• 제목/요약/키워드: f-modules

검색결과 203건 처리시간 0.021초

ON GRAPHS ASSOCIATED WITH MODULES OVER COMMUTATIVE RINGS

  • Pirzada, Shariefuddin;Raja, Rameez
    • 대한수학회지
    • /
    • 제53권5호
    • /
    • pp.1167-1182
    • /
    • 2016
  • Let M be an R-module, where R is a commutative ring with identity 1 and let G(V,E) be a graph. In this paper, we study the graphs associated with modules over commutative rings. We associate three simple graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ to M called full annihilating, semi-annihilating and star-annihilating graph. When M is finite over R, we investigate metric dimensions in $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$. We show that M over R is finite if and only if the metric dimension of the graph $ann_f({\Gamma}(M_R))$ is finite. We further show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if M is a prime-multiplication-like R-module. We investigate the case when M is a free R-module, where R is an integral domain and show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if $$M{\sim_=}R$$. Finally, we characterize all the non-simple weakly virtually divisible modules M for which Ann(M) is a prime ideal and Soc(M) = 0.

INJECTIVE MODULES OVER ω-NOETHERIAN RINGS, II

  • Zhang, Jun;Wang, Fanggui;Kim, Hwankoo
    • 대한수학회지
    • /
    • 제50권5호
    • /
    • pp.1051-1066
    • /
    • 2013
  • By utilizing known characterizations of ${\omega}$-Noetherian rings in terms of injective modules, we give more characterizations of ${\omega}$-Noetherian rings. More precisely, we show that a commutative ring R is ${\omega}$-Noetherian if and only if the direct limit of GV -torsion-free injective R-modules is injective; if and only if every R-module has a GV -torsion-free injective (pre)cover; if and only if the direct sum of injective envelopes of ${\omega}$-simple R-modules is injective; if and only if the essential extension of the direct sum of GV -torsion-free injective R-modules is the direct sum of GV -torsion-free injective R-modules; if and only if every $\mathfrak{F}_{w,f}(R)$-injective ${\omega}$-module is injective; if and only if every GV-torsion-free R-module admits an $i$-decomposition.

LOCAL-GLOBAL PRINCIPLE AND GENERALIZED LOCAL COHOMOLOGY MODULES

  • Bui Thi Hong Cam;Nguyen Minh Tri;Do Ngoc Yen
    • 대한수학회논문집
    • /
    • 제38권3호
    • /
    • pp.649-661
    • /
    • 2023
  • Let 𝓜 be a stable Serre subcategory of the category of R-modules. We introduce the concept of 𝓜-minimax R-modules and investigate the local-global principle for generalized local cohomology modules that concerns to the 𝓜-minimaxness. We also provide the 𝓜-finiteness dimension f𝓜I (M, N) of M, N relative to I which is an extension the finiteness dimension fI (N) of a finitely generated R-module N relative to I.

AMALGAMATED MODULES ALONG AN IDEAL

  • El Khalfaoui, Rachida;Mahdou, Najib;Sahandi, Parviz;Shirmohammadi, Nematollah
    • 대한수학회논문집
    • /
    • 제36권1호
    • /
    • pp.1-10
    • /
    • 2021
  • Let R and S be two commutative rings, J be an ideal of S and f : R → S be a ring homomorphism. The amalgamation of R and S along J with respect to f, denoted by R ⋈f J, is the special subring of R × S defined by R ⋈f J = {(a, f(a) + j) | a ∈ R, j ∈ J}. In this paper, we study some basic properties of a special kind of R ⋈f J-modules, called the amalgamation of M and N along J with respect to ��, and defined by M ⋈�� JN := {(m, ��(m) + n) | m ∈ M and n ∈ JN}, where �� : M → N is an R-module homomorphism. The new results generalize some known results on the amalgamation of rings and the duplication of a module along an ideal.

RELATIVE RELATION MODULES OF FINITE ELEMENTARY ABELIAN p-GROUPS

  • Yamin, Mohammad;Sharma, Poonam Kumar
    • 대한수학회보
    • /
    • 제51권4호
    • /
    • pp.1205-1210
    • /
    • 2014
  • Let E be a free product of a finite number of cyclic groups, and S a normal subgroup of E such that $$E/S{\sim_=}G$$ is finite. For a prime p, $\hat{S}=S/S^{\prime}S^p$ may be regarded as an $F_pG$-module via conjugation in E. The aim of this article is to prove that $\hat{S}$ is decomposable into two indecomposable modules for finite elementary abelian p-groups G.

INJECTIVE REPRESENTATIONS OF QUIVERS

  • Park, Sang-Won;Shin, De-Ra
    • 대한수학회논문집
    • /
    • 제21권1호
    • /
    • pp.37-43
    • /
    • 2006
  • We prove that $M_1\longrightarrow^f\;M_2$ is an injective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ if and only if $M_1\;and\;M_2$ are injective left R-modules, $M_1\longrightarrow^f\;M_2$ is isomorphic to a direct sum of representation of the types $E_l{\rightarrow}0$ and $M_1\longrightarrow^{id}\;M_2$ where $E_l\;and\;E_2$ are injective left R-modules. Then, we generalize the result so that a representation$M_1\longrightarrow^{f_1}\;M_2\; \longrightarrow^{f_2}\;\cdots\;\longrightarrow^{f_{n-1}}\;M_n$ of a quiver $Q={\bullet}{\rightarrow}{\bullet}{\rightarrow}{\cdots}{\rightarrow}{\bullet}$ is an injective representation if and only if each $M_i$ is an injective left R-module and the representation is a direct sum of injective representations.

A Generalization of Formal Local Cohomology Modules

  • Rezaei, Shahram
    • Kyungpook Mathematical Journal
    • /
    • 제56권3호
    • /
    • pp.737-743
    • /
    • 2016
  • Let a and b be two ideals of a commutative Noetherian ring R, M a finitely generated R-module and i an integer. In this paper we study formal local cohomology modules with respect to a pair of ideals. We denote the i-th a-formal local cohomology module M with respect to b by ${\mathfrak{F}}^i_{a,b}(M)$. We show that if ${\mathfrak{F}}^i_{a,b}(M)$ is artinian, then $a{\subseteq}{\sqrt{(0:{\mathfrak{F}}^i_{a,b}(M))$. Also, we show that ${\mathfrak{F}}^{\text{dim }M}_{a,b}(M)$ is artinian and we determine the set $Att_R\;{\mathfrak{F}}^{\text{dim }M}_{a,b}(M)$.

Radio-over-Fiber 링크를 위한 60 GHz 아날로그 광 송신기 모듈 (60 GHz analog optic transmitter module for radio-over-fiber link)

  • 정용덕;최광성;강영식;심재식;김성복;김제하
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2006년도 하계학술발표회 논문집
    • /
    • pp.363-364
    • /
    • 2006
  • We developed 60 GHz analog optical transmitter modules for radio-over-fiber (RoF). They were consisted of an electroabsorption modulator (EAM), impedance matching circuit, and amplifier. The characteristics of fabricated modules were investigated by measuring the signal-to-noise ratio and the noise figure of the 60 GHz RoF link.

  • PDF

DERIVATION MODULES OF GROUP RINGS AND INTEGERS OF CYCLOTOMIC FIELDS

  • Chung, I.Y.
    • 대한수학회보
    • /
    • 제20권1호
    • /
    • pp.31-36
    • /
    • 1983
  • Let R be a commutative ring with 1, and A a unitary commutative R-algebra. By a derivation module of A, we mean a pair (M, d), where M is an A-module and d: A.rarw.M and R-derivation, i.e., d is an R-linear mapping such that d(ab)=a)db)+b(da). A derivation module homomorphism f:(M,d).rarw.(N, .delta.) is an A-homomorphism f:M.rarw.N such that f.d=.delta.. A derivation module of A, (U, d), there exists a unique derivation module homomorphism f:(U, d).rarw.(M,.delta.). In fact, a universal derivation module of A exists in the category of derivation modules of A, and is unique up to unique derivation module isomorphisms [2, pp. 101]. When (U,d) is a universal derivation module of R-algebra A, the A-module U is denoted by U(A/R). For out convenience, U(A/R) will also be called a universal derivation module of A, and d the R-derivation corresponding to U(A/R).

  • PDF

MULTIPLICATION MODULES WHOSE ENDOMORPHISM RINGS ARE INTEGRAL DOMAINS

  • Lee, Sang-Cheol
    • 대한수학회보
    • /
    • 제47권5호
    • /
    • pp.1053-1066
    • /
    • 2010
  • In this paper, several properties of endomorphism rings of modules are investigated. A multiplication module M over a commutative ring R induces a commutative ring $M^*$ of endomorphisms of M and hence the relation between the prime (maximal) submodules of M and the prime (maximal) ideals of $M^*$ can be found. In particular, two classes of ideals of $M^*$ are discussed in this paper: one is of the form $G_{M^*}\;(M,\;N)\;=\;\{f\;{\in}\;M^*\;|\;f(M)\;{\subseteq}\;N\}$ and the other is of the form $G_{M^*}\;(N,\;0)\;=\;\{f\;{\in}\;M^*\;|\;f(N)\;=\;0\}$ for a submodule N of M.