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Abstract

In this paper we consider �nite element mathods for nonlinear parabolic prob-

lems de�ned in 
 � Rd (d � 4). A new initial approximation is taken. Optimal

order error estimates in Lp for 2 � p �1 are established for arbitrary order �nite

element. One order superconvergence in W 1;p for 2 � q � 1 are demonstrated as

well.

1 Introduction

Consider the following initial boundary value problem for the nonlinear parabolic prob-

lem:
(a) ut �r � (a(x; u)ru) = f(x; u); (x; t) 2 
� J;

(b) a(x; 0) = u0(x); x 2 
;

(c) u(x; t) = 0; x 2 @
� J;

(1.1)

where 
 is a bounded in Rd (d � 4) with smooth boundary, J = [0; T ]. We assume

data a; f; u0 together with their derivatives to be bounded on 
�R and

0 < a� � a(x; s); (x; s) 2 
�R:

The global nature of those assumptions is not restrictive, as we shall show below that

the approximate solutions are uniformly close to the exact solution u of (1:1).

The object of this paper is to demonstrate optimal error estimates of �nite element

approximation in Lp for 2 � p � 1 and to derive the superconvergence in W 1;p for

2 � p � 1 between the numerical solution and the Ritz projection of the exact solution

of (1.1). In actual application, superconvergence estimates can be used to improve

the approximation accuracy of the numerical solution to u by certain postprocessing

technique as in [8{10].
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For this purpose, let fShg0<h�1 be a family of �nite-dimensional subspace ofH
1
0 (
)\

W
1;1(
); with the following approximation properties: for some r � 2, 1 � s � r;

2 � p � 1 and C a positive constant

inf
�2Sh

fk�� wk0;p + hk�� wk1;pg � Ch
s
kwks;p;

w 2 W
s;p(
) \H1

0 (
);
(1.2)

where k � kl;p denotes the norm in the Sobolev space W l;p(
). In the sequal we also

use k � kl for k � kl;2 and k � k for k � k0;2. In addition, we assume that fShg satis�es the

standard inverse properties in �nite element spaces[2;6].

The semidiscrete �nite-element approximation to the solution u of (1.1) is de�ned

to be a map U(t) : J ! Sh such that

(Ut; �) + (a(U)rU;r�) = (f(U); �); � 2 Sh; (1.3)

and U(0) 2 Sh is the approximation to u0 which will be given in (1.5) below.

We now de�ne the Ritz projection operator Rh : H
1
0 (
)! Sh by

(a(u)r(w �Rhw);r�) = 0; � 2 Sh; (1.4)

where u is the solution of (1.1).

Let the error U � u = (U �Rhu) + (Rhu� u) = � + �. Then we choose the initial

approximation U(0) to satisfy

A(�(0); �) � (a(u0)r�(0);r�) + (au(u0)�(0)ru0;r�)

+�(�(0); �)

= �(au(u0)�(0)ru0;r�); � 2 Sh;

(1.5)

where � is selected large enough to ensure the coerciveness of the bilinear form A(�; �)

over H1.

Finite element methods to (1.1) have been studied by several authors. For example,

Douglas and Dupont [7] andWheeler [15] initiated the analysis of the standard Galerkin

�nite element approximation and demonstrated optimal order convergence in the H1

and L2 norms. Optimal maximum norm estimates for the one-dimensional case was

optimal in [13,15]. For the higher dimensional case Chen and Huang [3] get the almost

optimal L1 error estimates for linear elements. In [12], maximum-norm superconver-

gence of the gradient in linear �nite element approximation is derived. These results

above are in consistent with those for the linear problem (a(x; u) = a(x)): Recently,

the Chou and author [5] obtained optimal L1 error estimates of (1.1) with zero initial

value u0 = 0. Finite element methods for linear parabolic and hyperbolic integrodif-

ferential equations, Sobolev's equations and the equations of visco-elasticity have been

discussed by Lin, Thomee and Wahlbin [11], in which optimal Lp error estimates are

shown for 2 � p <1: The standard references on the subject of superconvergence are
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[3,14,17]. The reader is referred to [14] for the issue of carring superconvergence results

over from linear problems to their nonlinear counterparts.

This paper is organized in the following way. In x2, some nesessary lemmas will

be proved which are essential in the analysis. In x3, optimal Lp error estimates and

superconvergence in W 1;p for 2 � p <1 will be presented, while maximum norm error

estimates and superconvergence of the gradients will be demonstrated in x4.

2 Lemmas

In this section we shall given the error estimates of Ritz projection and prove the

estimates for the initial value error. In addition, we shall also establish L2 estimates

for �t and r�:

The following lemma is contained in [6,17].

Lemma 2.1 For t 2 J; 0 � l � 2, and 1 � s � r we have

(a) kD
l

t
(w �Rhw)k0;p + hkD

l

t
(w �Rhw)k1;p

� Ch
s

lP
j=0

kD
j

twks;p; 2 � p <1; r � 2;

(b) kw �Rhwk0;1 � Ch
slogh�1 � kuks;1; r = 2;

� Ch
s
kuks;1; r > 2;

(c) kw �Rhwk1;1 � Ch
s�1

kwks;1; r � 2:

(2.1)

This lemma together with the inverse property derives the following conclusion.

Corollary 2.1 If u 2 L1(0; t;W
2;d(
) \ W

1;1(
)); ut 2 L1(0; t;W
1;1(
)); then

rRhu and r(Rhu)t are uniformly bounded on [0; t].

Proof. Obviously by (2.1c)

krRhuk0;1 � kRhu� uk1;1 + kuk1;1 � Ckuk1;1:

On the other hand, we know that[4]

k(Rhu)t �Rhutk1;p � CkRhu� uk1;p; 1 < p <1:

This together with inverse properties and (2.1) obtain

kr(Rhu)tk0;1 � k(Rhu)t �Rhutk1;1 + kRhut � utk0;1 + kutk0;1

� Ch
�1
k(Rhu)t �Rhutk1;d + kutk1;1

� Ch
�1
kRhu� uk1;d + kuk1;1

� C(kuk2;d + kutk1;1):

The proof is completed.

Now, let us establish the estimates for r�(0) and �t.
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Lemma 2.2 If u0 2W
s;4(
), ut(0) 2 H

s(
), for 2 � s � r and r � 2, then

(a) k(U �Rhu)(0)k1 � Ch
s
ku0ks;

(b) k(U �Rhu)t(0)k � Ch
s
fku0ks + ku0k

2
s;4 + kut(0)ksg;

(2.2)

where ut(0) = r � (a(x; u0)ru0) + f(x; u0) which comes from (1.1a) and (1.1b).

Proof. We �rst take � = �(0) in (1.5) to get

k�(0)k21 � Ck�(0)kkr�(0)k;

which, by (2.1a), implies (2.2a).

We mext show (2.2b). For this, combine (1.1a), (1.3) and (1.4) to yield the error

equation

(�t; �) + (a(U)r�;r�)

= (f(U)� f(u)� �t; �)� ((a(U) � a(u))rRhu; �); � 2 Sh:
(2.3)

Now subtract (1.5) from (2.3) with t = 0 and set � = �t(0) to derive (in the sequal,

t = 0 will be omitted)

k�tk
2 = (f(U)� f(u)� �t + ��; �t)

+(au(u)(U � u)ru� (a(U)� a(u))ru;r�t)

+((a(U)� a(u))r(u � U);r�t)

= I1 + I2 + I3:

(2.4)

Then it follows from (2.1a), (2.2a), imbedding inequalities[1] and inverse properties that

I1 � C(k�k+ k�k+ k�tk)k�tk

� Ch
s(ku0ks + kut(0)ks)k�tk;

I2 = (

Z 1

0
[au(u)� au(u+ s(U � u))]ds(U � u)ru;r�t)

= (

Z 1

0
[

Z 1

0
auu(u+ s(1� �)(U � u))d� ](�s)ds(U � u)2ru;r�t)

� C(k�k20;4 + k�k
2
0;4)k�tk1

� C(k�k21 + k�k
2
0;4)h

�1
k�tk

� Ch
2s�1

ku0k
2
s;4k�tk;

I3 � C(k�k0;4 + k�k0;4)(k�k1;4 + k�k1;4)k�tk1

� C(k�k1 + k�k0;4)(h
�1
k�k1 + k�k1;4)h

�1
k�tk

� Ch
2s�2

ku0k
2
s;4k�tk:

Collecting the estimates of I1{I3 with (2.4) completes the proof.

Our next aim is to derive estimates for �t and r�.
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Lemma 2.3 Assume that u0 2 W
s;4(
); ut(0) 2 H

s(
); u, ut; utt 2 L2(0; t;H
s(
));

u 2 L1(0; t;W
2;d(
) \W 1;1(
)) and ut 2 L1(0; t;W

1;1(
)): Then for t 2 J

k(U �Rhu)tk+ kU �Rhuk1 � Ch
s
; 2 � s � r and r � 2: (2.5)

Proof. By di�erentiating (2.3) with respect to t we obtain

(�tt; �) + (a(U)r�t;r�)

= �(au(U)Utr�;r�) + ((f(U)� f(u))t � �tt; �)

�((a(U)� a(u))trRhu;r�)� ((a(U) � a(u))r(Rhu)t;r�);

� 2 Sh:

(2.6)

Setting � = �t, by using "-inequality and Corollary 2.1, we have

1

2

d

dt
k�tk+ a�kr�tk

2

� Cf(k�tk
2
0;1 + 1)kr�k2 + k�k

2 + k�tk
2 + k�k

2 + k�tk
2 + k�ttk

2
g

+"kr�tk
2
:

Hence integration now implies

k�tk
2 +

Z
t

0
k�tk

2
1d�

� Cfk�t(0)k
2 +

Z
t

0
[(k�tk

2
0;1 + 1)k�k21 + k�k

2 + k�tk
2 + k�k

2 + k�tk
2 + k�ttk

2]d�g:

If we assume that

k�kL1(J ;H1(
))k�tkL2(J;L1(
)) � Ch
s
; (2.7)

then it follows from (2.1) and (2.2b) that

k�tk
2 +

Z
t

0
k�tk

2
1d� � Cfh

2s +

Z
t

0
(k�tk

2 + k�k
2)d�g: (2.8)

Now the inequality

k�(t)k21 = k�(0)k21 +

Z
t

0

d

dt
k�k

2
1d�

� k�(0)k21 + C

Z
t

0
k�k

2
1d� + "

Z
t

0
k�tk

2
1d�;

can be combined with (2.8), by (2.2a), to show that

k�tk
2 + k�k

2
1 +

Z
t

0
k�tk

2
1d� � Cfh

2s +

Z
t

0
(k�tk

2 + k�k
2
1)d�g: (2.9)
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Gronwall Lemma now yields

k�tk+ k�k1 + (

Z
t

0
k�tk

2
1d�)

1

2 � Ch
s
: (2.10)

Finally it remains to vertify the induction hypothesis (2.7). First note that (2.7),

by (2.2), holds for t = 0. We then need discuss the di�etent cases. If d = 1 or 2, it

follows from imbedding inequalities and (2.10) that

k�(t)k1(

Z
t

0
k�tk

2
0;1d�)

1

2

� C(logh�1)
1

2 k�(t)k1(

Z
t

0
k�tk

2
1d�)

1

2

� C(logh�1)
1

2h
2s = �(hs);

which implies that (2.7) is volid.

For s = 3 or 4, applying the inverse property and imbedding inequality we conclude

that

k�(t)k1(

Z
t

0
k�tk

2
0;1d�)

1

2

� Ch
�
d

2
+1
k�(t)k1(

Z
t

0
k�tk

2
0;qd�)

1

2 ; with q =
2d

d� 2

� Ch
�
d

2
+1
k�(t)k1(

Z
t

0
k�tk

2
1d�)

1

2

� Ch
2s+1� d

2 = �(hs):

Therefore the proof has been completed.

3 Error estimates and superconvergence for 2 � p <1

In this section the optimal Lp error estimates for the semidiscrete �nite element approx-

imation for 2 � p < 1 will be proved in Theorem 3.1. In addition, superconvergence

results in W 1;p (2 � p <1) between the approximate solution and Ritz projection of

the exact solution of (1.1) will be derived in Theorem 3.3.

Theorem 3.1 Let u and U be the solution of (1.1) and (1.3), respectively. If, in

addition to the hypotheses of Lemma 2.2, u 2 W s;d(
) for 2 � s � r and r � 2, then

for t 2 J

kU � uk0;p � Ch
s
; 2 � p <1: (3.1)

Proof. Write the error U � u = (U �Rhu) + (Rhu� u) = �+ � as before. To prove

(3.1) we de�ne a auxiliary the problem. For � 2W 1;p0(
), p�1+ p
0�1 = 1; let � be the

solution of

(a(u)rv;r�) = (v; �); v 2 H
1
0 (
): (3.2)
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Thus

k�k2;p0 � Ck�k0;p0 : (3.3)

By (2.3) we then have

(�; �) = (a(u)r�;r�)

= ((a(u) � a(U))r�;rRh�) + (a(U)r�;rRh�)

= ((a(u) � a(U))rU;rRh�)

+(f(U)� f(u)� �t � �t; Rh�):

(3.4)

The �rst term on the right-hand side can be bounded as follows. From the inverse

property, Corollary 2.1 and (2.5).

krUk0;1 � kr�k0;1 + krRhuk0;1

� C(h�
d

2 kr�k+ 1)

� C(hs�
d

2 + 1)

� C;

and it follows from imbedding inequalities and the stability of Rh inW
1;d0 , d�1+d0�1 =

1; that
((a(U)� a(u))r�;rRh�)

� C(k�k0;d + k�k0;d)kRh�k1;d0

� C(k�k1 + k�k0;d)k�k1;d0

� Ch
s
k�k2;p0 ;

where (2.1a) and (2.5) has been applied at the last step.

In order to estimate the remaining term, by using the same way as in [11, Theorem

3.2] we can select � > 1 such that

kRh�k � CkRh�k1;� � Ck�k1;� � Ck�k2; p0

Hence, by (2.1b) and (2.5),

(f(U)� f(u)� �t � �t; Rh�)

� C(k�k+ k�k+ k�tk+ k�tk)kRh�k

� Ch
s
k�k2;p:

Combining our estimates with (3.4) and noting (3.3), the inequality (3.1) follows.

Theorem 3.2 Let u and U be the solutions of (1.1) and (1.3), respectively.If, in ad-

dition the hypotheses of Lemma 2.2, u 2 W
3;p(
) for 2 � s � r and r � 2, then for

t 2 J

kU �Rhuk1;p � Ch
s
; (3.5)

where 2 � p <1 when d = 1 or 2, 2 � p �
2d
d�2

when d = 3 or 4.
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Proof. we �rst introduce the other auxiliary problem. Denote  x to be an arbitrary

component of r and let 	 be the solution of

(a(u)rv;r	) = �(v;  x); v 2 H
1
0 (
); (3.6)

Thus

k	k1;p0 � Ck k0;p0 ; p
�1 + p

0�1 = 1: (3.7)

We then have by the analogue of (3.4) that

(�x;  ) = ((a(u)� a(U))rU;rRh	)

+(f(U)� f(u)� �t � �t; Rh	):
(3.8)

For the �rst term on the right-hand side we have

((a(u) � a(U))rU;rRh	)

� Ckr�k0;1(k�k0;p + k�k0;p)kRh	k1;p0

� C(k�k1 + k�k0;p)k	k1;p0

� Ch
s
k	k1;p0 :

The second term on the right-hand side is easily treated as before.

((f(U)� f(u))� �t � �t; Rh	)

� C(k�k+ k�k+ k�tk+ k�tk)kRh�k

� Ch
s
k�k1;p0 :

Together our estimates with (3.8) and (3.7) implies that the desired results (3.5) holds.

4 Error estimates and superconvergence for p =1

In this section we only consider two-dimensional space R2. The optimal maximum

norm error estimates and superconvergence of gradients will be established.

We shall �rst show the following L1 norm error estimates.

Theorem 4.1 Let u and U be the solutions of (1.1) and (1.3), respectively. Assume

that the hypotheses of Lemma 2.2 are satis�ed. Moreover, assume that u 2 W
s;1(
)

for 2 � s � r and r � 2. Then for t 2 J

kU � uk0;1 � Ch
slogh�1; r = 2;

� Ch
s
; r > 2:

(4.1)

Proof. From (2.1b) we need to bound � only. Let Gh

z 2 Sh be the discrete Green

function associated with the bilinear form (a(u)r�;r�)[17]. Hence the de�nition of Gh

z

and (3.4) now imply that for z 2 
 and t 2 J

�(z; t) = (a(u)r�;rGh

z
)

= ((a(u) � a(U))rU;rGh

z
) + (f(U)� f(u)� �t � �t; G

h

z
)

� Cf(k�k1 + k�k0;p)kG
h

z
k1;p0 + (k�k + k�k+ k�tk+ k�tk)kG

h

z
kg

� Ch
s(kGh

z
k1;p0 + kG

h

z
k):
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Recalling that[17]

kG
h

zk1;p0 + kG
h

zk � C; p
�1 + p

0�1 = 1; p > 2;

the conclusion of the theorem is now concluded.

Corollary 4.1 Under the hypotheses of Lemma 2.2, assume that u 2 W
s;p(
) for

2 � s � r; r � 2 and p > 2. Then for t 2 J

kU �Rhuk0;1 � Ch
s
: (4.2)

We �nally show W
1;1 superconvergence for U �Rhu.

Theorem 4.2 Under the hypotheses of Theorem 4.1, we have for 2 � s � r and t 2 J

kU �Rhuk1;1 � Ch
s(logh�1)2; r = 2

� Ch
slogh�1; r > 2:

(4.3)

Proof. Let gh
z
2 Sh be the �nite element approximation of the derivative type

regularized Green function, which is associated with the bilinear form (a(u)r�;r�) (see

[3]). Thus the following estimates hold[3]:

kg
h

z
k
2 + kg

h

z
k1;1 � Clogh�1: (4.4)

Now the de�nition of ghz implies that for z 2 
 and t 2 J

@z�(z; t) = (a(u)r�;rgh
z )

= ((a(u)� a(U))rU;rghz ) + (f(U)� f(u)� �t � �t; g
h

z )

� Cf(k�k0;1 + k�k0;1)kghz k1;1 + (k�k + k�k+ k�tk+ k�tk)kg
h

z kg:

(4.5)

Recall that

k�k0;1 � C(logh�1)
1

2 k�k1;

This together with (4.4) and (4.5) complete the proof.

References

[1] Adams, R. A., Sobolev Spaces, Academic Press, NY., 1975.

[2] Brenner, S. C. and Scott L. R., The Mathematical Theory of Finite Element

Methods, Springer-Verlag, 1994.

[3] Chen, M. and Huang Y., The High Precision Theory of Finite Element Methods.

Hunan Science Press, China, 1995.



76 QIAN LI, HONGWEI DU

[4] Chen, C. and Shih, T., Finite element methods for integrodi�ererial equations,

series on Applied Mathematics Vol. 9, F Huang, Z. C. Shi and U. Rorhblum, eds.

World Scienti�c Publishing, Shingapore, New Jersey, London, Hong Kong, 1998.

[5] Chou, S. H. and Li, Q., Max-norm error estimates and superconvergence of the

�nite element approximation for nonlinear parabolic equations, Numer. Math., J.

Chinese Univer. (English Series), to appear.

[6] Ciarlet, P. G., The Finite Element Method for Elliptic Problems, North-Holland

1978.

[7] Douglas, J. and Dupont, T., Galerkin methods for parabolic equations. SIAM J.

Numer. Anal. 7 (1970), 575{626.

[8] Lin, Q., A rectangle test for �nite element analysis, in: Proc. Syst. & Syst. Eng.,

Great Wall Culture Publ. Co., Hong Kong, 1991, 213-216.

[9] Lin, Q., Yan, N. N. and Zhou, A. H., A rectangle test for interploated �nite

elements, in: Proc. Syst. & Syst. Eng., Great Wall Culture Publ. Co., Hong Kong,

1991, 217-229.

[10] Lin, Q., and Zhu Q. D., The preprocessing and postprocessing for the �nite element

method, Shanghai Scienti�c and Technical Publishers, China, 1994.

[11] Lin, Y., Thomee, V. and Wablbin, L. B., Ritz-Volterra projection to �nite-element

spaces and applications to integrodi�erential and related equations, SIAM J. Nu-

mer. Anal., 28(1991), 1047-1071.

[12] Thomee, V., Xu, J. C. and Zhang N. Y., Superconvergence of the gradient in

poecemise linear �nite-element approximation to a Parabolic problem, SIAM J.

Numer. Anal., 26 (1989), 553-573.

[13] Wahlbin, L., On maximum norm error estimates for Galerkin approximations to

one-dimensional second order parabolic boundary value problems, SIAM J. Numer.

Anal. 12 (1975), 177-182

[14] Wahlbin, L. Superconvergence in Galerkin �nite element methods, Lecture Notes

in Mathematics 1605, Springer, Berlin, 1995.

[15] Wheeler, M. F., L1 estimates of optimal orders for one-dimensional second order

parabolic and hyperbolic equations. SIAM J. Numer. Anal. 10 (1973), 908{913.

[16] Wheeler, M. F. A priori L2 error estimates for Galerkin approximations to

parabolic partial di�erential equations. SIAM J. Numer. Anal. 10 (1973), 723{

759.



Lp ERROR ESTIMATES AND SUPERCONVERGENCE 77

[17] Zhu, Q. D. and Lin, Q., Superconvergence Theory of the Finite Element Method,

Hunan Science and Technique Press, China, 1989.

Department of Mathematics

Shandong Normal University

Jinan, Shandong, 250014, P. R. China

e-mail: li qian@163.net

College of Business Administration

Midwetern State University

Wichta Falls, TX 76308, U.S.A.

e-mail: fduh@nexus.mwsu.edu


