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Structure Considering Initial State and Feedback Gain
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ABSTRACT: This paper proposes an optimum, problematic design for structural and control systems, taking a 3-D truss structure as

an example.

The structure is subjected to initial static loads and time-varying disturbances. The structure is controlled by a state

feedback H,, controller which suppress the effects of disturbances. The design variables are the cross sectional areas of truss members.

The structural objective function is the structural weight.
first function represents the effect of the initial loads.

For the control objective, we consider two types of performance indices. The
The second function is the norm of the feedback gain. These objective functions

are in conflict with each other but are transformed into one control objective by the weighting method. The structural objective is
treated as the constraint. By introducing the second control objective which considers the magnitude of the feedback gain, we can create

a design to model errors.

1. Introduction

Space structures, are required to be light-weight in order
to avoid excessive transportation costs. However, when the
structures are lighter, their stiffness becomes small, and even
a little disturbance can cause big vibrations. The inner
damping of space structures is so small that once such
vibrations are caused, they are difficult to suppress. For
these cases, designs considering the effect of active vibration
control have been started. Typical methods have treated the
design of structural and
Recently, in the field of large space structures, the necessity
of optimizing structural and control systems has led to strict

control systems separatedly.

control requirements, as well as increased research (Tada
and Park, 2000). Generally, in a combined optimal design, a
weighting sum of a structural and control objective functions
is adopted as a single objective function that is minimized.
In this paper, we formulate a design problem which
determines  structural
functions subject to the constraint of the constant structural
weight as one of combined optimal design. We take a 3-D
truss structure as an object. For the structure, an FEM

model with an H ., control system is formed, and used.
With H, control, a structure becomes stable. The H

norm of the transfer function from the disturbance inputs to
the controlled outputs in the closed-loop system can be kept

sizes considering control objective
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within a certain value (Kim, 1999; Sanpei and Mita, 1990).
With a control system, a design considering a feedback
gain is attempted. This is because costs will increase

significantly
Additionally, modeling errors increase greatly with a large

if a feedback gain becomes too big.
feedback gain. Therefore, the performance index considering
a feedback gain is also introduced. Then, the control
objective is to suppress the controlled output and to
consider a feedback gain. The design variables are the cross
sectional areas of the truss members and the structural
which limited. This
solved with sequential

performance  index, is nonlinear

optimization problem is linear
programming,.

Thus, we create a design considering the effects of the
initial state and the disturbance, provided that an H
control is adopted. Under these conditions, we discuss how
the minimization of the control objective functions affects
the structures through numerical examples, as in the case of

a 3-D truss.

2. Problem Statement

2.1 Combined optimization

For a 3-D truss structure, deformed by initial static loads,
which begins to and suffer from continuous disturbance, the
design problem that obtains gets a certain vibration
characteristic the structural weight by
changing cross sectional areas of truss members is treated.

and decreases
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2.2 Problem formulation
We take a 3-D truss structure as an object. The original
FEM spatial model of a DOF structure is expressed by the

following equation of # motion.

Ms.q—f— Dsq_‘r qu=L1w+L2u (1)

where M, D, and K= R”™” are the mass, the damping,

and the stiffness matrices. ge R”, weR? and u<=R? are the
displacement, the disturbance force, and the control force
vectors. p and 4 are the numbers of the disturbances and
the control forces, respectively. The state equation of the
model becomes

x= Ax+ Byw+ Byu @
2= Cx+ Du ©)
y=x @

where xeR" zeR° and yeR’ are the state variable, the
controlled output, and the measured output vectors. In this
optimal
asstmptions that equations. (2) and (3) are both stable and

paper, the system is designed wunder the

detectable and that the control system is composed of the
state feedback (that is, y=x). The initial displacement is

obtained by the initial load p; from the stiffness equation:

QU(d)sz(a)wlpo (5)

The initial displacement is a function of design variables,
cross sectional areas ¢, is the stiffness matrix K, With the

initial load p,, the initial state is given by

K7 'py
x0=

0

where we assume that the initial velocity is zero.

In this paper, as we develop a combined optimal design
of structural and control systems, performance indices of
' be established. The structural
objective function is the structural weight. As the control
objective, we consider two types of performance indices. The

respective  systems must

first function, J;, represents the effect of the initial loads,
and the second, J,, is the norm of the feedback gain.

These objective functions are explained in the next section.

2.3 Multi objective problem

The objective functions J, and J, may be in conflict
with each other. Here, the weighting method and the &
-constraint method, which are used to obtain the Pareto
optimal solutions for multi objective problems(Tada and
Park; 1999) are explained.
[Weighting Method]

m objective functions f(x)(i=1, -, m) to be considered
are transformed into a weighting sum as a single objective
function and them minimized.

= 3w ?)
=1

g w;=1 )

=1

x e X

where x, X and w(i=1, -, m) are design variables, a set
of feasible solutions, and weighting. In this paper, two kinds
of control objective functions are transformed into a single
function by this method.

| e-constraint Method]
One objective functions f(x)(j=1,-,7) is minimized
under the condition that others are limited to less than

certain values.

rl'in fi(x) )
s.t. () <e;j=2,+,r (10)
xre X

The e-constraint method is used or the structual weight
and the control objective function. The control objective
function is adopted as f,(x) in Eq. (9), and the structural
objective function is adopted as f,(x) in Eq. (10). If £ and
f, are in conflict with each other, the constraint in Eq. (10)
becomes an equality constraint with the structural weight as
a constant.

In short, the two control objective functions J, and J,
Ji, by the
weighting method. The problem of two objectives, structural
and control, is transformed into a single objective function

by the

are transformed into one control objective,

g-constraint method. Then, for the controlled
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system, the objective function is the control objective
function J(@). The constraint that the structural weight
Wa) is equal to a specified value W, is given.

M ) = o+ th@ (ste=D) 1)
s.t. Wa)= o;lia; = W, (12)
=1
where p,; and g, are the density, length, and cross

sectional area of the j-th member.

This control objective function J(2) is minimized by
changing cross-sectional area ¢; Because the two control
objective functions j, and J, are in conflict, it is impossible
to optimize them simultaneously, and the Pareto optima are
obtained. Individual designers choose their own solution.

2.4. Sequential linear programming

If an objective function is nonlinear, it is solved with
sequential linear programming. In this method, objective
functions and constraints are linearized at a certain point.
The original nonlinear
approximated by a linear programming one,
then obtained. By iterating this

linearization, we can search for the optimum solution of the
original problem.

programming  problem  is
and its

optimum solution is

3. Design of Control System

In this paper, the control system is designed with the
H ., control to suppress the effect of the disturbance. As

the control objective, we consider two types of performance
indices.

3.1 H, Control Problem
3.1.1 General

Consider a linear time-invariant plant G that maps

H ., control problem

disturbances inputs w and controls inputs x to controlled

outputs z and measured outputs y (Fig.1).
[ w(s)
] u(s)

where s stands for the Laplace variables.

Z(S) Gll(s) Glz(s)

That is [ (13)

¥(s) G21(S) Gzz(s)

The suboptimal H . control problem of a parameter y
consists of finding a controller K(s) such that:

- the closed-loop system is internally stable.
-the H_, norm of T,,(s) is strictly less than y

T, I < 7 (14)

where T,,(s) is the transfer function from the disturbance
input » to the controlled output z in the closed-loop
system obtained by applying the static state feedback to the
system. y is a prescribed positive number(Kim, 1999; Tada
and Park, 1999).

For a rational, transfer function matrix 7Y(s), then

17w = 6, (TGw))

o VweR (15

where the maximum singular value of 7 is denoted by
0 oy (T).

Though Eq. (14) is given in a frequency domain, it is also
expressed in a time domain using the Parseval equation.
When z and w are expressed in a time domain,

fow{zr(t)z(t)dt = 3 [T T jo)atio)dw (16)

[T ounar = 2= [ 7w joutin)dw 17)
Eq. (14) is denoted as follows.

T (—j)TGw) < ¥ 1 VweR (18)
Then, using Eqgs. (16), (17), (18) and 2(s) = T(s)u(s), for

w, Eq. (14), which is
expressed in a frequency domain is equivalent to the

all square integrable disturbances

following equation in a time domain.

[T @Y < [T (ud Y (19)
Plant
W z
G(s)

Controller

I’y

K(s)

Fig. 1 H control system
3.1.2 H., Control Problem for State Feedback
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For a 3-D truss structure design subjected to initial loads
and continuous disturbances, we must consider both the
effects of the initial state and the disturbance as the system
characteristic. Therefore, H,, control is used in the design

of the control system.
Consider the linear system

x=Ax+ Byw+ Byu
2= Cx+Du (20)

y=x

where yreR", weR? and w=R’ are the state variable, the

disturbance, and the control force vectors. ze R and ye R?
are the controlled output and the measured output vectors,

respectively. We assume that the matrices of the system of
Eq. (20) satisfy the following corresponding assumptions.
( A, B,) is able to be stabilized.
( C, A) is detectable.
pr[c Dbl =[0 1.
Orne of the controllers for the state feedback is given by

u= —BT Px 1)
= —Kx 2

In the above, P, which is solved by the following Riccati
equation is a semi-positive matrix and a stable solution.

ATP + PA + %PBIBITP*PBZBZTP-I— crc =0 ()

where a stable solution means a solution which makes
A+ 7y ? PBBTP — B,BIP a stable matrix. If the solution

is not stable, we must increase y and redesign.

3.2 Objective function for control system
3.2.1 Objective function considering Initial state, J
If the initial state is a certain non-zero state (x, = 0),

the following equation is obtained instead of Eq. (19).
ST 2 T
fo (z72)dt < xyPxy + 7 Jom(w w)dt (24)

The first term on the right side represents the effect of
the initial state x; and the second term represents the
disturbance . If the effect of the initial load in Eq. (24)
becomes small, the control force can be decreased. We take
the first term as the first control objective function.

T = xi Px, (25)

3.2.2 Objective function considering feedback gain
norm, J,
The norm of the feedback gain is defined(Kimura, 1990)

as follows:
N = trace( KTRK) (26)

where R is the weighting matrix. If R = I, Eq. (26)
represents the square-sum of all elements in the gain matrix
K. If this norm is decreased, each element in the matrix
K may become small. Then, in order to design the control
system considering the feedback gain, this performance
index is adopted as the second control objective J,.

J, = trace(K'K) (27)

4. Numerical Examples

4.1 Design object

We take a 3-D truss structure shown in Fig.2 a numerical
example. Considering non-dimensional form, the length of
long members is 10, short members 2v2, density 5.0, and
Young's modulus 100. The nodes from 5 to 10 are fixed.
The sensors which measure displacements are located at
nodes 1, 2, 3, and 4, and the actuators which give control
forces are located at node 1 in x, y, and z directions. The
damping matrix is assumed by

Dfa) = eM,(a) + BK,(a) (28)

Fig. 2 3-D truss structure
where ¢=0.001 and B=0.001. The initial cross-sectional
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areas are all constant (g, _ ;.; = 1,--,12), and the
weight of this initial truss is adopted as the specified value
of the structural weight.

4.2 Relation between structural and control systems
First, in the case of the set of weighting for the control

object functions, (s, =(0.5,0.5), we perform the
optimization of the control objective J for several values of
the specified value of the structural weight W,. Fig.3 shows
the relation between the optimum value of the control
objective and the specified value of the structural weight in
two cases of the H . disturbance attenuation 7. These
graphs show the Pareto optimality of the structural objective
W and the control one J. It is observed from the
comparison of (a) with (b) that the smaller H, norm
bound 7, the greater the required structural weight needed,
which shows a close relation between the structural design

and the control one.

Ty
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//

= ——
100 Win ROO

(b) r = 2.0

Fig. 3 Pareto optimality of two objectives for structural and
control systems

Fig. 4 Pareto optimality of performance indices in control

cross sectional area
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trace(K’K))
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Fig. 5 Optimum cross sectional area
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4.3 Relation between two control objectives

Next, under a certain specified value of the structural
weight, we change the weighting of the control objective
functions s and ¢ variously and solve Egs. (11) and (12),
in order to examine the effect of weighting s and z In
Fig4, the set (J, J,) corresponding to the minimum of J is
plotted for several sets of (s, #). Fig5 shows the optimum
cross-sectional areas for two typical cases. It is observed
t and the
weighting for J,, the cross-sectional areas of the supporting

from figures that if we increase the value

part of the truss become large and the difference in the
cross sectional area in each stage of the truss becomes
small.

4.4 Comparison of design
In order to show the effect of the gain on the control

performance, we pick up two cases (case 1: s=1,0, =0, ;
case 20 s=0.9, t=0.1). Although the effect of the initial
loads is nearly identical, the magnitude of the gain, J,, in
case 2 where the gain is taken into consideration is much
smaller than that in case 1, which ignores the gain as shown
in Table 1. J.(: = 1,2 ;j = 1,2) is the value of the
objective function J; in the case j. In case 2, the H. norm
of the complementary sensitivity function, which represents
the degree of robust stability in modeling errors, also is
comparatively smaller than the H,, in the case 1.

Table 1 Comparison of Pareto optimality

case 1 |case 2
]_1 (= T,/ T, 100 [107
}_2 (= Js; / ) 1.00 |0.686
H ,norm of the complementary 859 675
sensitivity function . '

Thus, by introducing the second control objective f,,
which considers the magnitude of the feedback gain, we can
perform the design which is robust in modeling errors.

In Fig6, we show the responses of the displacement in
the x-direction at node 1 as examples of simulation in the
truss obtained for the two cases. The observed difference in
response between the two cases was small.

Case 1; without consideration of gain s=1,0, t=0 (J=7])
case 2; with consideration of gain,

$=0.9,t=0 (J=0.9/,+0.1/,)

responsex)

b e ]

]
@ s=1.0,t=10
o« | T ]
H | |
;?;F\ AYS AN VN e
TN
| — —
b)) s =10, t=0

Fig. 6 Time responses of displacement at node 1

5. Conclusion

In this paper, we formulated a design problem which that
determines  structural sizes, considering control objective
functions subject to the constraint of the constant structural
weight as one of combined optimal design. Two control
objective functions were introduced. [, represents the effect
of the initial loads, and [, represents magnitude of the
feedback gain. First, two control objective functions were
transformed into one control objective function by the
weighting method, and the Pareto optimality of the
structural and control shown. Through
numerical examples, a close relationship between both

abjectives  was

systems was represented.

Second, increasing the weighting for the second control
objective function under the specified value of the structural
weight decreases the difference in the cross sectional area in
each stage in the truss. Therefore, it is unlikely that the
design dependent only on initial loads if said loads have
been disturbed.

Third, the (J=7, and
J=0.97, + 0.1],) shows that although the effect of the
initial loads is almost the same in both cases, the magnitude

comparison of two cases
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of the gain in the second case is much smaller. Moreover,
in the second case, the H, norm of the complementary
sensitivity function, which represents the degree of the
robust stability in modeling errors, is also smaller. Thus, by
introducing the objective considering the magnitude of the
feedback gain, we can create a design unsurpassed in
modeling errors.
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