RELATIVE RELATION MODULES OF FINITE ELEMENTARY ABELIAN p-GROUPS

Mohammad Yamin and Poonam Kumar Sharma

Abstract

Let E be a free product of a finite number of cyclic groups, and S a normal subgroup of E such that $E / S \cong G$ is finite. For a prime $p, \hat{S}=S / S^{\prime} S^{p}$ may be regarded as an $F_{p} G$-module via conjugation in E. The aim of this article is to prove that \hat{S} is decomposable into two indecomposable modules for finite elementary abelian p-groups G.

1. Introduction

Consider a short exact sequence $1 \rightarrow S \rightarrow E \xrightarrow{\psi} G \rightarrow 1$, where G is a finite group of order n generated by $X=\left\{g_{i}: 1 \leq i \leq d\right\}$. Let E be a free product of cyclic groups E_{i}, where $1 \leq i \leq d$. Let p be a (fixed) prime, and F_{p} the field of p-elements. If E is a free group, $\hat{S}=S / S^{\prime} S^{p}$, regarded as an F_{p} G-module, is known as a relation module of G. In general \hat{S} is called a relative relation module, and it is said to be minimal if it cannot be generated by fewer than d elements.

Gaschutz [1], Gruenberg [2], Kovacs and Stohr [4], Mittal and Passi [5], and others have studied relation modules. Relative relation modules have been studied by Kimmerle [3], Yamin [8, 9], and Sharma and Yamin [7]. As a direct consequence of ([2, Theorem 2.9]), minimal relation modules of p-groups are non-projective and indecomposable. Yamin [8] has proved that relative relation modules of p-groups are non-projective. Kimmerle [3] has proved that minimal relative relation modules of finite p-groups are indecomposable if $\delta=1$. The same result has been proved by Yamin [9] for $\delta=d$. If G is a finite elementary abelian p-group, in this article, we prove that \hat{S} is decomposable into two indecomposable modules for $1<\delta<d$.

Throughout this article, concepts related with groups and their representations are used mainly from Robinson [6], often without reference.

Let G_{i} be the cyclic subgroup of G generated by g_{i} of order n_{i} and E_{i} be the cyclic group generated by e_{i} of order m_{i}, where $m_{i}=k_{i} n_{i}, 1 \leq i \leq d$. Let

Received October 30, 2013; Revised December 9, 2013.
2010 Mathematics Subject Classification. 20C05, 16D10, 16D70.
Key words and phrases. free groups, free products, p-groups, modules, relation modules.
p be fixed prime and F_{p} the field of p-elements. Let $k_{i}<\infty$ and $p \nmid k_{i}$ if $i \leq \delta$ and $\delta \leq d$, and $k_{i}=\infty$ or $p \mid k_{i}$ if $\delta+1 \leq i \leq d$.

For an $F_{p} G$-module V, define φV to be the smallest submodule of V such that $V / \varphi V$ is completely reducible. Equivalently, φV is the intersection of all maximal submodules of V. Set $\varphi^{0} V=V, \varphi^{k} V=\varphi\left(\varphi^{k-1} V\right)$. $\left(\left\{\varphi^{k} V\right\}\right.$ is known as the Loewy series of V.) From ([8, Prop 2.10]), we have an $F_{p} G$ exact sequence:

$$
\begin{equation*}
1 \rightarrow \hat{S} \rightarrow \oplus_{i=1}^{\delta} \underline{g}_{i}^{G} \oplus_{i=\delta+1}^{d} b_{i} F_{p} G \xrightarrow{\hat{\psi}} \underline{g} \rightarrow 1 \tag{1.1}
\end{equation*}
$$

where \underline{g}, which is same as $\varphi F_{p} G$, denotes the augmentation ideal of $F_{p} G$ and \underline{g}_{i}^{G} that of $b_{i} F_{p} G_{i}$ induced to G. Moreover $\hat{\psi}$ is determined by $b_{i}\left(1-g_{i}\right) \rightarrow 1-g_{i}$ if $1 \leq i \leq \delta$, and $b_{i} \rightarrow 1-g_{i}$ if $1+\delta \leq i \leq d$.

2. Structure of relative relation modules

Theorem 2.1. If G is a finite elementary abelian p-group and $1<\delta<d$, then \hat{S} is decomposable into two indecomposable modules.

In order to prove the theorem, we shall construct a minimal generating set for \hat{S}. For, we need certain bases for the Loewy factors of $b_{i} F_{p} G$ and \underline{g}_{i}^{G}.

Let

$$
B_{i}=\left\{\begin{aligned}
\underline{g}_{i}^{G} & \text { for } 1 \leq i \leq \delta, \\
b_{i} F_{p} G & \text { otherwise } ;
\end{aligned} \text { and } B=\oplus_{i=1}^{d} B_{i}\right.
$$

Let
$Y=\left\{y: y \in b_{i} F_{p} G ; y=\prod_{i=1}^{d}\left(1-g_{i}\right)^{\mu_{i}},\left(1-g_{i}\right)^{0}=1, g_{i} \in X, 0 \leq \mu_{i} \leq n_{i}-1\right\}$.
Clearly, Y is a set of non-zero and distinct elements of $F_{p} G$ and $|Y|=|G|$. Then it can be checked that Y is an F_{p} basis of $F_{p} G$. Now, for $y \in Y$, define $\sum_{i=1}^{d} \mu_{i}$ as the length of y. It is easy to observe that the length of y varies from 0 to $l=d(p-1)$. Corresponding to each k, let Y_{k} be the set of all elements of Y of length k. Then it is easy to ckeck that Y_{k} is a minimal generating set of $\varphi^{k}\left(F_{p} G\right)$, and $\left\{\mathrm{y}+\varphi^{k+1} F_{p} G: y \in Y_{k}\right\}$ is an F_{p} basis of $\varphi^{k}\left(F_{p} G\right) / \varphi^{k+1}\left(F_{p} G\right)$.

For a fixed $i, 1 \leq i \leq \delta$, let $Z^{i}=\left\{z \mid z=b_{i}\left(1-g_{i}\right) y, y \in Y\right.$ and $\left.\left(1-g_{i}\right) y \neq 0\right\}$. Clearly, $\left(1-g_{i}\right) y=0$ if and only if $y=\left(1-g_{i}\right)^{p-1} y^{\prime}$ for some $y^{\prime} \in Y$. The number of such y is exactly p^{n-1}. Therefore, $\left|Z^{i}\right|=p^{n}-p^{n-1}=p^{n-1}(p-1)=$ $\operatorname{dim}\left(B_{i}\right)$. In fact Z^{i} is an F_{p} basis of B_{i}, and Z_{k}^{i}, the set of all elements of Z^{i} of length k, is a minimal generating set of $\varphi^{k-1} B_{i}$. Similarly, for a fixed i, $\delta+1 \leq i \leq d$, the set $Z^{i}=\left\{b_{i} y, y \in Y\right\}$ is an F_{p} basis of $b_{i} F_{p} G$ and Z_{k}^{i} is a minimal generating set of $\varphi^{k} B_{i}$.

Let $Z=\cup_{i=1}^{d} Z^{i}$ and $Z_{k+1}=\cup_{i=1}^{d} Z_{k+1}^{i}, 0 \leq k \leq l-1$. Then it is easy to see that Z is an F_{p} basis of B and Z_{k+1} is a minimal generating set of $\oplus_{i=1}^{\delta} \varphi^{k} B_{i} \oplus_{i=\delta+1}^{d} \varphi^{k+1} B_{i}$.

Remark. The Loewy length of $B_{i}= \begin{cases}l & \text { for } 1 \leq i \leq \delta ; \\ l+1 & \text { for } 1+\delta \leq i \leq d .\end{cases}$
Lemma 2.2. Let $X_{1}=\left\{\left(b_{i}-b_{j}\right)\left(1-g_{i}\right)\left(1-g_{j}\right), 1 \leq i<j \leq \delta\right\}$ and $X_{2}=$ $\left\{b_{i}\left(1-g_{j}\right)-b_{j}\left(1-g_{i}\right), b_{i}\left(1-g_{i}\right)^{n_{i}-1}, 1+\delta \leq i<j \leq d\right\}$. Then $X_{1} \cup X_{2}$ is a minimal generating set of \hat{S}.

Proof. Firstly, we note that $\left|X_{1} \cup X_{2}\right|=\frac{1}{2} \delta(\delta-1)+\frac{1}{2}(d-\delta)(d-\delta+1)$. Now we show that $X_{1} \cup X_{2}$ generate \hat{S}. If V is any submodule generated by $X_{1} \cup X_{2}$, then $V \subseteq \hat{S}$. For the other inclusion, since $\oplus_{i=1}^{\delta} \varphi^{k} B_{i} \oplus_{i=\delta+1}^{d} \varphi^{k+1} B_{i}=\{0\}$, when $k=l$, therefore it is sufficient to show that an arbitrary element of \hat{S} can be expresses as a sum of an element of V and an element of $\oplus_{i=1}^{\delta} \varphi^{k} B_{i} \oplus_{i=\delta+1}^{d}$ $\varphi^{k+1} B_{i}$ for all $k, 0 \leq k \leq l$. We shall show this by induction on k. The result is obviously true for $k=0$. Let $x \in \hat{S}$, and for a fixed $k, 0 \leq k \leq l-1$, suppose that $x=v+x^{\prime}, v \in V$ and $x^{\prime} \in \oplus_{i=1}^{\delta} \varphi^{k} B_{i} \oplus_{i=\delta+1}^{d} \varphi^{k+1} B_{i}$. To complete the induction argument, we shall show that $x^{\prime}=x_{0}+x_{1}$ for some $x_{0} \in V$ and $x_{1} \in \oplus_{i=1}^{\delta} \varphi^{k+1} B_{i} \oplus_{i=\delta+1}^{d} \varphi^{k+2} B_{i}$.

Writing x^{\prime} as a linear combination of an element of Z_{k+1} and then rewritting each element of $F_{p} G$ as a sum of an element of F_{p} and an element of \underline{g}, we have

$$
\begin{aligned}
x^{\prime}= & \sum a_{\lambda_{1}} b_{1}\left(1-g_{1}\right) y_{\lambda_{1}}+\cdots+\sum a_{\lambda_{\delta}} b_{\delta}\left(1-g_{\delta}\right) y_{\lambda_{\delta}} \\
& +\sum a_{\lambda_{\delta+1}} b_{\delta+1} y_{\lambda_{\delta+1}}^{\prime}+\cdots+\sum a_{\lambda_{d}} b_{d} y_{\lambda_{d}}^{\prime}+x_{1}
\end{aligned}
$$

where $a_{\lambda_{i}} \in F_{p}, y_{\lambda_{i}} \in Y_{k}, y_{j}^{\prime} \in Y_{k+1}$ and $x_{1} \in \oplus_{i=1}^{\delta} \varphi^{k+1} B_{i} \oplus_{i=\delta+1}^{d} \varphi^{k+2} B_{i}$. Clearly, $\left(1-g_{i}\right) y_{\lambda_{i}} \in Y_{k+1}$, however they need not be distinct if $x_{\lambda}=(1-$ $\left.g_{i}\right) y_{\lambda_{i}}=\left(1-g_{j}\right) y_{\lambda_{j}}=\cdots=\left(1-g_{r}\right) y_{\lambda_{r}}=\left(1-g_{s}\right) y_{\lambda_{s}}=y_{\lambda_{k}}^{\prime}=y_{\lambda_{l}}^{\prime}=y_{\lambda_{m}}^{\prime}=y_{\lambda_{n}}^{\prime}$, where $0 \leq i, j, \ldots, r, s \leq \delta$ and $\delta+1 \leq k, l, \ldots, m, n \leq d$. Let

$$
\begin{aligned}
\mu_{\lambda}= & a_{\lambda_{i}} b_{i}+a_{\lambda_{j}} b_{j}+\cdots+a_{\lambda_{r}} b_{r}+a_{\lambda_{s}} b_{s}+a_{\lambda_{k}} b_{k}+a_{\lambda_{l}} b_{l} \\
& +\cdots+a_{\lambda_{m}} b_{m}+a_{\lambda_{n}} b_{n} .
\end{aligned}
$$

Then $x_{0}=\sum_{\lambda} \mu_{\lambda} x_{\lambda}$, where x_{λ} are distinct elements of Y_{k+1}. Therefore we have

$$
\begin{aligned}
x_{0} \hat{\psi}= & {\left[\sum _ { \lambda } \left\{\left(a_{\lambda_{i}} b_{i}+a_{\lambda_{j}} b_{j}+\cdots+a_{\lambda_{r}} b_{r}+a_{\lambda_{s}} b_{s}+a_{\lambda_{k}} b_{k}+a_{\lambda_{l}} b_{l}\right.\right.\right.} \\
& \left.\left.\left.\quad+\cdots+a_{\lambda_{m}} b_{m}+a_{\lambda_{n}} b_{n}\right)\right\} x_{\lambda}\right] \hat{\psi} \\
= & \sum_{\lambda}\left\{\left(a_{\lambda_{i}} b_{i}+a_{\lambda_{j}} b_{j}+\cdots+a_{\lambda_{r}} b_{r}+a_{\lambda_{s}} b_{s}\right)+a_{\lambda_{k}}\left(1-g_{k}\right)+a_{\lambda_{l}}\left(1-g_{l}\right)\right. \\
& \left.\quad+\cdots+a_{\lambda_{m}}\left(1-g_{m}\right)+a_{\lambda_{n}}\left(1-g_{n}\right)\right\} x_{\lambda} .
\end{aligned}
$$

Now for $\delta+1 \leq k, l, \ldots, m, n \leq d$, we have $\left(1-g_{k}\right) y_{\lambda_{k}}^{\prime}=\left(1-g_{l}\right) y_{\lambda_{l}}^{\prime}$ if and only if $y_{\lambda_{k}}^{\prime}=\left(1-g_{l}\right) y$ and $y_{\lambda_{l}}^{\prime}=\left(1-g_{k}\right) y$ for some $y \in Y_{k+1}$. Let $x_{\lambda^{\prime}}=\left(1-g_{k}\right) y_{\lambda_{k}}^{\prime}=\left(1-g_{l}\right) y_{\lambda_{l}}^{\prime}=\cdots=\left(1-g_{m}\right) y_{\lambda_{m}}^{\prime}=\left(1-g_{n}\right) y_{\lambda_{n}}^{\prime}$, where the
$x_{\lambda^{\prime}}$ are distinct elements of Y_{k+1}. Then we have

$$
\begin{aligned}
x_{0} \hat{\psi}= & \sum_{\lambda}\left(a_{\lambda_{i}}+a_{\lambda_{j}}+\cdots+a_{\lambda_{r}}+a_{\lambda_{s}}\right) x_{\lambda} \\
& +\sum_{\lambda^{\prime}}\left(a_{\lambda_{k}}+a_{\lambda_{l}}+\cdots+a_{\lambda_{m}}+a_{\lambda_{n}}\right) x_{\lambda^{\prime}} \\
= & \sum_{\lambda} \beta_{\lambda} x_{\lambda}+\sum_{\lambda^{\prime}} \beta_{\lambda^{\prime}} x_{\lambda^{\prime}},
\end{aligned}
$$

where $\beta_{\lambda}=\alpha_{\lambda_{i}}+\alpha_{\lambda_{j}}+\cdots+\alpha_{\lambda_{r}}+\alpha_{\lambda_{s}}$ and $\beta_{\lambda^{\prime}}=\alpha_{\lambda_{k}}+\alpha_{\lambda_{l}}+\cdots+\alpha_{\lambda_{m}}+$ $\alpha_{\lambda_{n}}$. Clearly, $0=x \hat{\psi}=v \hat{\psi}+x^{\prime} \hat{\psi}=x^{\prime} \hat{\psi}=x_{0} \hat{\psi}+x_{1} \hat{\psi}$, where $x_{1} \hat{\psi} \in$ $\oplus_{i=1}^{\delta} \varphi^{k+1} B_{i} \oplus_{i=\delta+1}^{d} \varphi^{k+2} B_{i}$.

Now $\left(\oplus_{i=1}^{d} \varphi^{k+1} B_{i}\right) \hat{\psi} \subseteq \varphi^{k+1} \underline{g}$ and $\left(\oplus_{i=1}^{d} \varphi^{k+2} B_{i}\right) \hat{\psi} \subseteq \varphi^{k+2} \underline{g}$. Moreover,

$$
\varphi^{k+2} \underline{g} \subseteq \varphi^{k+1} \underline{g} \text { implies that }\left(\oplus_{i=1}^{\delta} \varphi^{k+1} B_{i} \oplus_{i=\delta+1}^{d} \varphi^{k+2} B_{i}\right) \subseteq \varphi^{k+1} \underline{g}
$$

But $\varphi^{k+1} \underline{g}=\left(x_{0} \hat{\psi}+x_{1} \hat{\psi}\right)+\varphi^{k+1} \underline{g}=x_{0} \hat{\psi}+\varphi^{k+1} \underline{g}=\sum \beta_{\lambda} x_{\lambda}+\sum \beta_{\lambda^{\prime}} x_{\lambda^{\prime}}+\varphi^{k+1} \underline{g}$. Since each x_{λ} and $x_{\lambda^{\prime}}$ are distinct elements of Y_{k+1} and Y_{k+2}, respectively, therefore, each $\beta_{\lambda}=\beta_{\lambda^{\prime}}=0$. Therefore, $\alpha_{\lambda_{s}}=-\alpha_{\lambda_{i}}-\alpha_{\lambda_{j}}-\cdots-\alpha_{\lambda_{r}}$ and $\alpha_{\lambda_{n}}=-\alpha_{\lambda_{k}}-\alpha_{\lambda_{l}}-\cdots-\alpha_{\lambda_{m}}$. Thus

$$
\begin{aligned}
& x_{0}= \sum_{\lambda}\left\{a_{\lambda_{i}} b_{i}+a_{\lambda_{j}} b_{j}+\cdots+a_{\lambda_{r}} b_{r}-\left(a_{\lambda_{i}}+a_{\lambda_{j}}+\cdots+a_{\lambda_{r}}\right) b_{s}\right\} x_{\lambda} \\
&+\left\{a_{\lambda_{k}} b_{k}+a_{\lambda_{l}} b_{l}+\cdots+a_{\lambda_{m}} b_{m}-\left(a_{\lambda_{k}}+a_{\lambda_{l}}+\cdots+a_{\lambda_{m}}\right) b_{n}\right\} x_{\lambda} \\
&=\sum_{\lambda}\left\{a_{\lambda_{i}}\left(b_{i}-b_{s}\right)+a_{\lambda_{j}}\left(b_{j}-b_{s}\right)+\cdots+a_{\lambda_{r}}\left(b_{r}-b_{s}\right)\right\} x_{\lambda} \\
& \quad+\left\{a_{\lambda_{k}}\left(b_{k} y_{\lambda_{n}}^{\prime}-b_{n} y_{\lambda_{k}}^{\prime}\right)+a_{\lambda_{l}}\left(b_{l} y_{\lambda_{n}}^{\prime}-b_{n} y_{\lambda_{l}}^{\prime}\right)+\cdots\right. \\
&\left.\quad+a_{\lambda_{m}}\left(b_{m} y_{\lambda_{n}}^{\prime}-b_{n} y_{\lambda_{m}}^{\prime}\right)\right\},
\end{aligned}
$$

which is an element of V. Therefore, $\hat{S} \subseteq V$. Since X_{1} and X_{2} lie in different direct summands of the middle term $\oplus_{i=1}^{\delta} \underline{g}_{i}^{G} \oplus_{i=\delta+1}^{d} b_{i} F_{p} G$ of (1.1), therefore $X_{1} \cap X_{2}=0$. Thus in order to show that $X_{1} \cup X_{2}$ is a minimal generating set of \hat{S}, we only need to show that X_{1} and X_{2} are minimal sets of U and V, respectively. First we shall show that X_{1} is a minimal generating set for U. For, since we are dealing with a finite elementary p-group case, it is sufficient to show that no proper subset of X_{1} generates U. For, on the contrary suppose that X_{1} is not minimal, and let $\left(b_{\mu}-b_{\nu}\right)\left(1-g_{\mu}\right)\left(1-g_{\nu}\right)=\sum_{(\mu, \nu) \neq(i, j), 1 \leq i<j \leq \delta}\left(b_{i}-\right.$ $\left.b_{j}\right)\left(1-g_{i}\right)\left(1-g_{j}\right) a_{i j}=x$, say, $a_{i j} \in F_{p} G$. Then $b_{\mu}\left(1-g_{\mu}\right)\left(1-g_{\nu}\right)=x+b_{\nu}(1-$ $\left.g_{\mu}\right)\left(1-g_{\nu}\right)$, which is a contradiction because $\cup_{i=1}^{\delta} Z_{2}^{i}$ is a minimal generating set of $\oplus_{i=1}^{\delta} \varphi^{i} B$. This shows that X_{1} is minimal. For proving that X_{2} is a minimal generating set, for convenient reference, we shall call the elements $b_{i}\left(1-g_{j}\right)-b_{j}\left(1-g_{i}\right)$ of type-I and $b_{i}\left(1-g_{i}\right)^{n_{i}-1}$ of type-II. Then it is clear that type-I elements cannot be generated from type-II elements and vice-versa. Suppose on the contrary that the set X_{2} is not minimal and let $b_{\mu}\left(1-g_{\nu}\right)-b_{\nu}(1-$
$\left.g_{\mu}\right)=\sum_{(\mu, \nu) \neq(i, j), \delta+1 \leq i<j \leq d}\left\{b_{i}\left(1-g_{j}\right)-b_{j}\left(1-g_{i}\right)\right\} a_{i j}=y$, say, $a_{i j} \in F_{p} G$. Then $b_{\mu}\left(1-g_{\nu}\right)=y+b_{\nu}\left(1-g_{\mu}\right)$, which is a contradiction, because an element of Z_{1} can not be expressed as a linear combination of the remaining elements of Z_{1}.

Proposition 2.3. If U and V are $F_{p} G$ modules generated by X_{1} and X_{2}, respectively, then $\hat{S} \cong U \oplus V$.

Proof. By Lemma 2.2, it follows that $\hat{S}=U+V$. Moreover, since X_{1} and X_{2} lie in different direct summands of (1.1), $U \cap V=\{0\}$, and hence $\hat{S} \cong U \oplus V$.

In view of Proposition 2.3, to complete the proof of Theorem 2.1, we only need to prove that U and V are indecomposable. For, consider a set

$$
C=\left\{c_{i j}: c_{i j}=\left(b_{i}-b_{j}\right) \prod_{\mu=1}^{d}\left(1-g_{\mu}\right)^{n_{\mu}-1}, 1 \leq i<j \leq \delta\right\} .
$$

Clearly $|C|=\frac{1}{2} \delta(\delta-1)$. Let U_{1} be a submodule of U such that $\operatorname{dim}\left(\left(U_{1}+\right.\right.$ $\varphi U) / \varphi U)=r$, where $0 \leq r \leq \frac{1}{2} \delta(\delta-1)$. Now we shall prove that U_{1} contains at least r elements of C. For, $r=0$, there is nothing to prove. Therefore, suppose that $r>0$ and choose $\left\{u_{m}: u_{m} \in U_{1}, 1 \leq m \leq r\right\}$ such that $\left\{u_{m}+\right.$ $\varphi U, 1 \leq m \leq r\}$ is an F_{p} basis of $\left(U_{1}+\varphi U\right) / \varphi U$. Then

$$
u_{m}=\sum_{1 \leq i<j \leq \delta} \alpha_{m_{i j}}\left(b_{i}-b_{j}\right)\left(1-g_{i}\right)\left(1-g_{j}\right)+w,
$$

where $\alpha_{m_{i j}} \in F_{p}$ and $w \in \varphi U$. Clearly, in the expression of u_{m}, at least one $\alpha_{m_{i j}}$ is non-zero. Let $y=\prod_{\lambda=1}^{d}\left(1-g_{\lambda}\right)^{\nu_{\lambda}-1}$, where $\nu_{\lambda}= \begin{cases}n_{\lambda}-2, & \text { if } \lambda=i \text { or } j \text {; } \\ n_{\lambda}-1, & \text { otherwise. }\end{cases}$
Then $u_{m} y=\alpha_{m_{i j}}\left(b_{i}-b_{j}\right) \prod_{\lambda=1}^{d}\left(1-g_{\lambda}\right)^{n_{\lambda}-1}(w y=0)$. So, we get $u_{m} y=$ $\alpha_{m_{i j}} c_{i j}$, and so $\left(\alpha_{m_{i j}}\right)^{-1} u_{m} y=c_{i j} \in U_{1}$. Since at least r of the $\left(b_{i}-b_{j}\right)(1-$ $\left.g_{i}\right)\left(1-g_{j}\right)$ are distinct, U_{1} contains at least r elements $c_{i j}$ of C.

Suppose $U=U_{1} \oplus U_{2}$ and $\operatorname{dim}\left(U_{i} / \varphi U_{i}\right)=\frac{1}{2} \delta(\delta-1)=r_{1}+r_{2}$. From above argument, we infer that U_{i} contains a set C_{i} of at least r_{i} elements of C. In fact $C=C_{1} \cup C_{2}$ and $C_{1} \cap C_{2}=\Phi$.

Clearly, $c_{i \delta}=c_{i k}+c_{k \delta}$ for some $1 \leq i \leq \delta-1$ and $1<k<\delta$. Therefore C is an F_{p}-linear combination of $\left\{c_{i \delta}: 1 \leq i \leq \delta-1\right\}$. Then it is easy to check that either $C \subseteq U_{1}$ or $C \subseteq U_{2}$, and therefore, U is indecomposable.

Now we prove that V is indecomposable. If $d-\delta=1$, then X_{2} contains only one element and therefore V is indecomposable. Now we suppose that $d-\delta \geq 2$ and consider the set $C^{\prime}=\left\{b_{i} \prod_{\mu=1}^{d}\left(1-g_{\mu}\right)^{n_{\mu}-1}: 1+\delta \leq i \leq d\right\}$. (Note that $\left|C^{\prime}\right|=d-\delta$.)

Suppose that $V=V_{1}+V_{2}$. As before, we shall identify the elements $b_{i}(1-$ $\left.g_{j}\right)-b_{j}\left(1-g_{i}\right)$ of X_{2} as those of type-I and $b_{i}\left(1-g_{i}\right)^{n_{i}-1}$ of type-II. Then the following possibilites arise:
(i) V_{1} contains all elements of X_{2} of type-I and V_{2} contains all elements of X_{2} of type-II.
(ii) V_{1} contains r_{1} elements of type-I and s_{1} elements of type-II, and V_{2} contains r_{2} elements of type-I and s_{2} elements of type-II, where $r_{1}+r_{2}$ $=\frac{1}{2}(d-\delta)(d-\delta-1)$ and $s_{1}+s_{2}=d-\delta$
(iii) V_{1} or V_{2} contain all elements of X_{2}.

We shall establish that only (iii) is true by eliminating the other two possibilities. If (i) was true, then both V_{1} and V_{2} would contain all elements of C^{\prime}, which would be a contradiction because $V_{1} \cap V_{2}=\{0\}$. Similarly if (ii) was true, then the number of elements in both V_{1} and V_{2} would at least be $\frac{1}{2}(d-\delta)(d-\delta-1)>(d-\delta)$, for $(d-\delta) \geq 2$, which would force V_{1} and V_{2} to contain some common elements of C^{\prime}.

Thus only (iii) is true which implies that either $V=V_{1}$ or $V=V_{2}$, and so V is indecomposable, which completes our proof.

References

[1] W. Gaschutz, Über modulare Darstellungen endlicher Gruppen, die von freien Gruppen induziert warden, Math. Z. 60 (1954), 274-286.
[2] K. W. Gruenberg, Relation modules of finite groups, Regional Conference Series in Math, Number 25, A.M.S. Providence, R.I., 1976.
[3] W. Kimmerle, Relative relation modules on generators for integral group rings of finite groups, Math. Z. 172 (1980), 143-156.
[4] L. G. Kovacs and R. Stohr, Lie powers of relation modules for groups, J. Algebra 326 (2011), no. 1, 192-200.
[5] J. N. Mittal and I. B. S. Passi, Annihilators of relation modules, J. Austral. Math. Soc. (2) 16 (1973), 228-233.
[6] D. J. S. Robinson, A Course in the Theory of Groups, Second Edition. Graduate Texts in Mathematics, 80. Springer-Verlag, New York, 1996.
[7] P. K. Sharma and M. Yamin, Relative Relation Modules of $S L(2, p)$ and PSL $(2, p)$ groups, J. Indian Math Soc. 80 (2013), no. 3-4, 341-348.
[8] M. Yamin, Relative relation modules of finite groups, Proc. Edinburgh Math. Soc. 34 (1991), no. 3, 433-442.
[9] , Minimal relative relation modules of finite p-groups, Proc. Amer. Math. Soc. 118 (1993), no. 1, 1-3.

Mohammad Yamin
King Abdulaziz University
Jeddah, Saudi Arabia
E-mail address: myamin@kau.edu.sa
Poonam Kumar Sharma
D.A.V. College

Jalandhar (Punjab), India
E-mail address: pksharma@davjalandhar.com

