• 제목/요약/키워드: feedback design

검색결과 2,645건 처리시간 0.03초

Web Tension Control Using Output Feedback

  • Oh, Seung-Rohk
    • 전기전자학회논문지
    • /
    • 제11권4호
    • /
    • pp.213-218
    • /
    • 2007
  • We consider a web transport system. The objective of this paper is to design the output feedback controller such that the controller can track a desired tension and processing speed on web transport system. We propose the new design method using observer and feedback linearization technique. The proposed method use a nonlinear feedback to transform to linear system and high gain observer to estimate the state value. We show that the proposed controller can achieve the control object using only output. We show a performance of controller via the simulation.

  • PDF

A New Approach to Design of a Dynamic Output Feedback Stabilizing Control Law for LTI Systems

  • Son Young-Ik;Shim Hyungbo;Jo Nam-Hoon;Kim Kab-Il
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.618-624
    • /
    • 2005
  • We present a new state-space approach to construct a dynamic output feedback controller which stabilizes a class of linear time invariant systems. All the states of the given system are not measurable and only the output is used to design the stabilizing control law. In the design scheme, however, we first assume that the given system can be stabilized by a feedback law composed of the output and its derivatives of a certain order. Beginning with this assumption, we systematically construct a dynamic system which removes the need of the derivatives. The main advantage of the proposed controller is regarding the controller order, which may be smaller than that of conventional output feedback controller. Using a simple numerical example, it is shown that the order of the proposed controller is indeed smaller than that of reduced-order observer based output feedback controller.

긍정적/교정적 피드백 제공비율이 안전행동 및 피드백 수용도에 미치는 효과 (Effects of Positive/Corrective Feedback Ratio on Safety Behavior and Feedback Acceptance)

  • 임성준;오세진
    • 한국안전학회지
    • /
    • 제33권4호
    • /
    • pp.72-77
    • /
    • 2018
  • There are various approaches to prevent industrial accidents, of which the focus on human factors is behavior based safety(BBS). The BBS provides positive feedback on safety behavior and corrective feedback on unsafe behavior. Determining the feedback ratio of positive and correct feedback is an important issue in BBS. The purpose of this study was to examine the effects of positive and corrective feedback ratio on safety performance and feedback acceptance. The participants of this study were sixty undergraduate and graduate students at C University in Seoul, Korea. Participants were asked to work on a simulated welding task. The independent variable of was different positive vs. corrective feedback ratio (1:1 and 1:4). The dependent variables were the amount and the number of correctly completed work tasks, compliance rate of safety behavior, and feedback acceptance. The experimental design of this study was 2 x 2 mixed design. The results showed that feedback, regardless of the ratio, increased both correctly completed work tasks and the compliance rate of safety behavior, while 1:1 positive vs. corrective feedback ratio was more effective than 1:4 ratio. In addition, 1:1 ratio produced higher level of feedback acceptance compared to 1:4 ratio.

Fixed-Order $H_{\infty}$ Controller Design for Descriptor Systems

  • Zhai, Guisheng;Yoshida, Masaharu;Koyama, Naoki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.898-902
    • /
    • 2003
  • For linear descriptor systems, we consider the $H_{INFTY}$ controller design problem via output feedback. Both static output feedback and dynamic one are discussed. First, in the case of static output feedback, we reduce our control problem to solving a bilinear matrix inequality (BMI) with respect to the controller coefficient matrix, a Lyapunov matrix and a matrix related to the descriptor matrix. Under a matching condition between the descriptor matrix and the measured output matrix (or the control input matrix), we propose setting the Lyapunov matrix in the BMI as being block diagonal appropriately so that the BMI is reduced to LMIs. For fixed-order dynamic $H_{INFTY}$ output feedback, we formulate the control problem equivalently as the one of static output feedback design, and thus the same approach can be applied.

  • PDF

Structure-Control Combined Optimal Design of 3-D Truss Structure Considering Intial State and Feedback Gain

  • Park, Jung-Hyen
    • 한국해양공학회지
    • /
    • 제17권4호
    • /
    • pp.66-72
    • /
    • 2003
  • This paper proposes an optimum, problematic design for structural and control systems, taking a 3-D truss structure as an example. The structure is subjected to initial static loads and time-varying disturbances. The structure is controlled by a state feedback H$_{\infty}$ controller which suppress the effects of disturbances. The design variables are the cross sectional areas of truss members. The structural objective function is the structural weight. For the control objective, we consider two types of performance indices, The first function represents the effect of the initial loads. The second function is the norm of the feedback gain, These objective functions are in conflict with each other but are transformed into one control objective by the weighting method. The structural objectives is treated as the constraint, By introducing the second control objective which considers the magnitude of the feedback gain, we can create a design to model errors.

출력 궤환 슬라이딩 모드 제어기 설계를 위한 선형행렬부등식 접근법 (An LMI Approach to Output Feedback Sliding Mode Controller Design)

  • 최한호
    • 전기학회논문지
    • /
    • 제56권7호
    • /
    • pp.1298-1301
    • /
    • 2007
  • The problem of designing dynamic output feedback sliding mode controllers for uncertain multivariable linear systems is considered. Using linear matrix inequalities(LMIs), a feasibility condition for the design problem is derived. Explicit fomulas of the gain matrices of a full order output feedback sliding mode controller in terms of the solution matrices of the LMI condition is given. A simple LMI-based algorithm for designing output feedback sliding mode controllers is also given. Finally, numerical design examples are given to show the effectiveness of the proposed method.

LQG/LTR 기법을 이용한 불확실한 선형 시스템의 견실한 출력 되먹임 제어기의 설계 (A Robust Output Feedback Controller Design for Uncertain Linear Systems Using LQG/LTR)

  • 장태정
    • 산업기술연구
    • /
    • 제15권
    • /
    • pp.209-215
    • /
    • 1995
  • In this paper, a controller design method for uncertain linear systems by output feedback is proposed. This method utilizes the LQG/LTR procedure for systems with uncertainties described in the time domain. It is assumed that the uncertainties satisfy the matching conditions and their bounds are known. First, a robust state feedback controller design method is introduced. Then, it is asymtotically recovered for the output feedback system by the loop transfer recovery(LTR) method under a certain condition.

  • PDF

출력 궤환 적분 슬라이딩 모드 제어기의 LMI 기반 설계 (LMI-based Design of Output Feedback Integral Sliding Mode Controllers)

  • 최한호
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.138-141
    • /
    • 2011
  • This paper presents an LMI-based method to design an output feedback integral sliding mode controller for a class of uncertain systems. Using LMIs we derive an existence condition of a sliding surface. And we give a switching feedback control law. Finally, we give a numerical design example in order to show the effectiveness of the proposed method.

Limited Feedback Designs for Two-Way Relaying Systems with Physical Network Coding

  • Kim, Young-Tae;Lee, Kwangwon;Jeon, Youngil;Lee, Inkyu
    • Journal of Communications and Networks
    • /
    • 제17권5호
    • /
    • pp.463-472
    • /
    • 2015
  • This paper considers a limited feedback system for two-way wireless relaying channels with physical network coding (PNC). For full feedback systems, the optimal structure with the PNC has already been studied where a modulo operation is employed. In this case, phase and power of two end node channels are adjusted to maximize the minimum distance. Based on this result, we design new quantization methods for the phase and the power in the limited feedback system. By investigating the minimum distance of the received constellation, we present a code-book design to maximize the worst minimum distance. Especially, for quantization of the power for 16-QAM, a new power quantization scheme is proposed to maximize the performance. Also, utilizing the characteristics of the minimum distance observed in our codebook design, we present a power allocation method which does not require any feedback information. Simulation results confirm that our proposed scheme outperforms conventional systems with reduced complexity.