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We present a new state-space approach to construct a dynamic output feedback controller
which stabilizes a class of linear time invariant systems. All the states of the given system are
not measurable and only the output is used to design the stabilizing control law. In the design
scheme, however, we first assume that the given system can be stabilized by a feedback law
composed of the output and its derivatives of a certain order. Beginning with this assumption,
we systematically construct a dynamic system which removes the need of the derivatives. The
main advantage of the proposed controller is regarding the controller order, which may be
smaller than that of conventional output feedback controller. Using a simple numerical example,
it is shown that the order of the proposed controller is indeed smaller than that of reduced-order

observer based output feedback controller.
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1. Introduction

In this paper, we consider the stabilization

problem of a system represented by
x=Ax+Bu
(1)
y=Cx

where x is the state in R™; % is the input in R™;
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v is the measurable output in R,

We suppose that the system (1) is not able
to be stabilized by any static output feedback
(Syrmos et al., 1997). When the measurable states
are not sufficient to design a stabilizing control
law, a dynamic output feedback scheme with an
additional dynamic system e.g. state observer is
designed so that the augmented closed loop sys-
tem is stable (Kailath, 1980 ; Chen, 1984 ; Shim
et al., 2003 ; Jo and Son, 2004). When dynamic
output feedback controllers are concerned, most
researches are concentrated on the arbitrary
pole-placement rather than stabilization (see e.g.
Rosenthal and Wang, 1996 ; Scherer et al., 1997)
and references therein). However, if we restrict
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our interests to the stabilization problem, like the
static output feedback control problem, the order
of the controllers can be reduced (Son et al.,
2000 ; Son et al,, 2002b).

While the measurable states are not sufficient
to design a stabilizing static control law, this
paper assumes that a static state feedback exists
for stabilization if the output and its derivatives
of a certain order are available to be used. Then,
we present a new way to replace the required
derivatives by adding some dynamics in the feed-
back. This is, in fact, inspired by (Son et al.,
2002a), where a passivity-based dynamic output
feedback control has been proposed for inherent-
ly non-passive LTI systems by virtue of paralle-
ling a feedforward compensator. In (Son et al.,
2002a), it has also been observed that, when a
system is stabilized by a proportional-derivative
control, the derivative term can be replaced® with
a compensator which has the same dimension as
the system’s input. The idea of replacing the
derivative term is further exploited in this paper
up to any order.

The only assumption in this paper is the fol-
lowing.

Assumption 1. Let us define

C
Gr: =[Ky K -+ K] and Hy: = C:A
car
For the system (1), there exists an integer # (1<
7) such that

A, =A+BG,H, is Hurwitz.

Remark 1. It is presumed in this assumption that
¥ =1 because, when Assumption 1 holds with
=0, the system (1) can be trivially stabilized by
a static output feedback without using additional
dynamics. On the other hand, if the system (1) is
stabilizable and observable, then Assumption 1
trivially holds with » =#—1. Indeed, in this case,

% The design of a dynamic system for replacing the veloc-
ity measurement has been studied by several authors
(Kaufman et al., 1998 ; Kelly et al.. 1994 ; Fujisaki et al.,
2001 ; Wong et al., 2001).

H; is left-invertible due to observability, and
thus, there always exists G, with which Assump-
tion 1 holds.

In the next section, a dynamic output feedback
controller is presented for system (1) under As-
sumption 1, followed by a recursive algorithm to
design the gains of the proposed controller in a
systematic manner. Section 3 illustrates a design
example with a simulation result. Conclusions are
found in Section 4.

Notations : [, is an identity matrix and OmxpE
R™? is a zero matrix.

2. Main Results

For the system (1) satisfying Assumption 1, we
propose a dynamic output feedback controller of
order p7, which has the form of

A=+ A AER, u=0,9+ 04 (2)

The output feedback stabilization problem is
solved if we find T=[¥, ¥,] and O0=[D, Os]
such that the following closed-loop system

X=Ax+B0.Cx+ B®:A

. (3)
A=TCx+ Tpd

is exponentially stable.

In the subsequent part of the paper, we propose
a new way to design the matrices ¥ and @.
Therefore, the main contribution of the paper is
summarized as follows.

Theorem 1. For the system (1) satisfying As-
sumption 1, there exists a dynamic output feed-
back stabilizing controller (2) with additional
A-dynamics of order (pX#).

The idea of constructing the controller (2) is
to assume, temporarily in the beginning, that
Hyx is available for measurement. This makes
the output feedback stabilization problem be
solved by the static gain found in Assumption 1.
Next, we change the temporary assumption such
that H,_1x is available for measurement but H,x
is not. {(This implies that CA%x, 1=0, -+, » —1, is
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measurable but CA"x is not.) Then, the control
law designed at the previous step, where we
assumed that Hyx is measurable, is not imple-
mentable because it depends on the signal CA"x.
Hence, we separate the term CA’x from the
control law and design additional dynamics with
which the use of CA"x is eliminated. In the next
step, we proceed by assuming that H, px is
measurable but CA"x is not. This recursion goes
to the end if we get a dynamic controller that
requires only the true measurement of Hox=Cx
but not others.

The recursion begins by the following initial
step.

2.1 Initial step

When the Hrx is measurable, we easily obtain
the following stable closed loop system S, with
the gain G, from Assumption 1:

u= Grer
=GraH, 1x+ K, (CAx)
i=Anx=(A+BG.H;)x
=Ax+BGr-1Hr1x+BK,(CA'x)

Sr: (4)

Now, we assume that H,_1x is available for mea-
surement but CA"x is not. Then, by introducing
v, we decompose the system S, into the term
including CA"x and the rest (as follows):

u=Gro1Hr1x+ Kyv (5a)
X’ =Ax +BGr—1Hr—1x +BK7‘U (Sb)

If the following dynamic system is appended
to (5b)

A: - CAT-IBGr—lHr—lx

—(I,+CA™BEK,) v (62)

y=CA™'x+2A (6b)

then the augmented system (5b)-(6a) is stabiliz-
ed by v=D,y where D, is chosen so that the
following matrix is Hurwitz

{ Ar _ATBKr jl
CA"™ —CA"BK,—D,

Proof of Initial Step.

First of all, note that

d -

7 y=C lr+A

=CA"™ (Ax+BGr1Hy-1x+ BK,v)
—(CA™'BGy-1Hy1x+CA™ BK:v+v)
=CAx—v

We now define
£: =x+BK,y (8)

and change coordinates [x7 A7]7 into [&7 y7]7.
Then

5=Aré—ArBKr3_/

_ _ 9)
y=CA"€—CA"BK,y—v

Since the matrix A, is Hurwitz, the system (9)
can be stabilized by vy=D,y with an appropriate
gain D, making the matrix (7) Hurwitz. For
example, D,=d,I, with sufficiently large dr >0
always performs this task. (O]

Consequently, we obtain the closed loop system
Sr_1 as follows:

# =G Heix + KD (CA™ "2 +2)
=Gt [Omxp(r—l) K,Dr]) Hex+K:DiA

& =Ax+BGr1Heix+ BE:D(CA™ 5+ )
=Ax+B{Gra1t Onxor—y KeDr)) Hr-x+ BK. DA

A =={I+CA™BK,) D,(CA™ ¢ +1) —CA"BGy1Hyx
==(CA™BGr1+[0pxpir—y Mi]) Hrx =M

(10)

where M= (lp+CA"™ BK,)D,. The above sys-
tem (10) is stable because its system matrix is
similar to the matrix (7).

2.2 Recursive design of output feedback
controller
We assume that, with some integer %k between
1 and 7, it holds that Hpx is measurable and
the following output feedback controller of order
p(r—Fk) stabilizes system (1) exponentially :

/i= Wk,aHkx‘i' qfk,b/{

(11)
u:@k,¢HkX+ D04

where @, Or.o, Tre and ¥, are matrices of
appropriate dimension. In other words, the clos-
ed-loop system
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S _{J-C=AX+B(Dk,aHkx+Bd)k,b/l
=

J= Wy oHx + Wil (12)

is exponentially stable, which can be concisely
represented by

2=Awz (13)

where z={x7T AT]7 and the Hurwitz matrix A,
is defined as

(14)

A+ BO H, Ba)k,,,]
Ak=

Wk,aHk Wk,b

Now we postulate a new assumption that Hy_ix
is measurable but CA*r is not, so that the
controller (11) cannot be implemented. Thus, we
separate the term CA*x from the controller
equation (11) and replace it by a new signal v to
be designed as follows:

/1. = wk,a1Hk~2x+ %,M%— w‘k,aZCAkx
= arHr2x + s s+ Cr 20

U =0naHi-2x 1T QA+ On,azCA"x
=0paHe-2x+ Qi pA+ Q020

where Teo={Tuar Praz] and Opo=[Prar Ozl
Then, the closed-loop system is rewritten by

x=Ax +Ba)k,a1H;._1x +Bd)k,b/1+B@k_azU (1
/{: Wk,alHk—lx + Wk,b/i—l- Wk,azv

(15)

or
z=Fz+Lv (17)
where

F:[A+B@k,a1Hk—l B¢k,b:| LZ{B@mz}
wk,alHk—l wb,b ’ wk,az

which is equivalent to (12) (or to (13)) if v=
CA*x. Note that Ar,=F+L{CA* Opxpir-n].

The following theorem provides a key to the
recursion in the sense that it shows how to replace
CA*x term by an additional dynamics.

Theorem 1. Suppose that system (16) (or, (17))
is exponentially stable if y=CA*x ; that is, the
matrix A, is Hurwitz. If the following dynamic
system is appended to (16) (or, (17))

p=— CAk_le)k,alHk—-lx — CAk_IB@k,M
- (1p+ CAk_lB@k,az) v, 7]ERP

y=CA*'x+y3

(18a)

(18b)

then the augmented system (16), (18) (or, (17),
(18)) is exponentially stabilized by

v=Dyy (19>
where the matrix D, is chosen such that

—A,L

A,
[[CAkopxp<,-k)] —CA'chbk,az—DJ (20)

is Hurwitz.

Remark 4. Note that the matrix (20) always can
be made Hurwitz by appropriate matrix Dy,
which can be found by LMI tool or by choosing
sufficiently large constant d» >0 and letting D=
dklp.

Proof. With the control law (18) and (19), the
closed~loop system is given by (17) and (18a)
with (19). In order to analyze its stability, the
closed-loop system is represented in the (z, y)-
coordinates instead of (z, 7). That is, the clos-
ed-loop system is now given by (17) and

4 5 CA* (Ax+BOsaHerx+ BOwAt BOsat)

dt
- CAk‘lB@k,ath_lx - CAk-IBq)k,b/l
~(I+ CA*'BOwa) v
=CAM—v

Now we change the coordinates (z, ¥) into
(£, ¥) once again with a new variable £ : =z=
Ly. That is,

€=(Fz+Lv) +L(CA*x—v)=Awz
d :AkE‘AkLJ_)
dt 9 =[CA* Opxpir-m]z—0
=[CA* Opxpir-w] E=[CA* Opxpir-w] L~
= [CAk Opxp(r—k)] 5— CAkB@k,tZZ_); -V
UZDJJ/

Therefore, it is seen that if D, is chosen such
that the matrix (20) is Hurwitz, the above clos-
ed-loop system is exponentially stable. &

Remark 5. As a result of Theorem 3, it follows
that the overall closed-loop system, which is
obtained from (16), (18) and (19}, is exponen-
tially stable. The single equation (21) is the
closed-loop system, whose system matrix will
become the matrix A,-; in the next iteration step.
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X A+BOyaHy1+BOsDiC. k-l
il= U aHe-1t U DCA*!
7

B0, BOs,a:D, X
Uho U,a2Dr. A (21)

—CA* ' BOwaHy1— (I + CA* 'B@y 15) DiCA* ™ —CA* 'B@us ~ ({+ CA* *B®s.43) D i

The recursion procedure is now quite obvious.
Since k=7 at the initial step, @r.q, ¥rs and Oy,
are null matrices (i.e., empty) and the controller
(18) becomes just a static feedback u=G.Hrx
(ie., @re=G,) from Assumption 1. Therefore,
we have the Hurwitz matrix A,=A+BG,H,.
By Theorem 3, unmeasurable term CA"x is re-
placed by the dynamic controller (18) and (19).
Now, we regard the state 7 of (18) as the state A
of (11) (i.e. (6) and (10)) for the next iteration.
(The next step begins with the equation (11)) In
particular, from (10) it is obtained that

Trora=— (CAr_lepy,al"l‘ [Opxpr-1y L+ CA™'B0) D))
Urop=— (IP+ C r_lB¢r.a2) D,

wr-l,a= ¢r,a1+ [Omxﬁ(r—l) ¢r,a2D1]

q)r-l,b: Or.aD;

where @r,a1=G,_; and @y,q42. Likewise, the itera-
tion proceeds until we have a controller of (11)
with £=0. Therefore, we obtain the gains of (2)
as follows :

waz %,a, quz %,b, ¢a= 00,11, @bzmo,b

For convenience, we include a formula for the
iteration :

0k.a1+[01>(r—k)xﬁ(h-l) lp‘k,asz]

s [— CA*'BOsa—[0poy (It CA*'BOs) Di]

} (22a)

_ L% Wa2Dr
IF"“”‘[—CA'*-IBwk,,, —(1p+CAk-lek,az>DkJ (220)
Qu-1,6=DPp,a1 + [Omxpie-1y Pr,a2Dr) (22¢)
Op1,6=[ Do Pr,a2Ds] (22d)

3. An Illustrative Example

We illustrate the proposed design method with
a simple numerical example :

010 0
_loo1 o
*“ooo 1

100 —6

y=[1000]x

0
0
+
X 0 u
1

For (23) we can see that the order of the pro-
posed controller {$X#) is less than that of the
reduced order observer based output feedback
controller (n—1).

The system (23) satisfies Assumption 1 with
r =2. Hence, the order of the proposed controller
is two, while the reduced order observer based
controller has order three. In fact, with the fol-
lowing control law

u=GHox=[—6 —12 —13] Hox (24)

the eigenvalues of the matrix A.=A+BGH:
are given by {—2.30%;0.625, —0.70%;0.625}.
Hence, the closed loop system (23)-(24) is stable
and we obtain Gy==[—6 —12] and K;=13 for
the iteration.

Now, in order to replace the CA%x-term in
Hx as the initial step, we consider the matrix of
(7) for the system (23). Indeed, with D,=20, the
matrix (7) is given by

0 1 6 0 O

=5 —12 —13 —6 —78
0 0 1 0 -—-20

which is Hurwitz.

However, since the CAx-term in Hix is nei-
ther measurable, we proceed one step further by
Theorem 3. From the previous step and the equa-
tion (22), the parameters of (11) can be regarded
as

U .=[0 —20], ¥,,=—20

(26)
Gro=[—6 —272], @1,=—260

With these parameters the matrix A, in (14) is
given by

0 1 00 0
0 0 10 0
A=l0 0 01 o0 (27)

—5 —2720 —6 —260
0 —200 0 20
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Hence, the gain D is chosen such that the matrix
in (20) is Hurwitz, which is achieved by D;=30.

Therefore, with the following additional
dynamics
A=—600y —201—600
{ . Y 7 (28)
7=—30y—307
3 - s
l -~ State Feedback
2.5+ — Proposed
2+ l« R
N

State <x4>

1
0.5+
Oj» I e i St
i
—0.5]‘
_1‘ e
0 2 4 8 8 10
(a) State ‘xy’
1.5

State <xz>

| -- - State Feedback
|_—- Proposed
4 6 8 10
(c) State ‘x5’
2 .

1+ State <A>

-2r Additional States
State <n>
% 2 4 6 B 10

(e) Additional state

the stabilizing control law for (23) is obtained by
u=—=8166y —2601—81607 (29)

Figure 1 shows the simulation result (solid
curve) of the proposed controller. In the si-
mulation, we added a saturation (whose level is

--- State %eedback
— Proposed

State <Xp>

-0.5
..1 . L
0 2 4 6 8 10
(b) State ‘xy’
3 -
2;

State <x4>
-5 -- - State Feedback §
) — Proposed !
% 2 4 6 8 10
(d) State ‘x4
30 :
20 Control Input i
- - - State Feedback
—— Proposed (Saturaied)
4% 2 4 6 8 10

(f) Control input ‘2’

Fig. 1 Simulation Results (proposed : solid)
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30) to (29). In the figure, we also compared the
plots with the results (dotted curve) obtained
from the state feedback control (24). We can see
that the additional dynamics successfully replace
the derivative terms CAx and CA%x in (24).
All the initial conditions of the systems are
set to while all the initial states of the additional
dynamics are set to —1.

4. Conclusion

In this paper, we have presented a new re-
cursive algorithm to design a dynamic output
feedback control law which stabilizes linear
time-invariant systems. If a given plant can be
stabilized by a static feedback of the output and
its derivatives, the proposed method systema-
tically constructs a dynamic system which suc-
cessfully replaces the output derivative terms of
any order without any additional conditions. A
numerical example with a simulation result has
been presented to illustrate the design method.
From the proposed recursion algorithm, it is not
difficult to develop an automated design package
on a PC.
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