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ERROR ESTIMATES OF MIXED FINITE ELEMENT
APPROXIMATIONS FOR A CLASS OF FOURTH ORDER
ELLIPTIC CONTROL PROBLEMS

TIANLIANG Hou

ABSTRACT. In this paper, we consider the error estimates of the numerical
solutions of a class of fourth order linear-quadratic elliptic optimal control
problems by using mixed finite element methods. The state and co-state
are approximated by the order k Raviart-Thomas mixed finite element
spaces and the control variable is approximated by piecewise polynomials
of order k (k > 1). L? and L>®-error estimates are derived for both the
control and the state approximations. These results are seemed to be
new in the literature of the mixed finite element methods for fourth order
elliptic control problems.

1. Introduction

There have been many works on finite element methods for the fourth or-
der partial differential equations (PDEs, for short), of course, containing the
bi-harmonic equation as well, such as in [2, 9, 17, 19] and so on. The prob-
lems described by bi-harmonic equations arise from fluid mechanics and solid
mechanics, such as bending of elastic plates. For the fourth order PDEs, the
mixed finite elements scheme is naturally introduced, which will reduce the
order of PDEs in the mixed system so as to be solved easily. There has been
much research about mixed finite element methods for the 4th order PDEs,
for example, Ciarlet-Raviart elements, Herrmann-Miyoshi elements, Hellan-
Herrmann-Johnson elements. More details can be found in [2, 9, 13, 17, 19]
and the references cited therein. Optimal control problems governed by the
fourth order PDEs also are encountered in many engineering applications. In
[14], Li and Liu introduced a mixed finite element method for the optimal
boundary control problem governed by the bi-harmonic equation. Recently, in
[3], Cao and Yang derived the a priori error estimates of Ciarlet-Raviart mixed
finite element methods for fourth order elliptic control problems.
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In many control problems, the objective functional contains the gradient of
the state variables. Thus, the accuracy of the gradient is important in numerical
discretization of the coupled state equations. Mixed finite element methods are
appropriate for the state equations in such cases since both the scalar variable
and its flux variable can be approximated to the same accuracy by using such
methods (see, for example, [1]). When the objective functional contains the
gradient of the state variable, mixed finite element methods should be used for
discretization of the state equation with which both the scalar variable and its
flux variable can be approximated in the same accuracy. Recently, in [5, 6, 7, 8],
Chen et al. have done some primary works on a priori, superconvergence and a
posteriori error estimates for linear elliptic optimal control problems by mixed
finite element methods.

In this paper, we will study the L? and L>-error estimates for a fourth or-
der quadratic elliptic optimal control problem by higher order Raviart-Thomas
mixed finite element methods. We consider the following linear-quadratic op-
timal control problems:

1 1 1 v
1.1 in { [ Ayl% + VYl + Sy — yall + 5 u)l?
(1.1) min {2| ylI"+ S IVYIE + Slly = all™ + 5wl

ueUqgq

subject to the state equation
(1.2) A’y =f+u, e,
with the boundary condition
(1.3) y=Ay=0, zecodQ,

where Q C R? is a bounded domain with Lipschitz continuous boundary. U,q
denotes the admissible set of the control variable, defined by

(1.4) Ui = {ueL"O(Q): /Qud:cZO}.

Moreover, f and yg4 are given functions, v is a fixed positive number.

The plan of this paper is as follows. In Section 2, we construct the mixed
finite element approximation scheme for the optimal control problem (1.1)-(1.3)
and give its equivalent optimality conditions. The main results of this paper
are stated in Section 3, we derive the L? and L*-error estimates for both the
control and the state approximations. In Section 4, we present a numerical
example to demonstrate our theoretical results.

In this paper, we adopt the standard notation W™P?(Q) for Sobolev spaces
on Q with a norm [ - [lmp given by [[v[[F, , = >, <, ||D0‘v|\’£p(m, a semi-
norm | - [ given by [vfb, = Z\a|:m |\D°‘v||’£p(9). We set W;""(Q) = {v €
WmP(Q) : v|gg = 0}. For p = 2, we denote H™(Q) = W™2(Q), H*(Q) =
W2(Q), and || lm = || - llm2s |-l = || - [lo.2. In addition C or ¢ denotes a
general positive constant independent of h, where h is the spatial mesh-size for
the control and state discretization.
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2. Mixed methods for optimal control problems

In this section, we shall construct mixed finite element approximation scheme
of the control problem (1.1)-(1.3). For sake of simplicity, we assume that the
domain 2 is a convex polygon.

The domain §Q is said to be H*"2-regular if the Dirichlet problem

(2.1) —Ap=1 inQ, Plog =0
is uniquely solvable for 1 € L?(€2) and if
(2.2) [@lls+2 < Clllls

for all ¢ € H*(Q).

In the rest of the paper, we assume that the domain Q is H**2-regular for
k> 1 and that f € H*(Q) and yq € H*(Q).

Let p = —Vy and § = —Ay. Then the optimal control problem (1.1)-(1.3)
is equal to

@3 min {GI0P + 51517 + 3y - wal? + P
subject to
(2.4) p=-Vy, z€Q,
(2.5) divp = §, =€ Q,
(2.6) p=-—-Vy, x€qQ,
(2.7) divp=f+u, €,
(2.8) y=9y=0, zed.
Let

(2.9) V = H(div; Q) = {v € (L*(Q))*,divv € L*(Q)}, W = L*(Q).

We recast (2.3)-(2.8) as the following weak form: find (p, 7, p,y,u) € (V X
W)?2 x U,q such that

@100 anin {GI01P + 51517 + 5l - vl + el
(2.11) (p,v) — (y,dive) =0, Vv e V,

(2.12) (divp,w) = (g,w), Vw e W,

(2.13) (p,v) — (g,divv) =0, Vv eV,

(2.14) (divp,w) = (f + u,w), Y w e W.

It follows from [16] that the above optimal control problem (2.10)-(2.14) has
a unique solution (p, 7, p,y,u) € (V x W)? x Uyq , and that (p, ¥, P, y,u) is the
solution of (2.10)-(2.14) if and only if there is a co-state (q, Z,q,2) € (V x W)?
such that (p,9,D,v,4, 2, q, z, u) satisfies the following optimality conditions:

(2.15) (B,v) — (y,dive) =0, Yo € V,
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(2.16) (divp,w) = (g, w), Y w e W,

(2.17) (p,v) — (g,divv) =0, Vv € V,
(2.18) (divp,w) = (f +u,w), Vw e W,
(2.19) (q,v) — (z,divo) =0, Vv e V,
(2.20) (divg,w) = (z,w) + (g, w), Vw e W,
(2.21) (g,v) — (2,divv) = —(p,v), Vv eV,
(2.22) (divg,w) = (y — ya,w), YV w € W,
(2.23) (vu+z,t—u) >0, V€ U,

where (-, -) is the inner product of L?().
In [22], the expression of the control variable is given as follows:

(2.24) u = (max{0,z} — z) /v,

where z = [, z/ |, 1 denotes the integral average on  of the function z.

Let 75, denote a regular triangulation of the domain §2, hp denote the di-
ameter of T and h = max hr. Let V), x W), € V x W denote the order
k (k > 1) Raviart-Thomas mixed finite element space with the partition Ty,
[10, 18], namely,

VT e€Th V(T)=Pr(T)®span(xPy(T)), W(T)= P(T),

where Py, (T) denotes polynomials of total degree at most k, P(T) = (Py(T))?,
x = (21, 22), which is treated as a vector, and

(2.25) Vi = {’Uh cV:.VTEe 777,’”}7,|T S V(T)},
(2.26) Wiy = {wh ceW:VTe n,whh" S W(T)},
(2.27) Up :={up €Uuq : VT €Ty, an|lr € W(T)}.

Before the mixed finite element scheme is given, we introduce two operators.
Firstly, we define the standard L?(f2)-projection [10] P, : W — W}, which
satisfies: for any ¢ € W
(2.28) (Ph¢ — @, wh) =0, Y wy € Wy,

(2.29) 6 = Prudllo,g < Ch(I$lleg, 0 <t <E+1, if 6 € WHI(Q),
(2.30) ¢ — Puoll—r < Ch" | @lls, 0 <1t <k+1, if ¢ € H(Q).

Next, recall the Fortin projection (see [1] and [18]) II;, : V' — V,, which
satisfies: for any q € V/
(2.31) (div(lpq — q),wp) =0, ¥V w, € Wp,
(232) llg —agllog < Ch'llglleg, /g <t <k+1, if g€ (W"(Q))?,
(2.33) ||div(qg — Hrq)|lo,q < Ch||divg|lsq, 0 <t < k+ 1, if divg € WH9(Q).
We have the commuting diagram property

(2.34) divoll, = P,odiv: V —» W), and div( —II,)V L Wy,
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where and after, I denotes identity operator.
Then the mixed finite element discretization of (2.10)-(2.14) is as follows:
find (pp, G, Pps Yn, un) € (Vi x Wp)? x Uy, such that

@35 min {5000 + 51501 + 3l — val? + S}
(2.36) (D1 vn) — (yn, divoy) =0, V vy, € Vi,

(2.37) (divpy,, wp) = (Gn, wn), ¥V wp, € Wh,

(2.38) (phsvn) — (Gn, diveoy) =0, V vy € Vi,

(2.39) (divpy,, wn) = (f + un,wr), ¥V wp € Wh.

The optimal control problem (2.35)-(2.39) has a unique solution (py,, ¥, Py,
Yn,up) € (Vi xWy)2xUy, , and that (py,, Jn, Py, Yn, un) is the solution of (2.35)-
(2.39) if and only if there is a co-state (qy,, Zn, @y, 21n) € (Vi x Wj)? such that
(Phs Uhs Prys Yns Ais Zhy Ay 21, un) satisfies the following optimality conditions:

(2.40) (Dhsvn) — (yn, divoy) =0, V vy, € Vi,

(2.41) (divpy,, w) = (Gn,wr), ¥V wp, € Wh,

(2.42) (ppsvn) — (Gn, divoy) =0, V vy, € Vi,

(2.43) (divpy, wn) = (f + up,wp), ¥V w, € W,

(2.44) (@n,vn) — (zn,divop) =0, Vv, € Vi,

(2.45) (divgy,, wn) = (Zn, wn) + (Gn, wp), ¥ wp, € W,
(2.46) (gp,,vn) — (Zn,divoy) = —(Py, vn), Y v € Vi,
(2.47) (divgy,, wn) = (yn — Ya, wr), ¥ wp, € Wh,

(2.48) (vup, + zp, Up — up) >0, V ap, € Up,.

In the rest of the paper, we shall use some intermediate variables. We de-

fine the discrete state solution (py, (@), gn (), Py (), yn(a), g, (@), Zn(w), q, (@),
2n(@)) € (Vi x Wp)* associated with @ that satisfies

(2.49) (pp, (@), vp) — (yn(@),divoy) =0, Vv, € Vi,

(2.50) (divpy, (@), wn) = (Jn(w), wn), ¥ wn € Wh,

(2.51) (pp (1), vp) — (Gn(w),divey) =0, ¥V vy € Vi,

(2.52) (divpy, (@), wn) = (f + @, wn), ¥ w, € W,

(2.53) (qp(@),vp) — (zn(w),dive,) =0, Vv, € Vi,

(2.54) (divgy, (@), wn) = (Zn(@), wa) + (Fn(@), wn), V wn € Wh,
(2.55) (g5 (@), vn) = (Zn (1), divon) = =(py (@), vn), V vn € Vi,
(2.56) (divgy, (@), wn) = (yn(@) — ya,wn), ¥ wn € Wh.
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Thus, as we defined, the exact solution and its approximation can be written
in the following way:

(P 9:D,9,4: %, q,2) = (p(u), §(u), p(u), y(u), q(u), 2(u), g(u), z(u)),
(phaghai)haythhvgthhvzh) - (ph(uh)vgh(uh)vi)h(uh>ayh(uh)aqh(uh)vgh(uh)v
ap(un), zn(un)).

3. L? and L*-error estimates

In this section, we will give the L? and L>-error estimates both for the
control and the state approximation.

Firstly, we easily derive the following convergence results for the intermediate
solutions.

Lemma 3.1. Let (pj,(uw), Jn(w), B (w), yn(w), @ (w), Zn(u), @5 (u), 2a(u)) € (Vi
xWhi)* be the solution of (2.49)-(2.56) with @ = u and (p,,D,V,q,%,q,2) €
(V x W)* be the solution of (2.15)-(2.23), respectively. Assume that y, 7, z, 7z €
H*Y(Q), p,p,q,q € (H*1(2))? and divp, divp, divg, divg € H*T1(Q). Then
we have

(3.1) ly = yn (@)l + [P = P ()| ai < CH*,

(32) Iz = zn (@) + llg — gn ()|l aw < CR*,

(3.3) 15 = gr()| + 1D = By, ()| g < CRE,

(3.4) 12 = Zn(u)]| + 1@ — @5 ()|l aiv < CR*.

)
Proof. From Equations (2.49)-(2.56) and (2.15)-(2.23), we obtain the following
error equations

(P — Pu(w),vn) — (y — yn(u), divoy) =0, Vv, € Vi,
(div(p — pp(u)), wn) = (§ — Gn(u), wn), ¥ wp € Wh,
(P —pp(u);vn) — (4 — Gn(u), divop) =0, ¥V vy € Vi,
(div(p — py(u)), wn) =0, Y wy, € W,
(@ — an(u),vn) — (2 — zn(u), divep) =0, V v, € Vy,
(div(g — g (u)), wn) = (2 — Zn(uw), wn) + (§ — gn(u), wr), ¥V wp € Wh,
(@ —ap(u),vn) = (2 = Zu(u), divon) = = (P — pp(u),vn), Y on € Vi,
3.12) (div(g — gp(u)), wn) = (y — yn(u),wn), ¥V w, € Wi

It follows from the standard stability estimate, (2.29) and (2.32) that
(3.13) 15— 300l + 1P — pa ()l < CHH,

(3.14) ly — yn ()|l + 1B — P (W) laiv < CHETY + Clg — G (w)]],

(3.15)
12 = 2 (W)l + llg — gn(w)llaiv < CR* 4+ C(lly — yn(w)]| + B — Bu (W),
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(3.16)
Iz = zn ()l + g = @n (Wi < CR1 + C(1IZ = Za(w)]| + 117 — Gn(w)]).
Thus, (3.1)-(3.4) can be proved from (3.13)-(3.16). O

Then, we will give the following superconvergence results for the intermedi-
ate solutions which are very important for our following work.

Lemma 3.2. Let (py () o (), By (), y (1), 4 (1), 50 (u), G (), 20 () € (V'
xWi)* be the solution of (2.49)-(2.56) with @ = u and (p, 7,9, v, q,%,q,2) €
(V x W)* be the solution of (2.15)-(2.23), respectively. Assume that y, 7, z, % €
H*Y(Q), p,p,q,q € (H1(Q))? and divp, divp, divg, divg € H*(Q). Then
we have

(3.17) 1Pny = yn(w)l| + [|Paz — 2z (u)|| < CRFF2,
(3.18) 121 — Gn(w)l| + | PaZ — Zn ()| < CH*F2,
Proof. Using (2.28), we can rewrite (3.5)-(3.12) as
(3.19) (p—pp(u),vn) — (Pry — yn(u),divoy) =0, V vy, € Vi,
(3.20) (div(p — P (w), wn) = (Pog — Gn(u), wn), ¥V wp € Wy,
(3.21) (P — pu(w),vn) = (Pry — gn(u), divon) =0, Vv, € Vi,
(3.22) (div(p — pp(u)),wp) =0, ¥V wp, € Wp,
(3.23) (@ — qp(u),vp) — (Phz — zp(u),divoy) = 0, V vy, € Vi,
(3.24)

(div(g — g, (), wn) = (PnZ — Zp(u), wn) + (Pu — Gn(u), wn), ¥ wp, € Wh,
(3.25)

(q — qh(u), ’Uh> — (Phg — Eh(u), diV’Uh) = 7(]3 — i)h(u),vh), Vv, € Vi,
(3.26) (div(g — g5, (), wn) = (Pry — yn(uw), wr), ¥ wp € Wh.

For sake of simplicity, we now denote
(327) € = Ph,g - Eh(u)

Since
(3.25) el = sup V)

ver2()p£0 VI

we then need to bound (e, 1) for 1 € L?(Q2). Let ¢ € H*(Q) N H(Q) be the
solution of (2.1). We can see from (2.31) and (3.25)

(e,9) = (e, =div(V¢)) = —(e, div(II5(V)))
(3.29) = —(q = ;,(w),11n (V) — (P — Py (u), lTn(V)).
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Note that

(3.30) (div(g — g, (), ¢) + (g — g, (u), Vo) = 0.
Thus, from (2.29), (2.32), (2.33), (3.19), (3.26), (3.29), (3.30) and Lemma 3.1,
we derive
(e;¥) =(q — q;,(u), Vo —111(V9))
+ (div(q — qp,(u)), ¢ — Pudd) + (Pny — yn(u), Pno)
— (Pry — yn(u),div(Iln(Ve)))

(3.31) <O + || Pay — yn(w)[Dl|¢]]2-
Similarly, using the duality argument, we can find that
(3:32)  [[Pag — gn(u)l| < CH*2,
(3:33) [Py —yn(w)]| < CR**2 + C|| P — g (u)ll;
(3:34) [Pz — zn(w)|| < CR**2 + C(|1Pag — Gn(w)|| + [ Paz = Zn(w)])-
Thus, by (3.28) and (3.31)-(3.34), we complete the proof. O

Lemma 3.3. Let z,(Pru) and zp, be the solutions of (2.49)-(2.56) with & = Phu
and U = uy, respectively, then we have

(3.35) (zn — zn(Pru), Phu —up) < 0.

Proof. Choose & = Ppu and @ = wuy, in (2.49)-(2.56), respectively, we obtain
the following error equations:

(3.36) (P (Pru) — Py, vn) — (yn(Pru) — yp, divey) = 0, vy € Vi,
(3.37) (div(py,(Pru) = Pp), wn) = (Gn(Paw) = Gn, wn), wn € Wh,
(3.38) (pn(Pru) — pp,vn) — (Gn(Pru) — g, divey) =0, vy € Vi,
(3.39) (div(py, (Phu) = pp),wn) = (Phu — wn,wr), wp € Wh,
(3.40) (@n(Pru) — @p, vn) — (2p(Pru) — 2, diveoy) =0, v, € Vi,
(3.41)

(div(qp,(Pou)—qyp,), wn) = (Zn(Pru) = Zn, wi) + (Ga(Pht) = Gn, wr), wp € W,

(3.42)
(g, (Pru) — gy, vn) — (Zp(Pru) = Zn, divey ) = — (P, (Prw) — Py, Oa), vn € Vi,
(3.43) (div(qy, (Pru) — qp,), wn) = (yn(Prw) — yn,wn), wp € W,

For the above equations, we choose wy, = Z — Zp(Pru) in (3.37), vy = @) —
G (Puts) in (3.36), wn = 2 — 2 (Pyts) in (3.39), o5, = @ — @y (P in (3.35),
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wh = ﬂh - gjh(Phu) in (341), Unp = Py, fph(Phu) in (340), Wh = Yh — yh(Phu)
in (3.43) and vy, = p;, — Pj,(Pru) in (3.42), then we can deduce that

(Zh — zh(Phu), Phu — uh)
(3.44)  =— Py, — Pp(Pu)[I* = llyn — yn(Prw)|* = [|§n — Gn(Pau)|> <0,
which implies (3.35). O

Lemma 3.4. Let (ph(Phu)) gh(Phu)a ﬁh(Phu)7 yh(Phu)a qh(Phu)a Zh(Ph’lL),

ay (Phu); Zh (Phu)) and (ph (u)a Yn (u)a Py (u), Yh (u)a qp (u)’ Zh(u)’ ay (u)a Zh(u))
be the solutions of (2.49)-(2.56) with & = Pyu and @ = u, respectively. Then
we have

(3.45) lyn(w) = yn(Pru)| + [lpp (w) — pp(Pru)|| = 0,
(3.46) lzn(u) = zn(Phu)ll + llgn(w) — gn(Pru)ll = 0,
(3.47) 19n(u) = Gn(Pru)l| + [P (u) = Pp(Pru)|| = 0,
(3.48) 120 (w) = Zn(Pru) |l + (@5 (u) — @, (Phu)l] = 0.

Proof. First, we choose & = Pu and @ = u in (2.49)-(2.56) respectively, then
we obtain the following error equations

(349) (P (Phu) — Pp(u),vn) — (yn(Phu) — yn(u), diven) = 0, v, € Vi,
(3.50)  (div(py(Pru) — py(u)), wn) = (Gn(Phu) = Gn(w), wn), wn € Wh,
(3.51)  (pn(Pau) = pp(u);vn) — (Gn(Pru) — Gn(u), divon) = 0, v, € Vi,
(3.52) (div(pp,(Pru) — pp(w), wn) = (Phu — u,wh), wp € Wh,
(3.53)  (qn(Phu) — qp(u),vn) — (zn(Pru) — zp(u), divoy) = 0, v, € Vi,
(3.54) (div(g, (Pru) — qn(u)), wn)

= (Zn(Pru) — Zp(w), wn) + (Gn(Pru) — gu(u), wr), wy € Wh,

(3.55) (qn(Pru) — g, (u),vr) — (Zn(Pru) — Zp(u), divoy)
= — (i)h(PhU) _i’h(u)avh)a vy € Vi,

(3.56)  (div(gy(Phu) — gy (), wn) = (Yn(Prw) = yn(w), wr), wn € Wh.
Noticing that (Ppu — u,wy) = 0, then (3.45)-(3.48) follows from the standard
stability estimate. O

Now, we will discuss the superconvergence for the control variable.

Lemma 3.5. Let u be the solution of (2.15)-(2.23) and up, be the solution
of (2.40)-(2.48), respectively. Let all the assumptions of Lemma 3.2 be valid.
Then, we have

(3.57) | Phu — up| < ChF2.
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Proof. We choose @ = uy, in (2.23) and 4j, = Pypu in (2.48) to get the following
two inequalities:

(3.58) (vu+ z,up, —u) >0
and
(3.59) (vun + 2z, Pou —up) > 0.

Note that up — v = up, — Pyu+ Pyu —u. Adding the two inequalities (3.58)
and (3.59), we have

(3.60) (vup + zn, — vu — z, Pou — up) + (vu + z, Pou — u) > 0.
Thus, by (3.60), we find that
V|| Pou — un||* = v(Phu — up, Pou — up,)
=v(Pyu — u, Pou — up,) + v(u — up, Pou — up)

(3.61) < (zn — z, Phu—up) + (vu + z, Pou — u).

Observe that
(zn — 2, Pou— up) = (z2n — zn(Pru), Pou — up) + (2 (Pru) — zp(u), Phu — up)
(3.62) + (zn(u) — Puz, Pyu — up,).

By Lemma 3.2 and Lemma 3.4, we arrive at

(3.63)  (2n(u) — Pz, Pyu — up) < Ch2H ¢ %HPhu —up?

and
(3.64) (zn(Pru) — zp(u), Phu — up) = 0.

From (2.24), we know that
(3.65) vu + z = max{0, z} = const.
Thus, we have
(3.66) (vu+ z, Phbu —u) = (vu + 2) / (Pyu—u)=0.

Q

Combining (3.61)-(3.64), (3.66) with Lemma 3.3, we derive (3.57). O

Now, we can derive the L°°-error estimates for the control variable.

Theorem 3.1. Let u and uy be the solutions of (2.15)-(2.23) and (2.40)-(2.48).
Let all the assumptions of Lemma 3.2 be valid. Assume that u € WFH1:0(Q).
Then we have

(3.67) llu —up|| < CRF,
(3.68) lu — unllo.co < CRFTE.
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Proof. By (2.29), Lemma 3.5 and the inverse estimate, we have
(3.69) lu —un| < ||u— Puu| + || Pou — up|| < ChEFL
and
llu = unllo,c0 <[lu— Prullo,oo + | Pt — unllo,00
(3.70) <C(RM 4 b= || Pou — ug|) < CRFHL 0

Theorem 3.2. Let (pa v, pa Y, q, Z, Qa Z) and (pha Yn, pha YnsQp, Zhs (?ha Zh) be the
solutions of (2.15)-(2.23) and (2.40)-(2.48), respectively. Let all the assump-

tions of Lemma 3.2 be valid. Then we have

(3.71) Iy = yall + lp — Ppllaiw < CHFH,
(3.72) 15— Gnll + 1P — Ppllai < CHEHY,
(3.73) Iz = znll + lg — qpllaiw < CH*HY,
(3.74) 12 = Zull + 1G — @pllaiw < CRMF.

Proof. First, we choose @ = up and @ = u in (2.49)-(2.56) respectively. We can
obtain the following error equations

(3.75)
(P, — Pp(w),vn) — (yn — yn(u),divey) = 0, vy, € Vi,
(3.76)
(div(py, — Pp(w)), wn) = (Jn — Gn(uw), wn), wn € Wh,
(3.77)
(pr, — Pp(w),vn) — (Gn — Gn(u),divoy,) =0, v, € Vi,
(3.78)
(div(py, — pp(w)), wn) = (up — u,wp), wp € W,
(3.79)
(@n — qn(u),v) — (2n — zn(u), divoy) = 0, v, € Vip,
(3.80)
(div(gy, — gp(w)), wn) = (Zn — Zn(u), wn) + (Gn — Gn(uw), wn), wp € Wh,
(3.81)
(@n — an(w),vn) — (Zn — Zp(u), diver) = =Py, — Pi(w),vn), vi € Vi,
(3.82)

(div(g, — g5, (w),wn) = (yn — yn(u),wn), wp € Wh.
It follows from stability estimate that
(3.83) 1Pn — o (W laiv + [lyn — ya ()]l < Cllu — ual,
(3.84) lan — an(u) )
(3.85) 15 — Pr (W) llaiv + [|§n — Gn(w)]| < Cllu — ual,
(3.86) 1Gn — @n(w)llaiv + 120 — Zn(w)|| < Cllu — unl].

u)laiv + [[2n — 2n(v)|| < Cllu — unll,
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Then (3.71)-(3.74) follows from (3.83)-(3.86), Lemma 3.1 and Theorem 3.1. [

Theorem 3.3. Let (pagapayaqaéaQaz) and (phaghaphayhaqhaéha(?hazh) be
the solutions of (2.15)-(2.23) and (2.40)-(2.48), respectively. Let all the as-
sumptions of previous lemmas be valid. Assume that divp, divp, divq, divq €
Wktleo(Q). Then we have

(3.87) 1y = ynllo.co + l|div(p — pp)ll0,00 < CR*TY,

(3.88) 15 = Gnllo,c0 + [|div(® — By)llo,00 < CH*HE,

(3.89) 12 = znllo,00 + | div(g — gp) 0,00 < CRHY,

(3.90) 12 = Znllo,00 + | dit(@ = @p)llo,00 < CHFF.

Proof. Using (2.31), we rewrite (3.19)-(3.26) as

(3.91) (P — Pp,vn) — (Pry — yn, divoy) =0, Vv, € Vi,

(3.92) (div(Ilpp — Py,), wn) = (Po§ — Gn,wr), ¥ wp, € Wh,

(3.93) (P — pp,vn) — (Pr¥ — Yn, divoy) =0, Vv, € Vi,

(3.94) (div(IIpp — pp), wn) = (Pou — un,wp), ¥ wp € Wh,

(3.95) (@ — qy,,vn) — (Phz — zp,divey,) =0, Y v, € Vi,

(3.96) (div(lnq — qy), wn) = (Pnz — Zn,wr) + (Phgy — Gn,wp), ¥ wp, € Wy,

(3.97) (@ — qp,vn) — (Phz — Zp,divog) = —(p — Py, vn), Vv € Vg,

(398) (diV(th — qh), wh) = (Phy — Yh, wh), Y wy € W,
Similar to Lemma 3.2, we can prove that

(3.99) [1Pry — ynll + | Paz — zu|] < CH*2,

(3.100) 1Pag — Gnll + [|PnZ = Zu|| < CR*F2,

By use of (2.29), (3.99)-(3.100) and the inverse estimate, we find that

(3.101) Iy = wnllo.oo + 117 — 2nllo.c0 < CRETL,

(3.102) 15 = Gnllo,co + 12 = Znllo,c0 < CREF.

From (3.92), (3.94), (3.96) and (3.98), it is easy to derive that

(3.103) div(Ilyp — pp,) = Pry — Un,

(3.104) div(Ilpp — p),) = Pru — up,

(3.105) div(llng — q,) = Prg — Gn + PrZ — Zn,

(3.106) div(Illrq — q;) = Pay — yn-

Combining (2.33), (3.101)-(3.106) with the inverse estimate, we complete
the proof of Theorem 3.3. O
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Then, we introduce some notations. For any g € €2, let
(3.107) pla,x0) = (|2 — zol” + [6°)2,

where z = (z1,22) € R?, § = vh and 7 is a positive number. The weighted
function p(-, xo) which was first introduced by Frehse and Rannacher [12], sat-
isfies the following properties (see also [20]):

(3.108) maj)gp(x,aco) < cmirTlp(ac,aco), VT €Ty, x€f,
e e
(3.109) |D7 p%| < ¢p®~l, @ is a real number,
2 > =2
a+ 25 « )
(3.110) I = /po‘dac < c[lnd], a=-2,
Q
92+a
¢ , o< =2
—o— 2

The Green’s function {Ga(z, zg), A2(z, 20)} is defined by
Go+ Vi =482 inQ,
(3.111) divGy =0 in Q,
)\2 =0 on 89,

where 85 = 85 (x,z0) is either (82,0) or (0,6%); 6% is a regularized Dirac d-
function at x( satisfying

(3.112) oh(-,x0) € CH(Q), suppds C E,
(3.113) 5h >0, / Shdr =1,

Q
(3.114) | D768 |0.00 < ch™2711 |5 = 0,1.

Here, E C T for some element T, 2y € E, E is required to have the following
properties:

(i) diamFE = Ajhp, with A; to be determined later,

(ii) there exists a ball B with radius Ashy such that B C E,

(iii) E is star-shaped with respect to B.

The regularized Green’s function {Ga(z, zo), A2 (x, o)} was first introduced
by Wang [11, 21]. A;(0 < A; < 1) was chosen such that for 2o € T and T € T},
satisfying [11, (3.11)]

(3.115) [v]]0.00 = max [Wilo.00 < 2|(v,85)], Vv e V.

Let {G%,A\}} be the mixed finite element approximation of {Ga, Ao}. Then

the error equations are

(3.116) (G — G vp) — (Ao — M8, dive,) =0, Vv, €V,
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and
(3.117) (div(Gy — G5, wp) = 0, Y wy, € W,

From [4], we recall the following L!-error estimates for the Green’s functions
and their mixed finite element approximation.

Lemma 3.6. For the second regularized Green’s function {Ga, Ao} defined in
(3.111), the following L'-estimate of boundness holds:

(3118) H)\Q”OJ S C.

Lemma 3.7. Let {Go, Ao} and {Gh N2} be as above. If the space index k > 1,
then

(3.119) G2 — Glo1 < e

Now, we can prove the following L°°-error estimates for the vector-valued
functions.

Theorem 3.4. Let (py,, Jn, Pp> Yhs Qn» 2h, Aps 20) € (Vi X Wi)* be the solu-
tion of (2.49)-(2.56) and (p,7,P,Y,q,%,q,2) € (V x W)* be the solution of
(2.15)-(2.23), respectively. Assume that y,7,z,2 € WEtL2(Q), p.p,q,q €
(WhtLoo(O))2 ] divp, divp, divg, divg € WFH1°(Q). Then we have

(3.120) 2 —ppllo,cc + g — @nllo,co < CREFE,
(3.121) 15— Bulloss + 1a — @nllo,c < CREFL.
Proof. Let

&g = Ung — gy, rq=q—1ng,
§p=P—Pn, & =Y~ Yn
Then the error equations (3.97) and (3.98) are reduced into the following form

(3.122) (§q-vn) — (e, divon) = —(&p,vn) — (rq,vn), Y vn € Vi,
(3.123) (divéq, wn) = (§y,wn), Y wp € Wh.

Also let
(3.124) I€gllose < 2[(Eq. 5)].

Noting (3.111), (3.116)-(3.117) and (3.122)-(3.124), we estimate (§q,6§) as
follows:

(§Q762) (£q, G2 +V2)
= ({q, G2 — Gh) + (fquz) (&g, V2)
= (A2 — &Amm + (e, divG}) — (rq, G3) — (§p, G3) — (A2, divéq)
= (rq, )(wﬂbfﬁ%WQGQ*@AW
<mﬂ2 — (divrg, A — A3) — (rq, 85) — (€p, G) — (&4, AB)
= (rq, G2 — ) (divrg, A2 — A) — (rq, 8%)
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+(€p, G2 — G3) + (&, 22 — A)
— (divép, A2) — (fpvég) = (§ys A2)
< (Irgllo.co + l1€pllo.co) (1G2 — GEllo,1 + (185 [l0,1)
(3125)  + ([divrg] + & IDIIA2 = A5 + ([[divépllo,e0 + 1€y l0,00) | A2 ]

By using (2.29), (2.32)-(2.33), (3.118)-(3.119), (3.125), [21, (3.12b)] and Theo-
rems 3.2-3.3, we derive

0,1

(3.126) €gllo.co < CHMHY + O — B 0,00-
Similarly, we can prove
(3.127) 4B — Brllo.c < CRM,
(3.128) ITp — Py llo.ce < CRETY,
(3.129) 114G — @pllo.c0 < CHFTL.
Thus, combining (2.32) with (3.126)-(3.129), we complete the proof. O

4. Numerical experiments

In this section, we present below an example to illustrate the theoretical
results. The optimization problems were solved numerically by projected gra-
dient methods, with codes developed based on AFEPack [15]. The discretiza-
tion was already described in Section 2: the control function u was discretized
by piecewise polynomials of order k, whereas the state (y,p) and the co-state
(z, q) were approximated by the order k¥ Raviart-Thomas mixed finite element
functions. In our example, we choose the domain 2 = [0,1] x [0,1], » =1 and
k=1.

Example. We consider the following two-dimensional fourth order elliptic
optimal control problem

1 1 1 1
41 in < (|72 + S 1Bl + Sy — yall® + < [lul?
(4.1) Jé%?d{2|y” + 3117+ Sy = yall” + 5wl

subject to the state equation

(4.2) p=—-Vy, z€Q,
(4.3) divp = §, = €Q,
(4.4) p=-Vy, x€,
(4.5) divp=f+u, €,
(4.6) y=§=0, xcoQ,
where

y = sin(mwa ) sin(mxs),

z = sin(27xq ) sin(27xs),
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TABLE 1. The L? error of Example on a sequential uniform
refined meshes.
Resolution | [lu—unl| | [ly—ynll | 19=0nll | Ilp—pull | [P — Pyl
16 x 16 2.9118e-03 | 7.2665e-04 | 1.4537e-02 | 4.0309e-02 | 2.0161e-03
32 x 32 7.2802e-04 | 1.8201e-04 | 3.6359e-03 | 1.0091e-02 | 5.0488e-04
64 x 64 1.8185e-04 | 4.5420e-05 | 9.0847e-04 | 2.5352e-03 | 1.2677e-04
128 x 128 | 4.5872e-05 | 1.1338e-05 | 2.2677e-04 | 6.3159¢e-04 | 3.1659e-05
u =max{0,z} — z,
g =2y,
~ 7 cos(may) sin(mag)
(4.7) p=— )
7 sin(may) cos(mag)

213 sin (1) cos(ms)

21 cos(may ) sin(mas)
pP=— )
f=4r'y —u,
ya =y — 64tz + 4ty — 212y,
In the numerical implementation, we choose the solution u which satisfies
fQ udz = 0. In Tables 1 and 2, the L? and L> errors obtained on a sequence
of uniformly refined meshes are shown, respectively. In Figure 1, the profile of

the numerical solution of u on the 64 x 64 mesh grid is plotted. The theoretical
results can be observed clearly from the data.

Figure 1. The profile of the numerical solution of Example on 64 x 64 triangle
mesh.
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TABLE 2. The L error of Example on a sequential uniform
refined meshes.

Resolution | [|u — upllo,eo | |y = ynllo,ec | 17 = Fnllo,ce | 1P — Prllo,ce | 1P — Prllo,oc
16 x 16 1.2812e-02 3.1973e-03 | 6.3966e-02 1.7736e-01 8.8710e-03
32 x 32 3.2033e-03 7.9992e-04 1.5998e-02 4.4397e-02 2.2215e-03
64 x 64 8.0017e-04 1.9985e-04 | 3.9973e-03 1.1155e-02 5.5778e-04

128 x 128 | 2.0184e-04 4.9891e-05 | 9.9782e-04 2.7793e-03 1.3930e-04
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