ ‖Appph(T )−Apppd(T ) + qqqh(T )‖

+ ‖ξppp(T )‖+ ‖ηppp(T )‖+ ‖ξppp,t‖L2(J;L2(Ω))

+ ‖ξy‖L2(J;L2(Ω)) + ‖ηz,tt‖L2(J;L2(Ω))),(108)

‖ξz‖L∞(J;L2(Ω))

≤ C(‖ξppp‖L2(J;L2(Ω)) + ‖ηz,t‖L2(J;L2(Ω))

+ ‖ηz(T )‖+ ‖ξy‖L2(J;L2(Ω))).(109)

Proof. We differentiate the equation (87) with respect to t, and obtain

(αξqqq,t, vvv)− (ξz,t, divvvv) = −(ξppp,t, vvv), ∀ vvv ∈ VVV .(110)

Choose vvv = −ξqqq and w = −ξz,t as the test functions and add the two relations
of (110) and (88). Then, using ǫ-Cauchy inequality, we derive

−
1

2

d

dt
(‖α

1

2 ξqqq‖
2 + ‖ξz,t‖

2) ≤ C(‖ηz,tt‖
2 + ‖ξz,t‖

2 + ‖ξqqq‖
2

+ ‖ξqqq‖
2 + ‖ξppp,t‖

2 + ‖ξy‖
2).(111)

On integrating (111) with respect to time from t to T , using the assumption
on A, we find that

‖ξz,t‖
2 + ‖ξqqq‖

2 ≤ C

∫ T

t

(‖ξppp,t‖
2 + ‖ξqqq‖

2 + ‖ξy‖
2 + ‖ηz,tt‖

2 + ‖ξz,t‖
2)ds

+ C(‖ξz,t(T )‖
2 + ‖ξqqq(T )‖

2).(112)

Applying the Gronwall’s lemma to (112), we get

‖ξy,t‖L∞(J;L2(Ω)) + ‖ξppp‖L∞(J;L2(Ω))

≤ C(‖ξz,t(T )‖+ ‖ξqqq(T )‖+ ‖ηz,tt‖L2(J;L2(Ω))

+ ‖ηppp,t‖L2(J;L2(Ω)) + ‖ηy‖L2(J;L2(Ω))).(113)

Observe that

‖ξqqq(T )‖ ≤ ‖qqq(uh)(T )− qqqh(T )‖+ ‖ηqqq(T )‖

≤ ‖A(ppph(T )− pppd(T )) + qqqh(T )‖+ ‖ηqqq(T )‖

+ C(‖ξppp(T )‖+ ‖ηppp(T )‖).(114)

Integrate (88) with respect to time from t to T and use the symbol (74) to
get

−(ξz,t, w) + (divξ̌qqq, w) = (ξ̌y , w)− (ηz,t, w), ∀ w ∈ W.(115)
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Set w = ηz in (115) and vvv = ξ̌qqq in (87). Then add the resulting equations to
obtain

−
1

2

d

dt
(‖ξz‖

2 + ‖α
1

2 ξ̌qqq‖
2) = (ξ̌y , ξz)− (ξppp, ξ̌qqq)− (ηz,t, ξz).(116)

Integrating with respect to time from t to T , similar to (78), we get

‖ξz‖ ≤ C(‖ξy‖L2(J;L2(Ω)) + ‖ξppp‖L2(J;L2(Ω))

+ ‖ξz(T )‖+ ‖ηz,t‖L2(J;L2(Ω))).(117)

By use of (113), (114) and (117), we derive (108) and (109). �

From (52)-(55), we derive the error equations:

(αηppp, vvvh)− (ηy, divvvvh) = 0, ∀ vvvh ∈ VVV h,(118)

(divηppp, wh) = 0, ∀ wh ∈ Wh,(119)

(αηqqq , vvvh)− (ηz , divvvvh) = −(ηppp, vvvh), ∀ vvvh ∈ VVV h,(120)

(divηqqq, wh) = (ηy , wh), ∀ wh ∈Wh.(121)

To prove the main theorem, we need the following a posteriori estimates of
ηy, ηy,t, ηy,tt, ηy,ttt, ηppp, ηppp,t, ηppp,tt, divηppp, ηz, ηz,t, ηz,tt and ηqqq related to the
mixed elliptic reconstructions (52)-(55).

Lemma 3.6. For Raviart-Thomas elements, there exists a positive constant

C which depends only on the coefficient matrix A, the domain Ω, the shape

regularity of the elements and polynomial degree k such that

‖ηy‖
2 ≤ C

(

‖h1+min{1,k}(yh,tt + divppph − f − uh)‖
2

+ min
wh∈Wh

‖h(αppph −∇hwh)‖
2

)

,(122)

‖ηy,t‖
2 ≤ C

(

‖h1+min{1,k}(yh,tt + divppph − f − uh)t‖
2

+ min
wh∈Wh

‖h(αppph,t −∇hwh)‖
2

)

,(123)

‖ηy,tt‖
2 ≤ C

(

‖h1+min{1,k}(yh,tt + divppph − f − uh)tt‖
2

+ min
wh∈Wh

‖h(αppph,tt −∇hwh)‖
2

)

,(124)

‖ηy,ttt‖
2 ≤ C

(

‖h1+min{1,k}(yh,tt + divppph − f − uh)ttt‖
2

+ min
wh∈Wh

‖h(αppph,ttt −∇hwh)‖
2

)

,(125)



MIXED METHODS FOR HYPERBOLIC CONTROL PROBLEMS 335

‖ηppp‖
2 ≤ C

(

‖h
1

2J(αppph · t)‖20,Γh
+ ‖h curlh(αppph)‖

2

+ ‖h(yh,tt + divppph − f − uh)‖
2

)

,(126)

‖ηppp,t‖
2 ≤ C

(

‖h
1

2J(αppph,t · t)‖
2
0,Γh

+ ‖h curlh(αppph,t)‖
2

+ ‖h(yh,tt + divppph − f − uh)t‖
2

)

,(127)

‖ηppp,tt‖
2 ≤ C

(

‖h
1

2J(αppph,tt · t)‖
2
0,Γh

+ ‖h curlh(αppph,tt)‖
2

+ ‖h(yh,tt + divppph − f − uh)tt‖
2

)

,(128)

‖divηppp‖
2 ≤ C‖yh,tt + divppph − f − uh‖

2,(129)

‖ηz‖
2 ≤ C

(

‖h1+min{1,k}(zh,tt + divqqqh − yh + yd)‖
2 + ‖ηy‖

2

+ ‖ηppp‖
2 + min

wh∈Wh

‖h(αqqqh + ppph − pppd −∇hwh)‖
2

)

,(130)

‖ηz,t‖
2 ≤ C

(

‖h1+min{1,k}(zh,tt + divqqqh − yh + yd)t‖
2 + ‖ηy,t‖

2

+ ‖ηppp,t‖
2 + min

wh∈Wh

‖h(αqqqh,t + ppph,t − pppd,t −∇hwh)‖
2

)

,(131)

‖ηz,tt‖
2 ≤ C

(

‖h1+min{1,k}(zh,tt + divqqqh − yh + yd)tt‖
2 + ‖ηy,tt‖

2

+ ‖ηppp,tt‖
2 + min

wh∈Wh

‖h(αqqqh,tt + ppph,tt − pppd,tt −∇hwh)‖
2

)

,(132)

‖ηqqq‖
2 ≤ C

(

‖h(zh,tt + divqqqh − yh + yd)‖
2 + ‖h curlh(αqqqh + ppph − pppd)‖

2

+ ‖ηy‖
2 + ‖ηppp‖

2 + ‖h
1

2J((αqqqh + ppph − pppd) · t)‖
2
0,Γh

)

,(133)

where J(vvv · t) denotes the jump of vvv · t across element edge E for all vvv ∈ VVV with

t being the tangential unit vector along the edge E ∈ Γh.

Proof. Based on the tools developed in [15, 18], it is straight forward to derive
a posteriori error estimates for ηy, ηy,t, ηy,tt, ηy,ttt, ηppp, ηppp,t, ηppp,tt, divηppp, ηz ,
ηz,t, ηz,tt and ηqqq. Here we only discuss the proof of L2-norm estimate ηz .
Now, we appeal to Aubin-Nitsche duality arguments. Thus, we consider Φ ∈
H1

0 (Ω) ∩H
2(Ω) as the solution of the elliptic problem:

−div(A∇Φ) = Ψ, in Ω,(134)
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which satisfies the following elliptic regularity result

‖Φ‖2 ≤ C‖Ψ‖.(135)

By using (134) and the definition of Πh, integrating by parts appropriately,
and the property (84), we obtain

(ηz,Ψ) = (ηz ,−div(A∇Φ))

= (z̃,−div(A∇Φ)) + (zh, div(A∇Φ))

= (zh, div(Πh(A∇Φ))) + (A∇z̃,∇Φ)

= − (q̃qq +Ap̃pp−Apppd,∇Φ) + (zh, div(Πh(A∇Φ)))

= − (ηqqq,∇Φ)− (Aηppp,∇Φ) + (zh, div(Πh(A∇Φ)))

− (αqqqh + ppph − pppd, A∇Φ).

Using (120), integrating by parts and

(∇hwh, (I −Πh)(A∇Φ)) = 0,(136)

we now arrive at

(ηz ,Ψ) = (divηqqq,Φ− PhΦ) + (ηy, PhΦ)− (Aηppp,∇Φ)

− (αqqqh + ppph − pppd −∇hwh, (I −Πh)(A∇Φ))

= − (zh,tt + divqqqh − yh + yd,Φ− PhΦ) + (ηy,Φ)− (Aηppp,∇Φ)

− (αqqqh + ppph − pppd −∇hwh, (I −Πh)(A∇Φ))

≤ C

(

‖h1+min{1,k}(zh,tt + divqqqh − yh + yd)‖‖Φ‖2 + ‖ηy‖‖Φ‖

+ ‖Aηppp‖‖∇Φ‖+ ‖h(αqqqh + ppph − pppd −∇hwh)‖‖A∇Φ‖1

)

≤ C

(

‖h1+min{1,k}(zh,tt + divqqqh − yh + yd)‖+ ‖ηy‖+ ‖ηppp‖

+ ‖h(αqqqh + ppph − pppd −∇hwh)‖

)

‖Φ‖2.(137)

Using elliptic regularity (135) in (137), we obtain

(ηz ,Ψ)

‖Ψ‖
≤ C

(

‖h1+min{1,k}(zh,tt + divqqqh − yh + yd)‖+ ‖ηy‖+ ‖ηppp‖

+ min
wh∈Wh

‖h(αqqqh + ppph − pppd −∇hwh)‖

)

.(138)

Now, taking supremum over Ψ, we obtain estimate (130). �

Remark 3.2. In (130), we can replace minwh∈Wh
‖h(αqqqh+ppph−pppd−∇hwh)‖ by

‖h(αqqqh +ppph −pppd +∇hzh)‖ or by ‖h(αqqqh +ppph −pppd+∇hIh(zh))‖, where Ih(zh)
is an improved version of zh, which is obtained by post processing zh. Similar
places can be found in (122)-(125) and (131)-(132).
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Collecting Lemmas 3.1-3.6, we finally derive the following main results:

Theorem 3.1. Let (ppp, y,qqq, z, u) and (ppph, yh, qqqh, zh, uh) be the solutions of (12)-
(20) and (26)-(34), respectively. Then the following a posteriori estimates hold

for t ∈ [0, T ] :

‖u− uh‖L2(J;L2(Ω))

≤ C

(

η1 + ‖ηz(T )‖+ ‖ηz,t‖L2(J;L2(Ω)) + ‖ηz‖L2(J;L2(Ω)) + ‖ηppp(0)‖

+ ‖y0 − yh0 ‖+ ‖y1 − yh1 ‖+ ‖ηy(0)‖+ ‖ηy,t‖L2(J;L2(Ω))

+ ‖A∇y0 + ppph(0)‖+ ‖ηy,t(0)‖+ ‖ηy,tt‖L2(J;L2(Ω))

)

,(139)

‖y − yh‖L∞(J;L2(Ω))

≤ C(‖u− uh‖L2(J;L2(Ω)) + ‖ηy‖L∞(J;L2(Ω))),(140)

‖ppp− ppph‖L∞(J;L2(Ω))

≤ C(‖u− uh‖L2(J;L2(Ω)) + ‖ηppp‖L∞(J;L2(Ω))),(141)

‖z − zh‖L∞(J;L2(Ω))

≤ C(‖u− uh‖L2(J;L2(Ω)) + ‖ηz‖L∞(J;L2(Ω))),(142)

where η1 is defined in Lemma 3.2 and the estimates for ηy, ηy,t, ηy,tt, ηppp, ηz
and ηz,t are given in Lemma 3.6.

Theorem 3.2. Let (ppp, y,qqq, z, u) and (ppph, yh, qqqh, zh, uh) be the solutions of (12)-
(20) and (26)-(34), respectively. Then there is a constant C > 0 independent

of h such that

‖u− uh‖L∞(J;L2(Ω)) ≤ C‖z − zh‖L∞(J;L2(Ω)),(143)

‖qqq − qqqh‖L∞(J;L2(Ω))

≤C

(

‖z − zh‖L∞(J;L2(Ω)) + ‖ηz,tt‖L2(J;L2(Ω)) + ‖ηz,t(T )‖

+ ‖Appph(T )−Apppd(T ) + qqqh(T )‖+ ‖ηz,t‖L2(J;L2(Ω))

+ ‖ηppp(T )‖+ ‖ξqqq‖L∞(J;L2(Ω)) + ‖divηppp(0)‖

+ ‖div(A∇y0) + divppph(0)‖+ ‖A∇y1 + ppph,t(0)‖

+ ‖ηppp,t(0)‖+ ‖ηy,tt(0)‖+ ‖ηy,ttt‖L2(J;L2(Ω))

)

,(144)

where η1 is defined in Lemma 3.2 and the estimates for ηy, ηy,t, ηy,tt, ηy,ttt,
ηppp, ηppp,t, divηppp, ηz, ηz,t, ηz,tt and ηqqq are given in Lemma 3.6.

Proof. From Lemma 2.1 and (35), we have

‖u− uh‖L∞(J;L2(Ω)) ≤ C‖z − zh‖L∞(J;L2(Ω)),(145)

‖(u− uh)t‖L2(J;L2(Ω)) ≤ C‖(z − zh)t‖L2(J;L2(Ω)).(146)
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Differentiating the equations (63) and (64) with respect to t, we have

(αrppp,tt, vvv)− (ry,tt, divvvv) = 0, ∀ vvv ∈ VVV ,(147)

(ry,ttt, w) + (divrppp,t, w) = ((u − uh)t, w), ∀ w ∈W.(148)

Since ry,t(0) = 0, let t = 0 and vvv = rppp,t(0) in (69), we find that rppp,t(0) = 0.
Moreover, we have divrppp(0) = 0. Set t = 0 and w = ry,tt(0) in (64), we derive

‖ry,tt(0)‖ ≤ ‖(u− uh)(0)‖ ≤ C‖z − zh‖L∞(J;L2(Ω)).(149)

Now, choose w = ry,tt in (148) and vvv = rppp,t in (147), respectively. It is easy to
see that

‖rppp,t‖
2
L∞(J;L2(Ω)) + ‖ry,tt‖

2
L∞(J;L2(Ω))

≤ C(‖z − zh‖
2
L∞(J;L2(Ω)) + ‖ξz,t‖

2
L2(J;L2(Ω))

+ ‖ηz,t‖
2
L2(J;L2(Ω))) + δ‖rz,t‖

2
L2(J;L2(Ω)),(150)

where δ is an arbitrary small positive constant.
Finally, we differentiate the equation (65) with respect to t, we get

(αrqqq,t, vvv)− (rz,t, divvvv) = −(rppp,t, vvv), ∀ vvv ∈ VVV .(151)

Since rz(T ) = 0, let t = T and vvv = rqqq(T ) in (65), we find that

‖α
1

2 rqqq(T )‖ ≤ C‖rppp(T )‖.(152)

Selecting vvv = −rqqq and w = −rz,t as the test functions and add the two relations
of (151) and (66), we can obtain that

−
1

2

d

dt
(‖α

1

2 rqqq‖
2 + ‖rz,t‖

2) = (rppp,t, rqqq)− (ry , rz,t).(153)

Integrating (153) from t to T , using (149), (150), (152), ǫ-Cauchy inequality and
applying Gronwall’s lemma, we can easily obtain the following error estimate

‖rqqq‖
2
L∞(J;L2(Ω)) + ‖rz,t‖

2
L∞(J;L2(Ω))

≤ δ‖rz,t‖
2
L2(J;L2(Ω)) + C

(

‖z − zh‖
2
L∞(J;L2(Ω)) + ‖rppp(T )‖

2

+ ‖ξz,t‖
2
L2(J;L2(Ω)) + ‖ηz,t‖

2
L2(J;L2(Ω)) + ‖ry‖

2
L2(J;L2(Ω))

)

.(154)

For sufficiently small δ, substituting the estimates for ξz,t and ry in (154), we
can derive (144). �

4. Conclusion and future works

In this paper, we derive a posteriori error estimates for the semidiscrete
mixed finite element solutions of quadratic optimal control problems governed
by hyperbolic equations. Our posteriori error estimates for the linear hyper-
bolic optimal control problems by mixed finite element methods seem to be
new. In the next work, we shall discuss a posteriori analysis for a completely
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discrete mixed approximation and design the adaptive mixed finite element al-
gorithms. Furthermore, we shall consider a posteriori error estimates of mixed
finite element methods for more complicated optimal control problems governed
by wave equations.
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