• Title/Summary/Keyword: field effect transistor

Search Result 794, Processing Time 0.027 seconds

Highly Crystalline 2,6,9,10-Tetrakis((4-hexylphenyl)ethynyl)anthracene for Efficient Solution-Processed Field-effect Transistors

  • Hur, Jung-A;Shin, Ji-Cheol;Lee, Tae-Wan;Kim, Kyung-Hwan;Cho, Min-Ju;Choi, Dong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1653-1658
    • /
    • 2012
  • A new anthracene-containing conjugated molecule was synthesized through the Sonogashira coupling and reduction reactions. 1-Ethynyl-4-hexylbenzene was coupled to 2,6-bis((4-hexylphenyl) ethynyl)anthracene-9,10-dione through a reduction reaction to generate 2,6,9,10-tetrakis((4-hexylphenyl)ethynyl) anthracene. The semiconducting properties were evaluated in an organic thin film transistor (OTFT) and a single-crystal field-effect transistor (SC-FET). The OTFT showed a mobility of around 0.13 $cm^2\;V^{-1}\;s^{-1}$ ($I_{ON}/I_{OFF}$ > $10^6$), whereas the SC-FET showed a mobility of 1.00-1.35 $cm^2\;V^{-1}\;s^{-1}$, which is much higher than that of the OTFT. Owing to the high photoluminescence quantum yield of 2,6,9,10-tetrakis((4-hexylphenyl)ethynyl) anthracene, we could observe a significant increase in drain current under irradiation with visible light (${\lambda}$ = 538 nm, 12.5 ${\mu}W/cm^2$).

Design of Normally-Off AlGaN Heterojunction Field Effect Transistor Based on Polarization Engineering (분극 엔지니어링을 통한 상시불통형 질화알루미늄갈륨 이종접합 전계효과 트랜지스터 설계)

  • Cha, Ho-Young;Sung, Hyuk-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2741-2746
    • /
    • 2012
  • In this study, we propose a novel structure based on AlGaN substrate or buffer layer to implement a normally-off mode transistor that was difficult to be realized by conventional AlGaN/GaN heterojunction structures. The channel under the gate can be selectively depleted by growing an upper AlGaN barrier with a higher Al mole fraction and a top GaN charge elimination layer on AlGaN substrate or buffer layer. The proposed AlGaN heterojunction field effect transistor can achieve a threshold voltage of > 2 V, which is generally required in power device specification.

Deformation of the AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistor characteristics by UV irradiation

  • Lim, Jin Hong;Kim, Jeong Jin;Yang, Jeon Wook
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.531-536
    • /
    • 2013
  • The impact of UV irradiation process on the AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistor was investigated. Due to the high intensity UV irradiation before the gate dielectric deposition, the conductivity of AlGaN/GaN structure and the drain saturation current of the transistor increased by about 10 %. However, the pinch off characteristics of transistor was severely deformed by the process. By comparing the electrical characteristics of the transistors, it was proposed that the high intensity UV irradiation formed a sub-channel under the two dimensional electron gas of AlGaN/GaN structure even without additional impurity injection.

Memory Circuit of Nonvolatile Single Transistor Ferroelectric Field Effect Transistor (비휘발성 단일트랜지스터 강유전체 메모리 회로)

  • 양일석;유병곤;유인규;이원재
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.55-58
    • /
    • 2000
  • This paper describes a single transistor type ferroelectric field effect transistor (1T FeFET) memory celt scheme which can select one unit memory cell and program/read it. To solve the selection problem of 1T FeEET memory cell array, the row direction common well is electrically isolated from different adjacent row direction column. So, we can control voltage of common well line. By applying bias voltage to Gate and Well, respectively, we can implant IT FeEET memory cell scheme which no interface problem and can bit operation. The results of HSPICE simulations showed the successful operations of the proposed cell scheme.

  • PDF

A Single Transistor Type Ferroelectric Field-Effect-Transistor Cell Scheme

  • Yang, Yil-Suk;You, In-Kyu;Lee, Wong-Jae;Yu, Byoung-Gon;Cho, Kyong-Ik
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.403-405
    • /
    • 2000
  • This paper describes a single transistor type ferroelectric field effect transistor (1Tr FeFET) memory cell scheme, which select one unit memory cell and program/read it. The well voltage can be controlled by isolating the common row well lines. Through applying bias voltage to Gate and Well, respectively, we implement If FeFET memory cell scheme in which interference problem is not generated and the selection of each memory cell is possible. The results of HSPICE simulations showed the successful operations of the proposed cell scheme.

  • PDF

A Recessed-channel Tunnel Field-Effect Transistor (RTFET) with the Asymmetric Source and Drain

  • Kwon, Hui Tae;Kim, Sang Wan;Lee, Won Joo;Wee, Dae Hoon;Kim, Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.635-640
    • /
    • 2016
  • Tunnel field-effect transistor (TFET) is a promising candidate for the next-generation electron device. However, technical issues remain for their practical application: poor current drivability, shor-tchannel effect and ambipolar behavior. We propose herein a novel recessed-channel TFET (RTFET) with the asymmetric source and drain. The specific design parameters are determined by technology computer-aided design (TCAD) simulation for high on-current and low S. The designed RTFET provides ${\sim}446{\times}$ higher on-current than a conventional planar TFET. And, its average value of the S is 63 mV/dec.

Dual Gate L-Shaped Field-Effect-Transistor for Steep Subthreshold Slope

  • Najam, Faraz;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.171-172
    • /
    • 2018
  • Dual gate L-shaped tunnel field-effect-transistor (DG-LTFET) is presented in this study. DG-LTFET achieves near vertical subthreshold slope (SS) and its ON current is also found to be higher then both conventional TFET and LTFET. This device could serve as a potential replacement for conventional complimentary metal-oxide-semiconductor (CMOS) technology.

  • PDF

High-Performance Silicon-on-Insulator Based Dual-Gate Ion-Sensitive Field Effect Transistor with Flexible Polyimide Substrate-based Extended Gate (유연한 폴리이미드 기판 위에 구현된 확장형 게이트를 갖는 Silicon-on-Insulator 기반 고성능 이중게이트 이온 감지 전계 효과 트랜지스터)

  • Lim, Cheol-Min;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.698-703
    • /
    • 2015
  • In this study, we fabricated the dual gate (DG) ion-sensitive field-effect-transistor (ISFET) with flexible polyimide (PI) extended gate (EG). The DG ISFETs significantly enhanced the sensitivity of pH in electrolytes from 60 mV/pH to 1152.17 mV/pH and effectively improved the drift and hysteresis phenomenon. This is attributed to the capacitive coupling effect between top gate and bottom gate insulators of the channel in silicon-on-transistor (SOI) metal-oxide-semiconductor (MOS) FETs. Accordingly, it is expected that the PI-EG based DG-ISFETs is promising technology for high-performance flexible biosensor applications.

Analytical Modeling and Simulation of Dual Material Gate Tunnel Field Effect Transistors

  • Samuel, T.S.Arun;Balamurugan, N.B.;Sibitha, S.;Saranya, R.;Vanisri, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1481-1486
    • /
    • 2013
  • In this paper, a new two dimensional (2D) analytical model of a Dual Material Gate tunnel field effect transistor (DMG TFET) is presented. The parabolic approximation technique is used to solve the 2-D Poisson equation with suitable boundary conditions. The simple and accurate analytical expressions for surface potential and electric field are derived. The electric field distribution can be used to calculate the tunneling generation rate and numerically extract tunneling current. The results show a significant improvement of on-current and reduction in short channel effects. Effectiveness of the proposed method has been confirmed by comparing the analytical results with the TCAD simulation results.