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RELATIVE RELATION MODULES OF FINITE ELEMENTARY
ABELIAN p-GROUPS

MOHAMMAD YAMIN AND POONAM KUMAR SHARMA

ABSTRACT. Let E be a free product of a finite number of cyclic groups,
and S a normal subgroup of E such that E/S = G is finite. For a prime
p, S = S/S/Sp may be regarded as an Fj,G-module via conjugation in
E. The aim of this article is to prove that S is decomposable into two
indecomposable modules for finite elementary abelian p-groups G.

1. Introduction

Consider a short exact sequence 1 - S — F LN 1, where G is a finite
group of order n generated by X = {g; : 1 <i <d}. Let E be a free product
of cyclic groups E;, where 1 <14 < d. Let p be a (fixed) prime, and F}, the field
of p-elements. If F is a free group, S = S/S,Sp, regarded as an F},G-module,
is known as a relation module of G. In general S is called a relative relation
module, and it is said to be minimal if it cannot be generated by fewer than d
elements.

Gaschutz [1], Gruenberg [2], Kovacs and Stohr [4], Mittal and Passi [5], and
others have studied relation modules. Relative relation modules have been
studied by Kimmerle [3], Yamin [8, 9], and Sharma and Yamin [7]. As a direct
consequence of ([2, Theorem 2.9]), minimal relation modules of p-groups are
non-projective and indecomposable. Yamin [8] has proved that relative relation
modules of p-groups are non-projective. Kimmerle [3] has proved that minimal
relative relation modules of finite p-groups are indecomposable if § = 1. The
same result has been proved by Yamin [9] for § = d. If G is a finite elementary
abelian p-group, in this article, we prove that S is decomposable into two
indecomposable modules for 1 < § < d.

Throughout this article, concepts related with groups and their representa-
tions are used mainly from Robinson [6], often without reference.

Let G; be the cyclic subgroup of G generated by g; of order n; and F; be
the cyclic group generated by e; of order m;, where m; = k;n;, 1 < i < d. Let
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p be fixed prime and F), the field of p-elements. Let k; < co and p{k; if ¢ < ¢
and 6 < d,and k; =occorp |k if 6+1<4i<d.

For an F,G-module V, define ¢V to be the smallest submodule of V' such
that V/oV is completely reducible. Equivalently, ¢V is the intersection of
all maximal submodules of V. Set p°V =V, okV = ¢(p*=1V). ({p*V} is
known as the Loewy series of V.) From ([8, Prop 2.10]), we have an F,G exact
sequence:

(1.1) 1= 8= el g% el iFG S g1,

where g, which is same as ¢ F},GG, denotes the augmentation ideal of F,G' and gl,G

that of b; F,G; induced to G. Moreover ¢ is determined by b;(1—g;) = 1—g;
if1<i<é andb — 1—gifl+8<i<d

2. Structure of relative relation modules

Theorem 2.1. If G is a finite elementary abelian p-group and 1 < § < d, then
S is decomposable into two indecomposable modules.

In order to prove the theorem, we shall construct a minimal generating set
for S. For, we need certain bases for the Loewy factors of b; F},G and gZ_G.
Let
g.G for 1 <i <4, d
P = = ) and B = ®;_ B;.
biFp,G  otherwise;

Let
d
Y ={y:yebiF,Gy=](1-g)" (1-9)° =1,9:€ X,0< i <y — 1},
i=1

Clearly, Y is a set of non-zero and distinct elements of F,G and |Y| = |G|.
Then it can be checked that Y is an F}, basis of F,,G. Now, for y € Y, define
Zle w; as the length of y. It is easy to observe that the length of y varies from
0to ! =d(p—1). Corresponding to each k, let Y; be the set of all elements of
Y of length k. Then it is easy to ckeck that Y} is a minimal generating set of
O*(F,G), and {y+¢**1 EF,G : y € Y;} is an F), basis of p*(F,G) /" (F,G).

Forafixedi,1 <i<§,let Z8 = {2 |2z =b;(1—g;)y, y € Y and (1—g;)y # 0}.
Clearly, (1 — g;)y = 0 if and only if y = (1 — g;)P~ 'y’ for some y' € Y. The
number of such y is exactly p"~1. Therefore, |Z!| =p* —p" ! =p"L(p—1) =
dim(B;). In fact Z° is an F), basis of B;, and Zj, the set of all elements of
Z' of length k, is a minimal generating set of ¥~ B;. Similarly, for a fixed 4,
41 <i<d, the set Z' = {bjy,y € Y} is an F}, basis of b;F,G and Z} is a
minimal generating set of ¥ B;.

Let Z = UL, Z" and Zp11 = UL Z},,, 0 < k <1 —1. Then it is easy
to see that Z is an Fj, basis of B and Zj41 is a minimal generating set of
19" B &Ls,, ¢" Bs.
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l for 1 <i < §;

Remark. The Loewy length of B; = { 141 forltd<i<d.

Lemma 2.2. Let X1 = {(bz — b])(l 791)(1 — gj): 1< <j < 5} and Xy =
{bi(1—g;) —bj(1—g:), bi(l —g)™ 1, 1+5<i<j<d}. Then X;UX>s isa
minimal generating set of S.

Proof. Firstly, we note that |X1 UXo|=36(6—1)+3(d—68)(d—5+1). Now we
show that X1 U X2 generate S IV is any submodule generated by X7 U Xo,
then V C S. For the other inclusion, since ®_,¢"B; &L s41 "B = {0},

when k = [, therefore it is sufficient to show that an arbitrary element of S can
be expresses as a sum of an element of V and an element of ©%_, % B; ®%_; 11
k“Bz for all k, 0 < k <[. We shall show this by induction on k. The result
is obviously true for k = 0. Let = € S, and for a fixed k, 0 < k < [—1, suppose
that z = v+ 2/, v € V and 2/ € @%_,p*B; oL S41 <pk+1Bi. To complete the
induction argument we shall show that 2’ = ¢ + z7 for some z¢ € V and
x1 € B_ 10" 1B @l s, 2B
Writing #’ as a linear combination of an element of Zx11 and then rewritting
each element of Fj,G as a sum of an element of F, and an element of g, we have

Z ax,b1(1 —g1)yx, + ZGA5b5 (1 —95)Yxs
+ Z a,\5+1b5+1y,\5+1 + -+ Z a)\dbdy)\d + 21,

where ay, € Fp, yx, € Yz, y; € Yyt and 21 € @lesakHBi @f:(;ﬂ okt2B;.
Clearly, (1 — g;)yx;, € Yrt1, however they need not be distinct if z) = (1 —

9)Yn = (1=g)yn, = = (1=gr)yr, = (1=gs)ya, =¥, = Y5, =Yr,. = Yr.>
where 0 <i4,j,...,r,s<dand 6§+ 1<k, l,...,m,n <d. Let

pa = ax;bi +ax; by + -+ ax. by +ax,bs + ax, b +ax b
+ -4 a,\mbm + a)\nbn.

Then xy = 2/\ uaTx, where x) are distinct elements of Yj41. Therefore we
have

2ot = [ {(axbi +ax;bj + -+ ax, br +ax,bs +ax b +axb

+ - 4ax, bm + a,\nbn)}x,\]i/;
= Z{(%ibi +axbj + -+ axbe +axbs) +axn (1 —gk) +ax(1—a)

+otan, (1= gm) +an, (1= gn) o

Now for 6 + 1 < k,I,...,m,n < d, we have (1 — gi)y), = (1 — gy}, if
and only if v}, = (1 — gl)y and yAL = (1 — gx)y for some y € Yiy1. Let
v =1 =ge)yy, =1 —g)yy, = =1 —=gm)¥s, = (1—gn)y),, where the
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xys are distinct elements of Y;41. Then we have

ot = Z(a)\i +ax, + - +ax, +ax, )T

A
+ Z(a,\k +ay + - +ay, +ax,)ry
A/

= ZBA-T/\ +Zﬁ,\’$)\’a
A N

where By = an, +ax; +---+an, +ay, and By = an, oy, + o+ ay, +
ay,. Clearly, 0 = 2 = v + 2 = 2’ = xoh + 211, where 119 €
@ "B, oL, o2B;.

Now (&L, 0" B C ¢F1g and (@, pF 2By C ©F2g. Moreover,

@2 g C g implies that (B_,¢" ™ B; @l s 1 ¢"T2B;) C ¢* g

But o"+lg = (zod+a11))+9 g = 2o+ g = 3 Braa+ 3 By zy +o" g,
Since each z and Ty are distinct elements of Yi+1 and Yiio, respectivelgf,
therefore, each 8\ = By, = 0. Therefore, ay, = —ay, —ay; — -+ — ay, and
Qy, = —Q), — ), — " — Q). Thus

n

2o =Y {axbi+an b+ +ax b — (ax, +ax, + - +ax, )bs}ax
\
+{ax b +axb + - +ax, bm — (ar, +ax, + -+ ax,)bntzr

= Z{ax\i (bi - bS) +ay, (bj - bS) + o tan, (br - bS)}xk
A

+ {ax, (bky, — bnyh,) +ax, (DY), = bayh,) + -
+ ax,, (bmyg\n - bnyi\m)}a

which is an element of V. Therefore, S C V. Since X7 and X5 lie in different
direct summands of the middle term @?Zlgig ® 5.1 biFpG of (1.1), therefore
X1 N Xy = 0. Thus in order to show that X; U X5 is a minimal generating
set of S , we only need to show that X; and X5 are minimal sets of U and V,
respectively. First we shall show that X7 is a minimal generating set for U. For,
since we are dealing with a finite elementary p-group case, it is sufficient to show
that no proper subset of X; generates U. For, on the contrary suppose that
X is not minimal, and let (b, —b,)(1—g,)(1—g,) = Z(lu,y);é(i,j),lgi<j§6(bi —
bj)(1—gi)(1—gj)aij = x, say, a;; € F,G. Then b, (1—g,)(1—g,) =x+b,(1—
9,)(1 — g,), which is a contradiction because UJ_; Z4 is a minimal generating
set of @2_,¢'B. This shows that X; is minimal. For proving that X is a
minimal generating set, for convenient reference, we shall call the elements
bi(1 —g;) — bj(1 — g;) of type-I and b;(1 — g:)" " of type-IL Then it is clear
that type-I elements cannot be generated from type-II elements and vice-versa.
Suppose on the contrary that the set X5 is not minimal and let b, (1—g,)—b, (1—
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gu) = Z(p,u)#(i,j),6+1§i<j§d{bi(1 —9;5) = bj(1 — gi)}ai; =y, say, a;; € F,G.
Then b, (1 —g¢,) =y +b,(1 —g,), which is a contradiction, because an element
of Z; can not be expressed as a linear combination of the remaining elements
of Z1 . O

Proposition 2.3. If U and V are F,G modules generated by X, and X,
respectively, then S = U & V.

Proof. By Lemma 2.2, it follows that S=U+V. Moreover, since X and X lie
in different direct summands of (1.1), UNV = {0}, and hence S 2 U aV. O

In view of Proposition 2.3, to complete the proof of Theorem 2.1, we only
need to prove that U and V are indecomposable. For, consider a set

d
C={cij:ey=(bi—b) [[(A—gu)™ " 1<i<j<d}
p=1

Clearly |C| = 16(6 —1). Let Uy be a submodule of U such that dim((U; +
@U)/pU) = r, where 0 < r < 15(5 — 1). Now we shall prove that U; contains
at least r elements of C'. For, r = 0, there is nothing to prove. Therefore,
suppose that r > 0 and choose {u, : Uy € Ur,1 < m < r} such that {u,, +
©U,1 <m <r}is an F), basis of (U1 + ¢U)/U. Then

Um = Y Oy, (b — b)) = g:)(1 = gj) +w,

1<i<j<s

where ay,,; € Fp and w € oU. Clearly, in the expression of u,, at least one

; —2, if A=i or j;
Qm,; 18 non-zero. Let y = Hizl(l—gk)”k_l, where vy = {Zi _ 1: otl)l\er\i/ize.Jy
Then umy = am,; (bi — bj)]_[izl(l — g™ (wy = 0). So, we get upyy =
Qi Cij, and so (amu)_lumy = ¢;; € Uy. Since at least r of the (b; — b;)(1 —
9:)(1 — g;) are distinct, Uy contains at least r elements ¢;; of C.

Suppose U = Uy @ Us and dim(U; /oU;) = %5(5 —1) =r; 4+ ro. From above
argument, we infer that U; contains a set C; of at least r; elements of C. In
fact C =C1UC and C; N Cy = O.

Clearly, ¢;5 = ¢ + cps for some 1 < i< 6 —1and 1 < k < §. Therefore C
is an F)-linear combination of {¢;s : 1 <4 < ¢ — 1}. Then it is easy to check
that either C' C U; or C' C U,, and therefore, U is indecomposable.

Now we prove that V is indecomposable. If d — § = 1, then X5 contains
only one element and therefore V' is indecomposable. Now we suppose that
d — 6 > 2 and consider the set C’ = {b; Hﬁzl(l —gu)™ 146 < i < d}.
(Note that |C'| =d —4.)

Suppose that V' =V + Va. As before, we shall identify the elements b;(1 —
gj) —b;(1—g;) of X5 as those of type-I and b;(1 — g;)™~* of type-II. Then the
following possibilites arise:
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(i) V4 contains all elements of X5 of type-I and V5 contains all elements of
X5 of type-II.

(ii) V1 contains r; elements of type-I and s; elements of type-II, and V5
contains ro elements of type-I and sy elements of type-II, where ry + 12
=1d-6)(d—d6—1)ands;+s,=d—§

(iii) V1 or V4 contain all elements of Xs.

We shall establish that only (iii) is true by eliminating the other two pos-

sibilities. If (i) was true, then both Vi and V5 would contain all elements of
C’, which would be a contradiction because Vi NV, ={0}. Similarly if (ii)
was true, then the number of elements in both V; and V5 would at least be
2(d—6)(d—6—1)> (d—96), for (d — ) > 2, which would force V; and V3 to

contain some common elements of C”.

Thus only (iii) is true which implies that either V = V; or V = V4, and so

V' is indecomposable, which completes our proof.

(1]
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(3]
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