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A Robust Output Feedback Controller Design for
Uncertain Linear Systems Using LQG/LTR
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ABSTRACT
In this paper, a controller design method for uncertain linear systems by output
feedback is proposed. This method utilizes the LQG/LTR procedure for systems with
uncertainties described in the time domain. It is assumed that the uncertainties
satisfy the matching conditions and their bounds are known. First, a robust state
feedback controller design method is introduced. Then, it is asymtotically recovered
for the output feedback system by the loop transfer recovery(LTR) method under a

certain condition.

1. Introduction

The system which has unstructured
uncertainties can be made to be stable
by the LQG/LTR method(2] when the
uncertainties bounds, usually described in
the frequency domain, are not too big.
This gives the impression that the
control system designed by the LQG/LTR
procedure is robust against parameter
perturbations. But it has been recognized
that LQG/LTR method may cause
servere robustness problems even though
the target LQ regulator is robust against

dAdta Aoj A& eta WA}

plant parameter variations[5].

The loss of robustness in the
LQG/LTR procedure is mainly due to
the following two reasons. First, in the
LQG/LTR design, the plant modelling
errors described in the frequency domain
are considered, but not the variations of
parameters. It is possible that small
variations of the parameters may cause
large changes in the frequency domain.
Second, the asymptotic recovery is
accomplished for the nominal system
without considering the plant uncer-
tainties, and thus the robust recovery is
not guaranteed for the modelling errors.
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For these reasons, it is necessary to
consider the robustness of the target
feedback loop for the plant parameter
uncertainties and its robust recovery
conditions.
For the
[21-[4], in

errors are

original LQG/LTR method
which the plant modelling
described
is difficult to analyze the

in the frequency
domain, it
effect of the plant parameter variations
in the time domain because of the
complex relations between the modelling
frequency
domain and those in the time domain.

errors represented in  the
Since the plant is frequently modelled in
the state space, it is important to study
uncertain systems with modelling errors
in the time domain.

The problem of stabilizing uncertain
systems using state feedback
control has attracted a considerable
interest in recent years[6]-[11]. In this
paper, an output feedback controller
design method is proposed to stabhilize
uncertain linear systems instead of the
state feedback method. This method
utilizes the LQG/LTR procedure. The
robust state feedback control system is
regarded as a target feedback loop of
the LQG/LTR procedure. A robust
recovery condition, which the
proposed output feedback is possible, is
given.

This paper 1is
following. In section 2, a robust state
feedback controller

linear

under

organized as the

design method 1is
section 3, an output
feedback controller design method is
proposed and the condition for a robust
recovery is  derived.
Conclusions are given in section 4.

presented. In

loop transfer

In this paper, x° [A’] denotes the
transpose of vector x [matrix Al For
two matrices A and B, A>B [A = B]
represents that the matrix A—B is
positive definite [positive semi-definite].
The notation A e (A) [A min (A4)] means
the maximum [minimum] eigenvalue of
Omax(A) [Gmin (A)]
means the maximum [minimum] singular
value of matrix A defined by

Gmax(A)z {/1 max(lq,/q)}l/2 [Gmin (A):
{Amn(A"A) V2], The notation det(A)

stands for the determinant of matrix A.

matrix A, and

2. Robust State Feedback Controller
Design for Uncertain Systems

Consider the uncertain system described
by

W D=(A+4A)x(D)+(B+AB)u(d, (1)

where x()eR” is the state, u(HR"”™
is the control, AeR"”"” and BeR"™"”

are system and input matrices,
respectively,  and JdA=R™"  and
AB=R ™™ are their corresponding

uncertainties. Assume that the pair
(A,B) is controllable, and the
uncertainties 4A and 4B satisfy the

matching conditions with their bounds
known, i.e.,

AdA= BD, D' D<d’l, a>0, (2)
AB= BE, E'E<fI, 0<pB<1. (3)

We also assume that m<{# and B has
full column rank.

Under these assumptions, we are going
to design a state feedback controller,
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which stabilizes the uncertain system, to
get a target feedback loop for the
LQG/LTR procedure. The following
definition has been frequently used by
many authors [8]-[11].

Definition [11]: The uncertain system
(1) is said to be quadratically
stabilizable (via linear control) if there
K.eR™?",
a positive definite symmetric matrix
P=R™" and a constant A>( such
that, for any admissible uncertainties
4A and 4B which satisfy the
conditions (2) and (3), the closed-loop
system with the state feedback control
law u(f)=—Kx(#) and the Lyapunov

exists a constant matrix

function V(x)=x"Px has the following
property.
L(x,{)= ﬁ"%‘;’—‘l
=x'[ (A+4A) P+ P(A+4A)]x
—2¢ P(B+AB)K x < Aldl®, ()

for all pairs (x,eR"<R. l{-ll denotes
the standard Euclidean norm. [

It is well known that if the inequality
(4) is satisfied, the closed loop system is
uniformly asymptotically stable at the
equilibrium point x=(, for any given
admissible uncertainties.

Theorem 1: Let QER™" be a given
symmetric matrix, such that @>Al, A>0.
Then, for constants & and g which

satisfy 0¢e{1—8 and 0<u<2(1—-8—¢),
the Riccati equation

2
A’ P+ PA—uPBB P+ -gLE- I+Q=0 (5)

has a positive definite solution P, and
the system (1) is quadratically stabilizable
with the control law

u(t) =—Kx(t)=—B Px(1). (6)

Fact: For any matrices X and Y with
appropriate dimensions and for >0, we
have

+(X' Y+ YX)st'X+—1; YY. ™
Proof of Theorem 1: Let Ry=p ‘I and
Q=(2*/2e)[+Q. Since R0, @0,

and the pair (A, B) is controllable, the
Riccati equation (5) always has a
positive definite solution P [12]. Let the
Lyapunov  function be given by
Wx)=xPx. By (2), (3), (5) and (7),
the Lyapunov derivative corresponding to
the system with () =—B Px(?d
satisfies the following inequality:

For 0<4<1,
VX — ' (A'P+PA+D'B P+PBD

~2PBB P— PBE'B' P— PBEB P)x
<x'{A’'P+PA+2ePBB P+ (2¢) "'D'D
—2PBB P+ SPBB P+ 3 "'PBE EB P}x
<x'{A’P+PA—2(1—pB—¢)PBB P

+(a*/2e)Dx
<x'{A'P+PA—uPBB P+ (a*/28)D}x
=—x'Qr < —Aldl*

For B={(), ie, 4B=(,

—4%(;’2)— = x'{A’'P+PA+2ePBB P

+(2¢) "'D'D—2PBB P}x
<x'{A'P+PA—uPBB P+ (a°/2¢e)l}x
< —Ald1%.
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uncertain system (1) is
quadratically stabilizable with the control

law  w(f)=—B Px(D. O

Hence, the

Remark 1: One possible choice for the
constants @ and B is @= Omu (D), and

B: Gmax(E)

Remark 2° For the ordinary LQ
regulator, #(f)=—uB Px(#). Therefore,
when p#1, the control law u(H=

— B Px(® differs from the control law
of LQ regulator. Since 0<u<2(1—8—¢),
we can have g=1 when 1-—28>0, and
this confines the admissible B within
0<¢B<1/2.

Remark 3° The assumptions and the
results given in this section are the
same as those proposed by Thorp and
Barmish [6]. The only difference
between these two is the way of
obtaining the stabilizing controller. The
design method in this paper is simpler
than the method by Thorp and Barmish.
Remark 4. It can be easily shown that
Theorem 1 is also wvalid if the
assumption in (3) is replaced by

AB= BE,
%Amm(E-*—E')Z—B, 541, (3)’

The assumption in (3)' is more general
than the assumption in (3). In this case,
we may choose =1 for B<1/2.

In the
consider an output feedback control of
the uncertain system that asymptotically
recovers the properties of the state
feedback control. To obtain the loop
transfer function of the state feedback

following section, we will

\
<

K=

Fig. 1. Closed~-loop system with
state feedback controller

system, let us denote

A;,=A+4A,

Bd=B+AB,

QL) =(sI—A—4A) '=(sI-A,) ..
The structure of the closed-loop system
(1) with the state feedback control law
in (6) is shown in Fig. 1. If we break

the loop of the system at the input,
where ‘X’ is marked, then the Iloop

transfer function Gg(s) becomes
Gro(s)=K.@Ls)B, (8)

GLQ(S) is
transfer function which we are trying to
get by LTR in the next section.

the target feedback loop

3. A Robust Loop Transfer
Recovery Condition for Uncertain
Systems

We now consider the uncertain system
described by

2 H=(A+4A)x() + (B+4B)u(?),
Y& =(C+40)x(t), (1)

where W(HeR™ is the output,
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CeR™” is the output matrix,
A4CeR ™" is the output uncertainty,
and the other definitions and

assumptions are the same as previously
given in Section 2. Assume that the pair
(C,A) is observable, and C has full row

rank. Let us denote C,;= C+4C. Then,
the transfer function G(s) of the system
(1)" is an mXm matrix given by

G( S) == Cd@d( S)Bd_ (9

Let us design an output feedback
controller based on nominal model. The
state estimate 2(f) of the system is
constructed using Kalman filter,

2(D) = Az(H + Bul ) + KA () — Ca( D).
(10)

Here, K<R™™ is the Kalman filter

obtained by K,=SC,

where SeR ™" is the solution of the
algebraic Riccati equation

gain matrix

AS+SA’ —SCCS+¢*BB =0. (1)
The control input #(# is given by

wu(t)=—Kz(D, (12)

where K.&R™" is given in (6). The

loop transfer function K(s) from ¥ to
—u(d is [3]

K(s)=K/(sI-A+BK +K«C) 'K,
(13)
The structure of the closed-loop system
(1)" with the output feedback control law

in (10) and (12} is shown in Fig. 2.
The following theorem gives a condition

Fig. 2. Closed-loop system with

output feedback controller

et

which guarantees that the output feedback
(12) in the system (1) approaches those
of the state feedback (6).

Theorem 2: Assume that 4C=10. Then,
for the uncertain system (1)’, the input
breaking loop transfer function K(s)G(s)
in Fig. 2 asymtotically recovers the
target loop transfer function Gpro(s) as
g0, if the matrix C@® B is minimum
phase for all admissible uncertainties

4A as described in (2). In this case, the
closed-loop system is stable.

proof: Let OJ[s)=(sI-A+BK.) .
Then,
K(9)G(s)

=K(0,'+KC) "'KCPBy

=K[0.,~0KLI+COK) ~'C®,]
XKL yPsBy

=KOKL{I+COK) 'C, 0B

Since ¢ 'K/~BW as ¢—c [1], where
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W is an orthonormal matrix, then as
g—©
K(s)G(s)
—K.0.B(CO.B) "'C,0,By (14)
= K.0,BlI+(D+K.)®,B]
<{COBLI+(D+K)®B] )

x C 0 4By (15)
=K. 0,B(CO,B) '(C+4C)

x @ B(I+E) (16)

= GLQ(S). (17

Here, @B=[0,'+B(D+K,)] 'B=

QBlI+(D+K)®,B] ! is used to get
(15) from (14). Since the inverse of the
matrix I+ (D+K_)®,B is cancelled in
(15), I+(D+K_)®,B must be minimum
phase. Note that the zeroes of
det(/+(D+K.)@,B) is the same as

the poles of the state feedback system
described by

()= (A +4A)x(?) + Bu(¥),
u(h)=—(D+K)x(D.

By (2), the closed-loop system is given
by
x(f)=(A+4A—BD— BK )x(?)
=(A—BK_)x(?),

which has nominally stable poles. Hence
the matrix I+ (D+K_)® B is minimum
phase and the cancellation in (15) is
possible. In order to cancel the inverse
Co,B in (16), Co,B
must be minimum phase. From (17), we
see that

of the matrix

det(I+K(s)G(s)) — det(I+Go(s)),

the target feedback

system 1is stable, the closed-loop system
in Fig. 2 is stable. O

as g, Since

Itemark 5° For matched uncertainties
4A and 4B illustrated in (2) and (3), 4A
is more important than 4B. Because the
Co,B

being minimum phase for all admissible

condition for LTR depends on

uncertainties  of A4A.  Kharitonov's
theorem [13] to check
whether C@ B is minimum phase for all

can be wuseful

addmissible uncertainties of 4A.
AC+(), and

phase for all

Remark 6. Assume that
CQ,}B 1s
admissible uncertainties 4A as described
in (2). Then, the stability of the

closed-loop system (1)' with the control
law in (10) and (12) can be guaranteed

as g—oo if

minimum

O'min(I+GLQ(jw))
> Ormax (K. 0L 7@)B[CO{jw)B] ~'4C
X QLjw)By), (18)
for all w=(0, and for all admissible 4A

and 4B. From (18), we can find the
bound of A4C which maintains the
stability of the closed-loop system as

g—cc in LTR.

4. Conclusions

In this paper, an output feedback
controller design method is proposed to
stabilize uncertain linear systems, whose
uncertainties are described in the time
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domain. It is assumed that the
uncertainties  satisfy  the  matching
conditions and their bounds are known.
A robust state feedback controller design
method is used to get a target feedback
loop for the LQG/LTR procedure. Then,
LQG/L'TR procedure is utilized. When
4C=10, it is shown that for the
matched uncertainties 4A and 4B, the
asymptotic recovery to the target state
feedback control system for the output
feedback control system is guaranteed if
C¢dB is

admissible uncertainties of A4A.

minimum phase for all
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