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RELATIVE RELATION MODULES OF FINITE ELEMENTARY

ABELIAN p-GROUPS

Mohammad Yamin and Poonam Kumar Sharma

Abstract. Let E be a free product of a finite number of cyclic groups,
and S a normal subgroup of E such that E/S ∼= G is finite. For a prime

p, Ŝ = S/S
′

Sp may be regarded as an FpG-module via conjugation in

E. The aim of this article is to prove that Ŝ is decomposable into two
indecomposable modules for finite elementary abelian p-groups G.

1. Introduction

Consider a short exact sequence 1 → S → E
ψ
→ G→ 1, where G is a finite

group of order n generated by X = {gi : 1 ≤ i ≤ d}. Let E be a free product
of cyclic groups Ei, where 1 ≤ i ≤ d. Let p be a (fixed) prime, and Fp the field

of p-elements. If E is a free group, Ŝ = S/S
′

Sp, regarded as an FpG-module,

is known as a relation module of G. In general Ŝ is called a relative relation
module, and it is said to be minimal if it cannot be generated by fewer than d
elements.

Gaschutz [1], Gruenberg [2], Kovacs and Stohr [4], Mittal and Passi [5], and
others have studied relation modules. Relative relation modules have been
studied by Kimmerle [3], Yamin [8, 9], and Sharma and Yamin [7]. As a direct
consequence of ([2, Theorem 2.9]), minimal relation modules of p-groups are
non-projective and indecomposable. Yamin [8] has proved that relative relation
modules of p-groups are non-projective. Kimmerle [3] has proved that minimal
relative relation modules of finite p-groups are indecomposable if δ = 1. The
same result has been proved by Yamin [9] for δ = d. If G is a finite elementary

abelian p-group, in this article, we prove that Ŝ is decomposable into two
indecomposable modules for 1 < δ < d.

Throughout this article, concepts related with groups and their representa-
tions are used mainly from Robinson [6], often without reference.

Let Gi be the cyclic subgroup of G generated by gi of order ni and Ei be
the cyclic group generated by ei of order mi, where mi = kini, 1 ≤ i ≤ d. Let
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p be fixed prime and Fp the field of p-elements. Let ki <∞ and p ∤ ki if i ≤ δ
and δ ≤ d, and ki = ∞ or p | ki if δ + 1 ≤ i ≤ d.

For an FpG-module V , define ϕV to be the smallest submodule of V such
that V/ϕV is completely reducible. Equivalently, ϕV is the intersection of
all maximal submodules of V . Set ϕ0V = V , ϕkV = ϕ(ϕk−1V ). ({ϕkV } is
known as the Loewy series of V .) From ([8, Prop 2.10]), we have an FpG exact
sequence:

(1.1) 1 → Ŝ → ⊕δi=1g
G

i
⊕di=δ+1 biFpG

ψ̂
→ g → 1,

where g, which is same as ϕFpG, denotes the augmentation ideal of FpG and gG
i

that of biFpGi induced to G. Moreover ψ̂ is determined by bi(1− gi) → 1− gi
if 1 ≤ i ≤ δ, and bi → 1− gi if 1 + δ ≤ i ≤ d.

2. Structure of relative relation modules

Theorem 2.1. If G is a finite elementary abelian p-group and 1 < δ < d, then
Ŝ is decomposable into two indecomposable modules.

In order to prove the theorem, we shall construct a minimal generating set
for Ŝ. For, we need certain bases for the Loewy factors of biFpG and gG

i
.

Let

Bi =

{

gG
i

for 1 ≤ i ≤ δ,

biFpG otherwise;
and B = ⊕di=1Bi.

Let

Y = {y : y ∈ biFpG; y =

d
∏

i=1

(1 − gi)
µi , (1− gi)

0 = 1, gi ∈ X, 0 ≤ µi ≤ ni − 1}.

Clearly, Y is a set of non-zero and distinct elements of FpG and |Y | = |G|.
Then it can be checked that Y is an Fp basis of FpG. Now, for y ∈ Y , define
∑d

i=1 µi as the length of y. It is easy to observe that the length of y varies from
0 to l = d(p− 1). Corresponding to each k, let Yk be the set of all elements of
Y of length k. Then it is easy to ckeck that Yk is a minimal generating set of
ϕk(FpG), and {y+ϕk+1FpG : y ∈ Yk} is an Fp basis of ϕk(FpG) /ϕ

k+1(FpG).
For a fixed i, 1 ≤ i ≤ δ, let Zi = {z | z = bi(1−gi)y, y ∈ Y and (1−gi)y 6= 0}.

Clearly, (1 − gi)y = 0 if and only if y = (1 − gi)
p−1y′ for some y′ ∈ Y . The

number of such y is exactly pn−1. Therefore, |Zi| = pn−pn−1 = pn−1(p− 1) =
dim(Bi). In fact Zi is an Fp basis of Bi, and Zik, the set of all elements of
Zi of length k, is a minimal generating set of ϕk−1Bi. Similarly, for a fixed i,
δ + 1 ≤ i ≤ d, the set Zi = {biy, y ∈ Y } is an Fp basis of biFpG and Zik is a
minimal generating set of ϕkBi.

Let Z = ∪di=1Z
i and Zk+1 = ∪di=1Z

i
k+1, 0 ≤ k ≤ l − 1. Then it is easy

to see that Z is an Fp basis of B and Zk+1 is a minimal generating set of
⊕δi=1ϕ

kBi ⊕
d
i=δ+1 ϕ

k+1Bi.
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Remark. The Loewy length of Bi =

{

l for 1 ≤ i ≤ δ;
l + 1 for 1 + δ ≤ i ≤ d.

Lemma 2.2. Let X1 = {(bi − bj)(1 − gi)(1 − gj), 1 ≤ i < j ≤ δ} and X2 =
{bi(1− gj)− bj(1− gi), bi(1− gi)

ni−1, 1 + δ ≤ i < j ≤ d}. Then X1 ∪X2 is a

minimal generating set of Ŝ.

Proof. Firstly, we note that |X1∪X2| =
1
2δ(δ−1)+ 1

2 (d−δ)(d−δ+1). Now we

show that X1 ∪X2 generate Ŝ. If V is any submodule generated by X1 ∪X2,
then V ⊆ Ŝ. For the other inclusion, since ⊕δi=1ϕ

kBi ⊕
d
i=δ+1 ϕ

k+1Bi = {0},

when k = l, therefore it is sufficient to show that an arbitrary element of Ŝ can
be expresses as a sum of an element of V and an element of ⊕δi=1ϕ

kBi ⊕
d
i=δ+1

ϕk+1Bi for all k, 0 ≤ k ≤ l. We shall show this by induction on k. The result
is obviously true for k = 0. Let x ∈ Ŝ, and for a fixed k, 0 ≤ k ≤ l− 1, suppose
that x = v + x′, v ∈ V and x′ ∈ ⊕δi=1ϕ

kBi ⊕
d
i=δ+1 ϕ

k+1Bi. To complete the
induction argument, we shall show that x′ = x0 + x1 for some x0 ∈ V and
x1 ∈ ⊕δi=1ϕ

k+1Bi ⊕
d
i=δ+1 ϕ

k+2Bi.
Writing x′ as a linear combination of an element of Zk+1 and then rewritting

each element of FpG as a sum of an element of Fp and an element of g, we have

x′ =
∑

aλ1
b1(1− g1)yλ1

+ · · ·+
∑

aλδ
bδ(1− gδ)yλδ

+
∑

aλδ+1
bδ+1y

′
λδ+1

+ · · ·+
∑

aλd
bdy

′
λd

+ x1,

where aλi
∈ Fp, yλi

∈ Yk, y
′
j ∈ Yk+1 and x1 ∈ ⊕δi=1ϕ

k+1Bi ⊕
d
i=δ+1 ϕ

k+2Bi.

Clearly, (1 − gi)yλi
∈ Yk+1, however they need not be distinct if xλ = (1 −

gi)yλi
= (1−gj)yλj

= · · · = (1−gr)yλr
= (1−gs)yλs

= y′λk
= y′λl

= y′λm
= y′λn

,
where 0 ≤ i, j, . . . , r, s ≤ δ and δ + 1 ≤ k, l, . . . ,m, n ≤ d. Let

µλ = aλi
bi + aλj

bj + · · ·+ aλr
br + aλs

bs + aλk
bk + aλl

bl

+ · · ·+ aλm
bm + aλn

bn.

Then x0 =
∑

λ µλxλ, where xλ are distinct elements of Yk+1. Therefore we
have

x0ψ̂ = [
∑

λ

{(aλi
bi + aλj

bj + · · ·+ aλr
br + aλs

bs + aλk
bk + aλl

bl

+ · · ·+ aλm
bm + aλn

bn)}xλ]ψ̂

=
∑

λ

{(aλi
bi + aλj

bj + · · ·+ aλr
br + aλs

bs) + aλk
(1− gk) + aλl

(1 − gl)

+ · · ·+ aλm
(1− gm) + aλn

(1 − gn)}xλ.

Now for δ + 1 ≤ k, l, . . . ,m, n ≤ d, we have (1 − gk)y
′
λk

= (1 − gl)y
′
λl

if
and only if y′λk

= (1 − gl)y and y′λl
= (1 − gk)y for some y ∈ Yk+1. Let

xλ′ = (1− gk)y
′
λk

= (1− gl)y
′
λl

= · · · = (1 − gm)y′λm
= (1− gn)y

′
λn

, where the
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xλ′ are distinct elements of Yk+1. Then we have

x0ψ̂ =
∑

λ

(aλi
+ aλj

+ · · ·+ aλr
+ aλs

)xλ

+
∑

λ
′

(aλk
+ aλl

+ · · ·+ aλm
+ aλn

)xλ′

=
∑

λ

βλxλ +
∑

λ
′

βλ′xλ′ ,

where βλ = αλi
+ αλj

+ · · · + αλr
+ αλs

and βλ′ = αλk
+ αλl

+ · · · + αλm
+

αλn
. Clearly, 0 = xψ̂ = vψ̂ + x′ψ̂ = x′ψ̂ = x0ψ̂ + x1ψ̂, where x1ψ̂ ∈

⊕δi=1ϕ
k+1Bi ⊕

d
i=δ+1 ϕ

k+2Bi.

Now (⊕di=1ϕ
k+1Bi)ψ̂ ⊆ ϕk+1g and (⊕di=1ϕ

k+2Bi)ψ̂ ⊆ ϕk+2g. Moreover,

ϕk+2g ⊆ ϕk+1g implies that (⊕δi=1ϕ
k+1Bi ⊕

d
i=δ+1 ϕ

k+2Bi) ⊆ ϕk+1g.

But ϕk+1g = (x0ψ̂+x1ψ̂)+ϕ
k+1g = x0ψ̂+ϕ

k+1g =
∑

βλxλ+
∑

βλ′xλ′+ϕk+1g.
Since each xλ and xλ′ are distinct elements of Yk+1 and Yk+2, respectively,
therefore, each βλ = βλ′ = 0. Therefore, αλs

= −αλi
− αλj

− · · · − αλr
and

αλn
= −αλk

− αλl
− · · · − αλm

. Thus

x0 =
∑

λ

{aλi
bi + aλj

bj + · · ·+ aλr
br − (aλi

+ aλj
+ · · ·+ aλr

)bs}xλ

+ {aλk
bk + aλl

bl + · · ·+ aλm
bm − (aλk

+ aλl
+ · · ·+ aλm

)bn}xλ

=
∑

λ

{aλi
(bi − bs) + aλj

(bj − bs) + · · ·+ aλr
(br − bs)}xλ

+ {aλk
(bky

′
λn

− bny
′
λk
) + aλl

(bly
′
λn

− bny
′
λl
) + · · ·

+ aλm
(bmy

′
λn

− bny
′
λm

)},

which is an element of V . Therefore, Ŝ ⊆ V . Since X1 and X2 lie in different
direct summands of the middle term ⊕δi=1g

G
i
⊕di=δ+1 biFpG of (1.1), therefore

X1 ∩ X2 = 0. Thus in order to show that X1 ∪ X2 is a minimal generating
set of Ŝ, we only need to show that X1 and X2 are minimal sets of U and V ,
respectively. First we shall show that X1 is a minimal generating set for U . For,
since we are dealing with a finite elementary p-group case, it is sufficient to show
that no proper subset of X1 generates U . For, on the contrary suppose that
X1 is not minimal, and let (bµ− bν)(1− gµ)(1− gν) =

∑

(µ,ν) 6=(i,j),1≤i<j≤δ(bi−

bj)(1−gi)(1−gj)aij = x, say, aij ∈ FpG. Then bµ(1−gµ)(1−gν) = x+ bν(1−
gµ)(1 − gν), which is a contradiction because ∪δi=1Z

i
2 is a minimal generating

set of ⊕δi=1ϕ
iB. This shows that X1 is minimal. For proving that X2 is a

minimal generating set, for convenient reference, we shall call the elements

bi(1 − gj) − bj(1 − gi) of type-I and bi(1 − gi)
ni−1

of type-II. Then it is clear
that type-I elements cannot be generated from type-II elements and vice-versa.
Suppose on the contrary that the setX2 is not minimal and let bµ(1−gν)−bν(1−
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gµ) =
∑

(µ,ν) 6=(i,j),δ+1≤i<j≤d{bi(1 − gj) − bj(1 − gi)}aij = y, say, aij ∈ FpG.

Then bµ(1− gν) = y+ bν(1− gµ), which is a contradiction, because an element
of Z1 can not be expressed as a linear combination of the remaining elements
of Z1. �

Proposition 2.3. If U and V are FpG modules generated by X1 and X2,

respectively, then Ŝ ∼= U ⊕ V .

Proof. By Lemma 2.2, it follows that Ŝ = U+V . Moreover, sinceX1 andX2 lie
in different direct summands of (1.1), U ∩ V = {0}, and hence Ŝ ∼= U ⊕ V . �

In view of Proposition 2.3, to complete the proof of Theorem 2.1, we only
need to prove that U and V are indecomposable. For, consider a set

C = {cij : cij = (bi − bj)

d
∏

µ=1

(1− gµ)
nµ−1, 1 ≤ i < j ≤ δ}.

Clearly |C| = 1
2δ(δ − 1). Let U1 be a submodule of U such that dim((U1 +

ϕU)/ϕU) = r, where 0 ≤ r ≤ 1
2δ(δ − 1). Now we shall prove that U1 contains

at least r elements of C. For, r = 0, there is nothing to prove. Therefore,
suppose that r > 0 and choose {um : um ∈ U1, 1 ≤ m ≤ r} such that {um +
ϕU, 1 ≤ m ≤ r} is an Fp basis of (U1 + ϕU)/ϕU . Then

um =
∑

1≤i<j≤δ

αmij
(bi − bj)(1 − gi)(1 − gj) + w,

where αmij
∈ Fp and w ∈ ϕU . Clearly, in the expression of um, at least one

αmij
is non-zero. Let y =

∏d
λ=1(1−gλ)

νλ−1, where νλ=

{

nλ − 2, if λ= i or j;
nλ − 1, otherwise.

Then umy = αmij
(bi − bj)

∏d
λ=1(1 − gλ)

nλ−1 (wy = 0). So, we get umy =

αmij
cij , and so (αmij

)−1umy = cij ∈ U1. Since at least r of the (bi − bj)(1 −
gi)(1 − gj) are distinct, U1 contains at least r elements cij of C.

Suppose U = U1 ⊕U2 and dim(Ui/ϕUi) =
1
2δ(δ − 1) = r1 + r2. From above

argument, we infer that Ui contains a set Ci of at least ri elements of C. In
fact C = C1 ∪C2 and C1 ∩ C2 = Φ.

Clearly, ciδ = cik + ckδ for some 1 ≤ i ≤ δ − 1 and 1 < k < δ. Therefore C
is an Fp-linear combination of {ciδ : 1 ≤ i ≤ δ − 1}. Then it is easy to check
that either C ⊆ U1 or C ⊆ U2, and therefore, U is indecomposable.

Now we prove that V is indecomposable. If d − δ = 1, then X2 contains
only one element and therefore V is indecomposable. Now we suppose that

d − δ ≥ 2 and consider the set C′ = {bi
∏d
µ=1(1 − gµ)

nµ−1 : 1 + δ ≤ i ≤ d}.

(Note that |C′| = d− δ.)
Suppose that V = V1 + V2. As before, we shall identify the elements bi(1−

gj)− bj(1− gi) of X2 as those of type-I and bi(1− gi)
ni−1 of type-II. Then the

following possibilites arise:
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(i) V1 contains all elements of X2 of type-I and V2 contains all elements of
X2 of type-II.

(ii) V1 contains r1 elements of type-I and s1 elements of type-II, and V2
contains r2 elements of type-I and s2 elements of type-II, where r1+ r2
= 1

2 (d− δ)(d− δ − 1) and s1 + s2 = d− δ
(iii) V1 or V2 contain all elements of X2.

We shall establish that only (iii) is true by eliminating the other two pos-
sibilities. If (i) was true, then both V1 and V2 would contain all elements of
C′, which would be a contradiction because V1 ∩ V2 ={0}. Similarly if (ii)
was true, then the number of elements in both V1 and V2 would at least be
1
2 (d− δ)(d − δ − 1) > (d− δ), for (d− δ) ≥ 2, which would force V1 and V2 to
contain some common elements of C′.

Thus only (iii) is true which implies that either V = V1 or V = V2, and so
V is indecomposable, which completes our proof.
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