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Abstract: For linear descriptor systems, we consider the H∞ controller design problem via output feedback.
Both static output feedback and dynamic one are discussed. First, in the case of static output feedback, we
reduce our control problem to solving a bilinear matrix inequality (BMI) with respect to the controller coefficient
matrix, a Lyapunov matrix and a matrix related to the descriptor matrix. Under a matching condition between
the descriptor matrix and the measured output matrix (or the control input matrix), we propose setting the
Lyapunov matrix in the BMI as being block diagonal appropriately so that the BMI is reduced to LMIs. For
fixed-order dynamic H∞ output feedback, we formulate the control problem equivalently as the one of static
output feedback design, and thus the same approach can be applied.
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1 Introduction

It is known that descriptor systems (also known as singu-
lar systems or implicit systems) have high abilities in rep-
resenting dynamical systems. They can preserve physi-
cal parameters in the coefficient matrices, and describe
the dynamic part, static part, and even improper part
of the system in the same form. In this sense, descrip-
tor systems are much superior to systems represented by
state-space models.

There have been reported many works on descriptor
systems, e.g., [1, 2, 3]. Among these works, Ref. [3] ap-
plied the linear matrix inequality (LMI) approach (e.g.,
[4, 5]) to H∞ control problems for descriptor systems.
However, the LMI-type conditions proposed there con-
tain equality constraints, which may be little problem
theoretically, but may cause big trouble in checking the
conditions numerically. Because of quantization errors in
digital computation, the equality constraints are fragile
and in usual not satisfied exactly. To overcome this dif-
ficulty, Refs. [6, 7] derived strict LMI conditions for sta-
bility, robust stabilization and H∞ control of linear de-
scriptor systems. Since the strict LMIs are definite LMIs
with no equality constraint, they are highly tractable and
reliable when we use recent popular softwares for solving
LMIs.

When focusing on H∞ controller design for descriptor
systems, we noticed that the controller proposed in Refs.
[6, 7] is restricted to dynamic output feedback with the
same descriptor form and the same order as that of the

system, and thus the approach in Refs. [6, 7] can not be
applied to fixed-order controller design or the design of
controllers with non-descriptor form.

The above observations motivate us to consider fixed-
order H∞ controller (including the case of static output
feedback) for descriptor systems. First, in the case of
static output feedback, we use a lemma in Ref. [7] to
express our H∞ control problem as a bilinear matrix in-
equality (BMI) with respect to the controller coefficient
matrix, a Lyapunov matrix and a matrix related to the
descriptor matrix. Under a matching condition between
the descriptor matrix and the measured output matrix
(or the control input matrix), we propose setting the
Lyapunov matrix in the BMI as being block diagonal
appropriately so that the BMI is reduced to LMIs.

Next, we consider for the descriptor system a fixed-
order dynamic output feedback H∞ controller with non-
descriptor form. By formulating the control problem as a
new problem of static output feedback design, we show
that we can adopt the same approach and reduce the
controller design to solving LMIs, under the same match-
ing condition as in the case of static output feedback. We
emphasize that, although the obtained LMIs are suffi-
cient but not necessary, they are strict LMIs and thus
are easily solved by using many existing softwares (for
example, LMI Control Toolbox [4, 8]). It is noted that
the idea of setting the Lyapunov matrix in the BMI as
being block diagonal is originated from Refs. [9, 10, 11].
A simple example is used to demonstrate the effective-
ness of our results.



2 Problem Formulation and

Preliminary Result

We consider the linear descriptor system


Eẋ = Ax + B1w + B2u

z = C1x

y = C2x

(1)

where x ∈ Rn is the descriptor variable, w ∈ Rl is the
disturbance input, z ∈ Rp is the controlled output, u ∈
Rm is the control input, and y ∈ Rq is the measured
output. The matrices E ∈ Rn×n, A ∈ Rn×n, B1 ∈
Rn×l, B2 ∈ Rn×m, C1 ∈ Rp×n, C2 ∈ Rq×n are constant,
and the matrix E is singular, whose rank is denoted by
rank E = r < n. Without loss of generality, we assume
that B2 is of full column rank, and C2 is of full row rank.

We first introduce some definitions [6] for the descrip-
tor system (1) with w ≡ 0 , u ≡ 0. The system has a
unique solution for any initial condition, and is called
regular, if det (sE−A) �≡ 0. The finite eigenvalues of the
matrix pair (E, A), i.e., the solutions of det (sE−A) = 0,
and the corresponding (generalized) eigenvectors define
exponential modes of the system. If the finite eigenval-
ues are in the open left half-plane of s, the solution of the
system decays exponentially. The infinite eigenvalues of
(E, A) with the eigenvectors x satisfying Ex = 0 deter-
mine static modes. The infinite eigenvalues of (E, A)
with generalized eigenvectors xk satisfying the relations
Ex1 = 0 and Exk = Axk−1 (k ≥ 2) create impulsive
modes. The system has no impulsive mode if and only
if rank E = degdet (sE − A). The system is said to be
stable if it is regular and has only decaying exponential
modes and static modes,

For the system (1), we consider a static output feed-
back controller

u = Ky (2)

where K is the gain matrix to be determined, and a
dynamic output feedback controller{

˙̂x = Âx̂ + B̂y

u = Ĉx̂ + D̂y
(3)

where x̂ ∈ Rn̂ is the state of the controller, n̂ < n is
a fixed-order, and Â, B̂, Ĉ, D̂ are constant matrices to
be determined. Then, the H∞ control problem in this
paper is formulated as follows.

Fixed-Order H∞ Controller Design Problem:
Given a specified disturbance attenuation level γ > 0,
design a static output feedback controller (2) and a dy-
namic output feedback controller (3) for the system (1)
so that the resultant closed-loop system is stable and the

H∞ norm of the transfer function from w to z in the
closed-loop system is less than γ. If such a static output
feedback controller (respectively, a dynamic output feed-
back controller) exists, we say the descriptor system (1)
is stabilizable with H∞ disturbance attenuation level γ

via a static output feedback controller (2) (respectively,
a dynamic output feedback controller (3)).

Next, we state a preliminary result, which plays an
important role in the discussions later. We let matrices
V , U ∈ Rn×(n−r) be of full column rank and composed
of bases of NullE and NullET , respectively, and we de-
compose E as E = ELET

R , where EL , ER ∈ Rn×r are of
full column rank.

Lemma 1. [7] The system (1) (with u = 0) is stable
and ‖C1(sE − A)−1B1‖∞ < γ if and only if one of the
following two conditions is satisfied:

(i) There exist a symmetric matrix P ∈ Rn×n and a
matrix S ∈ R(n−r)×(n−r) such that[

Φ1 + ΦT
1 + B1B

T
1 Φ12

ΦT
12 −γ2I

]
< 0 , ET

RPER > 0 (4)

Φ1 = A(PET + V SUT )

Φ12 = (PET + V SUT )T CT
1 .

(ii) There exist a symmetric matrix Q ∈ Rn×n and a
matrix R ∈ R(n−r)×(n−r) such that[

Ψ1 + ΨT
1 + CT

1 C1 Ψ12

ΨT
12 −γ2I

]
< 0 , ET

L QEL > 0 (5)

Ψ1 = AT (QE + URV T )

Ψ12 = (QE + URV T )T B1 .

3 Static Output Feedback

In this section, we consider the design of a static output
feedback controller (2) for the system (1) so that the re-
sultant closed-loop system is stable with H∞ disturbance
attenuation level γ.

First, the closed-loop system obtained by applying the
controller (2) to the system (1) is written as{

Eẋ = Āx + B1w , Ā = A + B2KC2

z = C1x
(6)

and the transfer function from w to z in (6) is

Gc(s) = C1(sE − Ā)−1B1 . (7)

Then, according to Lemma 1, the closed-loop system
(6) is stable and ‖Gc(s)‖∞ < γ if and only if (4) (or
(5)) is satisfied with A replaced by Ā. To say it in other



words, our control problem here is reduced to solving (4)
(or (5)) with respect to P , S (or Q, R) and K. However,
due to the products between Ā and (P,S) (or (Q, R)), (4)
(or (5)) is a BMI with respect to the unknown matrices,
and thus difficult to solve.

In this section, we assume that a matching condition
holds between the descriptor matrix E and the measured
output matrix C2 (or the control input matrix B2). By
considering an equivalent block diagonal structure of the
Lyapunov matrix P (or Q), we reduce the BMI to LMIs,
for which there are many effective softwares (e.g., LMI
Control Toolbox of MATLAB) [4, 8].

Assumption 1.(Matching Condition 1) There exists a
constant matrix Ĉ2 such that C2 = Ĉ2E .

To state and prove our first result, we need to find a
nonsingular matrix T satisfying

C2T =
[

Iq 0
]

. (8)

This is always possible since C2 is of full row rank. Using
the matrix T , we make the following similarity transfor-
mation for the system matrices as

Ẽ = T−1ET , Ṽ = T−1V , Ũ = T−1U

Ã = T−1AT , B̃1 = T−1B1

B̃2 = T−1B2 , C̃1 = C1T .

(9)

Theorem 1. Under Assumption 1, the system (1) is
stabilizable with H∞ disturbance attenuation level γ via
a static output feedback controller (2) if there exist P̃ =
diag{P̃1, P̃2} > 0

(
P̃1 ∈ Rq×q, P̃2 ∈ R(n−q)×(n−q)

)
, S ∈

R(n−r)×(n−r) and W ∈ Rm×q such that the LMIs[
Φ̂1 + Φ̂T

1 + B̃1B̃
T
1 Φ̂12

Φ̂T
12 −γ2I

]
< 0 (10)

Φ̂1 = ÃP̃ ẼT + ÃṼ SŨT + B̃2

[
W 0

]
ẼT

Φ̂12 = (P̃ ẼT + Ṽ SŨT )T C̃T
1

ET
RT P̃T T ER > 0 (11)

are satisfied.

When the above LMIs are feasible, one desired con-
troller gain matrix is computed as

K = WP̃−1
1 . (12)

Proof. Pre- and post-multiplying the LMI (10) respec-

tively by
[

T 0
0 I

]
and its transpose, and then substi-

tuting all the matrices in (9) together with P = T P̃T T ,
we obtain[

Φ̃1 + Φ̃T
1 + B1B

T
1 Φ12

ΦT
12 −γ2I

]
< 0 (13)

Φ̃1 = APET + AV SUT + B2

[
W 0

]
T T ET

where Φ12 is the same as in Lemma 1.

It is easy to confirm KC2T P̃ =
[

W 0
]

from (8)
and (12), and thus

B2

[
W 0

]
T T ET = B2KC2PET . (14)

Then, we use the fact C2V = C̃2EV = 0 in (13) to
obtain [

Φ̄1 + Φ̄T
1 + B1B

T
1 Φ12

ΦT
12 −γ2I

]
< 0 (15)

Φ̄1 = Ā(PET + V SUT ) .

Since the LMI (11) is ET
RT P̃T T ER = ET

RPER > 0, we
declare that the closed-loop system (6) with (12) is stable
with H∞ disturbance attenuation level γ, according to
Lemma 1.

Next, we consider the control problem under the fol-
lowing matching condition.

Assumption 2.(Matching Condition 2) There exists a
constant matrix B̂2 such that B2 = EB̂2 .

Similarly as before, we first find a nonsingular matrix
X satisfying

XB2 =
[

Im

0

]
. (16)

This is always possible since B2 is of full column rank.
Using the matrix X , we make the following similarity
transformation for the system matrices as

Ê = XEX−1 , V̂ = (X−1)T V , Û = (X−1)T U

Â = XAX−1 , B̂1 = XB1

Ĉ1 = C1X
−1 , Ĉ2 = C2X

−1 .

(17)

Theorem 2. Under Assumption 2, the system (1) is
stabilizable with H∞ disturbance attenuation level γ via
a static output feedback controller (2) if there exist Q̂ =
diag{Q̂1, Q̂2} > 0

(
Q̂1 ∈ Rm×m, Q̂2 ∈ R(n−m)×(n−m)

)
,

R ∈ R(n−r)×(n−r) and W ∈ Rm×q such that the LMIs[
Ψ̂1 + Ψ̂T

1 + ĈT
1 Ĉ1 Ψ̂12

Ψ̂T
12 −γ2I

]
< 0 (18)

Ψ̂1 = ÂT Q̂Ê + ÂT ÛRV̂ T + ĈT
2

[
WT 0

]
Ê

Ψ̂12 = (Q̂Ê + ÛRV̂ T )T B̂1

ET
LXT Q̂XEL > 0 (19)

are satisfied.

When the above LMIs are feasible, one desired con-
troller gain matrix is computed as

K = Q̂−1
1 W . (20)



Proof. Pre- and post-multiplying the LMI (18) respec-

tively by
[

XT 0
0 I

]
and its transpose, and then substi-

tuting all the matrices in (17) together with Q = XT Q̂X ,
we obtain

[
Ψ̃1 + Ψ̃T

1 + CT
1 C1 Ψ12

ΨT
12 −γ2I

]
< 0 (21)

Ψ̃1 = AT QE + AT URV T + CT
2

[
WT 0

]
XE

where Ψ12 is the same as in Lemma 1.

It is easy to confirm Q̂XB2K =
[

WT 0
]T from

(16) and (20), and thus

CT
2

[
WT 0

]
XE = (B2KC2)T QE . (22)

Then, we use the fact UT B2 = UT EB̂2 = 0 in (21) to
obtain

[
Ψ̄1 + Ψ̄T

1 + CT
1 C1 Ψ12

ΨT
12 −γ2I

]
< 0 (23)

Ψ̄1 = ĀT (QE + URV T ) .

Since the LMI (19) is ET
LXT Q̂XEL = ET

LQEL > 0, we
declare that the closed-loop system (6) with (20) is stable
with H∞ disturbance attenuation level γ, according to
Lemma 1.

Remark 1. Although Theorems 1 and 2 come up with
dual forms, they are not equivalent and are supposed to
deal with different matching conditions. Furthermore,
the LMI conditions provided by the theorems are suf-
ficient ones. Therefore, even in the case where both
matching conditions (Assumptions 1 and 2) hold and
thus both theorems can be applied, the LMI condition
of one theorem would be satisfied while the other would
not.

Remark 2. When it is necessary, we can try to obtain
a tight H∞ disturbance attenuation level by consider-
ing the eigenvalue problem (EVP) [4]: “minimize γ, s.t.
(10), (11) (or (18), (19)) with respect to P̃ , S, W (or Q̂,
R, W )”.

Remark 3. In Theorems 1 and 2, we required P̃ > 0
and Q̂ > 0, respectively. It can be easily understood
from the proofs and Lemma 1 that we can relax the
conditions by requiring instead P̃1 > 0 with symmetric
P̃2 and Q̂1 > 0 with symmetric Q̂2, respectively.

In the end of this section, we present a simple exam-
ple. The system (1) under consideration is defined by

the coefficient matrices

A =




0.42 1.33 1.76 1.45
1.51 1.26 0.14 0.40
0.00 1.70 1.12 1.09
0.66 1.37 1.32 0.46




E =




0.33 0.83 0.34 1.11
0.48 0.77 0.73 1.11
0.21 0.41 0.28 0.57
0.27 0.49 0.38 0.69




B1 =




0.46 0.62
0.43 1.87
1.77 0.43
1.31 0.63


 , B2 =




0.72 0.66
0.58 1.19
1.13 1.00
0.97 0.87




C1 =
[

0.21 0.00 0.67 0.85
0.76 0.33 0.63 0.69

]
C2 =

[
0.84 1.77 1.05 2.43

]
.

(24)

For this system, we set γ = 1.2 as the desired H∞ distur-
bance attenuation level and aim to design a static H∞
output feedback controller.

It is easy to see that Assumption 1 holds between E

and C2, and thus Theorem 1 is available. Solving the
two LMIs in Theorem 1, we obtain the controller gain
matrix

K =
[

2.14
−3.06

]
. (25)

Using the existing result [6], we can confirm that the
closed-loop system composed of (24) and (25) is stable
with H∞ disturbance attenuation level less than γ.

4 Dynamic Output Feedback

In this section, we consider the design of a dynamic out-
put feedback controller (3) for the system (1) so that
the resultant closed-loop system is stable with H∞ dis-
turbance attenuation level γ.

We first write the controller coefficient matrices Â, B̂,
Ĉ and D̂ in a single matrix

K =

[
Â B̂

Ĉ D̂

]
∈ R(n̂+m)×(n̂+q) (26)

and introduce the notations

[
Ă B̆1 B̆2

]
=

[
A 0n×n̂ B1 0n×n̂ B2

0n̂×n 0n̂×n̂ 0n̂×l In̂ 0n̂×m

]

[
C̆1

C̆2

]
=


 C1 0p×n̂

0n̂×n In̂

C2 0q×n̂


 , Ĕ =

[
E 0
0 In̂

]
.

(27)

Then, the closed-loop system obtained by applying the
controller (3) to the system (1) is written in a compact



form as {
Ĕ ˙̆x = (Ă + B̆2KC̆2)x̆ + B̆1w

z = C̆1x̆
(28)

where x̆ = [xT x̂T ]T ∈ Rn+n̂ . Therefore, our control
problem is equivalent to the problem of designing a static
output feedback u = Ky for the linear descriptor system


Ĕ ˙̆x = Ăx̆ + B̆1w + B̆2u

z = C̆1x̆

y = C̆2x̆ .

(29)

It is easy to see that rank Ĕ = r + n̂ < n + n̂,

Ĕ =

[
EL 0
0 In̂

][
ER 0
0 In̂

]T

= ĔLĔT
R

ĔV̆ = Ĕ

[
V

0

]
= 0 , ĔT Ŭ = ĔT

[
U

0

]
= 0 ,

(30)

and

C̆2T̆ = C̆2

[
0 T

In̂ 0

]
=

[
Iq+n̂ 0

]

X̆B̆2 =

[
0 In̂

X 0

]
B̆2 =

[
Im+n̂

0

]
.

(31)

Furthermore, when Assumption 1 is true, a matching
condition between Ĕ and C̆2 is also true since

C̆2 =

[
0 I

C2 0

]
=

[
0 I

Ĉ2 0

]
Ĕ , (32)

and when Assumption 2 is true, a matching condition
between Ĕ and B̆2 is also true since

B̆2 =

[
0 B2

I 0

]
= Ĕ

[
0 B̂2

I 0

]
. (33)

Therefore, under Assumptions 1 and 2, respectively,
Theorems 1 and 2 are available for the design of fixed-
order H∞ dynamic output feedback controller design
with some notation modifications in the LMIs (10), (11),
(18) and (19). For brevity, we omit the precise descrip-
tions here.

5 Conclusion

In this paper, we have considered fixed-order H∞ con-
troller design problems via output feedback for linear de-
scriptor systems. In both cases of static output feedback
and dynamic one, we have expressed the control prob-
lem as a bilinear matrix inequality (BMI) with respect

to the controller coefficient matrix, a Lyapunov matrix
and a matrix related to the descriptor matrix. Under a
matching condition between the descriptor matrix and
the measured output matrix (or the control input ma-
trix), we have proposed setting the Lyapunov matrix in
the BMI as being block diagonal appropriately so that
the BMI is reduced to LMIs. We suggest that the ap-
proach in this paper should also be useful for other syn-
thesis problems involving constraints on controller struc-
ture.
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