Browse > Article
http://dx.doi.org/10.4134/BKMS.2013.50.1.321

A POSTERIORI L(L2)-ERROR ESTIMATES OF SEMIDISCRETE MIXED FINITE ELEMENT METHODS FOR HYPERBOLIC OPTIMAL CONTROL PROBLEMS  

Hou, Tianliang (Hunan Key Laboratory for Computation and Simulation in Science and Engineering Department of Mathematics Xiangtan University)
Publication Information
Bulletin of the Korean Mathematical Society / v.50, no.1, 2013 , pp. 321-341 More about this Journal
Abstract
In this paper, we discuss the a posteriori error estimates of the semidiscrete mixed finite element methods for quadratic optimal control problems governed by linear hyperbolic equations. The state and the co-state are discretized by the order $k$ Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise polynomials of order $k(k{\geq}0)$. Using mixed elliptic reconstruction method, a posterior $L^{\infty}(L^2)$-error estimates for both the state and the control approximation are derived. Such estimates, which are apparently not available in the literature, are an important step towards developing reliable adaptive mixed finite element approximation schemes for the control problem.
Keywords
a posteriori error estimates; optimal control problems; hyperbolic equations; elliptic reconstruction; semidiscrete mixed finite element methods;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Adjerid, A posteriori finite element error estimation for second-order hyperbolic problems, Comput. Methods Appl. Mech. Engry. 191 (2002), no. 41-42, 4699-4719.   DOI   ScienceOn
2 N. Arada, E. Casas, and F. Troltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl. 23 (2002), no. 2, 201-229.   DOI
3 I. Babuska, M. Feistauer, and P. Solin, On one approach to a posteriori error estimates for evolution problems solved by the method of lines, Numer. Math. 89 (2001), no. 2, 225-256.   DOI
4 I. Babuska and S. Ohnimus, A posteriori error estimation for the semidiscrete finite element method of parabolic partial differential equations, Comput. Methods Appl. Mech. Engry. 190 (2001), no. 35-36, 4691-4712.   DOI   ScienceOn
5 I. Babuska and T. Strouboulis, The Finite Element Method and its Reliability, Oxford University press, Oxford, 2001.
6 G. A. Baker, Error estimates for finite element methods for second order hyperbolic equations, SIAM J. Numer. Anal. 13 (1976), no. 4, 564-576.   DOI   ScienceOn
7 G. A. Baker and J. H. Bramble, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations, RAIRO Anal Numer. 13 (1979), no. 2, 75-100.   DOI
8 G. A. Baker and V. A. Dougalis, On the $L^{\infty}-convergence$ of Galerkin approximations for second order hyperbolic equations, Math. Comp. 34 (1980), no. 150, 401-424.
9 W. Bangerth and R. Rannacher, Finite element approximation of the acoustic wave equation: error control and mesh adaptation, East-West J. Numer. Math. 7 (1999), no. 4, 263-282.
10 W. Bangerth and R. Rannacher, Adaptive finite element techniques for the acoustic wave equation, J. Comput. Acoust. 9 (2001), no. 2, 575-591.   DOI   ScienceOn
11 E. Becache, P. Joly, and C. Tsogka, An analysis of new mixed finite elements for the approximation of wave propagation problems, SIAM J. Numer. Anal. 37 (2000), no. 4, 1053-1084.   DOI   ScienceOn
12 C. Bernardi and E. Suli, Time and Space adaptivity for the second-order wave equation, Math. Models Methods Anal. Sci. 15 (2005), no. 2, 199-225.   DOI   ScienceOn
13 F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, 15. Springer-Verlag, New York, 1991.
14 Y. Chen, Y. Huang, W. B. Liu, and N. N. Yan, Error estimates and superconvergence of mixed finite element methods for convex optimal control problems, J. Sci. Comput. 42 (2010), no. 3, 382-403.   DOI
15 H. Brunner and N. Yan, Finite element methods for optimal control problems governed by integral equations and integro-differential equations, Numer. Math. 101 (2005), no. 1, 1-27.   DOI
16 C. Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comp. 66 (1997), no. 218, 465-476.   DOI   ScienceOn
17 Y. Chen, Superconvergence of quadratic optimal control problems by triangular mixed finite elements, Internat. J. Numer. Methods Engrg. 75 (2008), no. 8, 881-898.   DOI   ScienceOn
18 Y. Chen and W. B. Liu, A posteriori error estimates for mixed finite element solutions of convex optimal control problems, J. Comp. Appl. Math. 211 (2008), no. 1, 76-89.   DOI   ScienceOn
19 A. Demlow, O. Lakkis, and C. Makridakis, A posteriori error estimates in the maximum norm for parabolic problems, SIAM J. Numer. Anal. 47 (2009), no. 3, 2157-2176.   DOI   ScienceOn
20 V. A. Dougalis and S. M. Serbin, On the efficiency of some fully discrete Galerkin methods for second-order hyperbolic equations, Comput. Math. Appl. 7 (1981), no. 3, 261-279.
21 J. Douglas and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44 (1985), no. 169, 39-52.   DOI   ScienceOn
22 K. Eriksson and C. Johnson, Adaptive finite elements methods for parabolic problems I: A linear model problem, SIAM J. Numer. Anal. 28 (1991), no. 1, 43-77.   DOI   ScienceOn
23 C. Johnson, Discontinuous Galerkin finite element methods for second order hyperbolic problems, Comput. Methods Appl. Mech. Engrg. 107 (1993), no. 1-2, 177-129.
24 W. Gong and N. Yan, A posteriori error estimate for boundary control problems gov- erned by the parabolic partial differential equations, J. Comput. Math. 27 (2009), no. 1, 68-88.
25 J. Haslinger and P. Neittaanmaki, Finite Element Approximation for Optimal Shape Design, John Wiley and Sons, Chichester, UK, 1988.
26 L. Hou and J. C. Turner, Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls, Numer. Math. 71 (1995), no. 3, 289-315.   DOI
27 C. Johnson, Y. Nie, and V. Thomee, An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem, SIAM J. Numer. Anal. 27 (1990), no. 2, 277-291.   DOI   ScienceOn
28 G. Knowles, Finite element approximation of parabolic time optimal control problems, SIAM J. Control Optim. 20 (1982), no. 3, 414-427.   DOI   ScienceOn
29 O. Lakkis and C. Makridakis, Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems, Math. Comp. 75 (2006), no. 256, 1627-1658.   DOI   ScienceOn
30 R. Li,W. Liu, H.Ma, and T. Tang, Adaptive finite element approximation for distributed elliptic optimal control problems, SIAM J. Control Optim. 41 (2002), no. 5, 1321-1349.   DOI   ScienceOn
31 J. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971.
32 C. Makridakis and R. H. Nochetto, A posteriori error analysis for higher order dissipative methods for evolution problems, Numer. Math. 104 (2006), no. 4, 489-514.   DOI
33 W. Liu and N. Yan, A posteriori error estimates for control problems governed by Stokes equations, SIAM J. Numer. Anal. 40 (2002), no. 5, 1850-1869.   DOI   ScienceOn
34 J. Lions and E. Magenes, Non homogeneous boundary value problems and applications, Grandlehre B. 181, Springer-Verlag, 1972.
35 W. Liu, H. Ma, T. Tang, and N. Yan, A posteriori error estimates for discontinuous Galerkin time-stepping method for optimal control problems governed by parabolic equations, SIAM J. Numer. Anal. 42 (2004), no. 3, 1032-1061.   DOI   ScienceOn
36 W. Liu and N. Yan, A posteriori error estimates for convex boundary control problems, SIAM J. Numer. Anal. 39 (2001), no. 1, 73-99.   DOI   ScienceOn
37 C. Makridakis and R. H. Nochetto, Elliptic reconstruction and a posteriori error estimates for parabolic problems, SIAM J. Numer. Anal. 41 (2003), no. 4, 1585-1594.   DOI   ScienceOn
38 R. Mcknight and W. Bosarge, The Ritz-Galerkin procedure for parabolic control problems, SIAM J. Control Optim. 11 (1973), 510-524.   DOI
39 P. Neittaanmaki and D. Tiba, Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications, M. Dekker, New York, 1994.
40 R. H. Nochetto, G. Savare, and C. Verdi, A posteriori error estimates for variable time step discretizations of nonlinear evolution equations, Comm. Pure Appl. Math. 53 (2000), no. 5, 525-589.   DOI