RELATIVE RELATION MODULES OF FINITE ELEMENTARY ABELIAN *p*-GROUPS

Mohammad Yamin and Poonam Kumar Sharma

ABSTRACT. Let E be a free product of a finite number of cyclic groups, and S a normal subgroup of E such that $E/S \cong G$ is finite. For a prime $p, \hat{S} = S/S'S^p$ may be regarded as an F_pG -module via conjugation in E. The aim of this article is to prove that \hat{S} is decomposable into two indecomposable modules for finite elementary abelian p-groups G.

1. Introduction

Consider a short exact sequence $1 \to S \to E \xrightarrow{\psi} G \to 1$, where G is a finite group of order n generated by $X = \{g_i : 1 \leq i \leq d\}$. Let E be a free product of cyclic groups E_i , where $1 \leq i \leq d$. Let p be a (fixed) prime, and F_p the field of p-elements. If E is a free group, $\hat{S} = S/S'S^p$, regarded as an F_p G-module, is known as a relation module of G. In general \hat{S} is called a relative relation module, and it is said to be minimal if it cannot be generated by fewer than d elements.

Gaschutz [1], Gruenberg [2], Kovacs and Stohr [4], Mittal and Passi [5], and others have studied relation modules. Relative relation modules have been studied by Kimmerle [3], Yamin [8, 9], and Sharma and Yamin [7]. As a direct consequence of ([2, Theorem 2.9]), minimal relation modules of *p*-groups are non-projective and indecomposable. Yamin [8] has proved that relative relation modules of *p*-groups are non-projective. Kimmerle [3] has proved that minimal relative relation modules of finite *p*-groups are indecomposable if $\delta = 1$. The same result has been proved by Yamin [9] for $\delta = d$. If *G* is a finite elementary abelian *p*-group, in this article, we prove that \hat{S} is decomposable into two indecomposable modules for $1 < \delta < d$.

Throughout this article, concepts related with groups and their representations are used mainly from Robinson [6], often without reference.

Let G_i be the cyclic subgroup of G generated by g_i of order n_i and E_i be the cyclic group generated by e_i of order m_i , where $m_i = k_i n_i, 1 \le i \le d$. Let

O2014Korean Mathematical Society

Received October 30, 2013; Revised December 9, 2013.

 $^{2010\} Mathematics\ Subject\ Classification.\ 20C05,\ 16D10,\ 16D70.$

 $Key \ words \ and \ phrases.$ free groups, free products, p-groups, modules, relation modules.

p be fixed prime and F_p the field of p-elements. Let $k_i < \infty$ and $p \nmid k_i$ if $i \leq \delta$ and $\delta \leq d$, and $k_i = \infty$ or $p \mid k_i$ if $\delta + 1 \leq i \leq d$.

For an F_pG -module V, define φV to be the smallest submodule of V such that $V/\varphi V$ is completely reducible. Equivalently, φV is the intersection of all maximal submodules of V. Set $\varphi^0 V = V$, $\varphi^k V = \varphi(\varphi^{k-1}V)$. ($\{\varphi^k V\}$ is known as the Loewy series of V.) From ([8, Prop 2.10]), we have an F_pG exact sequence:

(1.1)
$$1 \to \hat{S} \to \bigoplus_{i=1}^{\delta} \underline{g}_i^G \oplus_{i=\delta+1}^d b_i F_p G \xrightarrow{\psi} \underline{g} \to 1,$$

d

where \underline{g} , which is same as $\varphi F_p G$, denotes the augmentation ideal of $F_p G$ and \underline{g}_i^G that of $b_i F_p G_i$ induced to G. Moreover $\hat{\psi}$ is determined by $b_i(1-g_i) \rightarrow 1-g_i$ if $1 \leq i \leq \delta$, and $b_i \rightarrow 1-g_i$ if $1+\delta \leq i \leq d$.

2. Structure of relative relation modules

Theorem 2.1. If G is a finite elementary abelian p-group and $1 < \delta < d$, then \hat{S} is decomposable into two indecomposable modules.

In order to prove the theorem, we shall construct a minimal generating set for \hat{S} . For, we need certain bases for the Loewy factors of $b_i F_p G$ and \underline{g}_i^G .

$$B_i = \begin{cases} \underline{g}_i^G & \text{for } 1 \le i \le \delta, \\ b_i F_p G & \text{otherwise;} \end{cases} \text{ and } B = \bigoplus_{i=1}^d B_i.$$

Let

$$Y = \{y : y \in b_i F_p G; y = \prod_{i=1}^{a} (1 - g_i)^{\mu_i}, (1 - g_i)^0 = 1, g_i \in X, 0 \le \mu_i \le n_i - 1\}.$$

Clearly, Y is a set of non-zero and distinct elements of F_pG and |Y| = |G|. Then it can be checked that Y is an F_p basis of F_pG . Now, for $y \in Y$, define $\sum_{i=1}^{d} \mu_i$ as the length of y. It is easy to observe that the length of y varies from 0 to l = d(p-1). Corresponding to each k, let Y_k be the set of all elements of Y of length k. Then it is easy to ckeck that Y_k is a minimal generating set of $\varphi^k(F_pG)$, and $\{y+\varphi^{k+1}F_pG: y \in Y_k\}$ is an F_p basis of $\varphi^k(F_pG)/\varphi^{k+1}(F_pG)$.

For a fixed $i, 1 \leq i \leq \delta$, let $Z^i = \{z \mid z = b_i(1-g_i)y, y \in Y \text{ and } (1-g_i)y \neq 0\}$. Clearly, $(1 - g_i)y = 0$ if and only if $y = (1 - g_i)^{p-1}y'$ for some $y' \in Y$. The number of such y is exactly p^{n-1} . Therefore, $|Z^i| = p^n - p^{n-1} = p^{n-1}(p-1) = \dim(B_i)$. In fact Z^i is an F_p basis of B_i , and Z_k^i , the set of all elements of Z^i of length k, is a minimal generating set of $\varphi^{k-1}B_i$. Similarly, for a fixed i, $\delta + 1 \leq i \leq d$, the set $Z^i = \{b_i y, y \in Y\}$ is an F_p basis of $b_i F_p G$ and Z_k^i is a minimal generating set of $\varphi^k B_i$.

Let $Z = \bigcup_{i=1}^{d} Z^i$ and $Z_{k+1} = \bigcup_{i=1}^{d} Z_{k+1}^i$, $0 \le k \le l-1$. Then it is easy to see that Z is an F_p basis of B and Z_{k+1} is a minimal generating set of $\bigoplus_{i=1}^{\delta} \varphi^k B_i \bigoplus_{i=\delta+1}^{d} \varphi^{k+1} B_i$.

Remark. The Loewy length of $B_i = \begin{cases} l & \text{for } 1 \le i \le \delta; \\ l+1 & \text{for } 1+\delta \le i \le d. \end{cases}$

Lemma 2.2. Let $X_1 = \{(b_i - b_j)(1 - g_i), 1 \le i < j \le \delta\}$ and $X_2 = \{b_i(1 - g_j) - b_j(1 - g_i), b_i(1 - g_i)^{n_i - 1}, 1 + \delta \le i < j \le d\}$. Then $X_1 \cup X_2$ is a minimal generating set of \hat{S} .

Proof. Firstly, we note that $|X_1 \cup X_2| = \frac{1}{2}\delta(\delta-1) + \frac{1}{2}(d-\delta)(d-\delta+1)$. Now we show that $X_1 \cup X_2$ generate \hat{S} . If V is any submodule generated by $X_1 \cup X_2$, then $V \subseteq \hat{S}$. For the other inclusion, since $\bigoplus_{i=1}^{\delta} \varphi^k B_i \bigoplus_{i=\delta+1}^{d} \varphi^{k+1} B_i = \{0\}$, when k = l, therefore it is sufficient to show that an arbitrary element of \hat{S} can be expresses as a sum of an element of V and an element of $\bigoplus_{i=1}^{\delta} \varphi^k B_i \bigoplus_{i=\delta+1}^{d} \varphi^{k+1} B_i$ for all $k, 0 \leq k \leq l$. We shall show this by induction on k. The result is obviously true for k = 0. Let $x \in \hat{S}$, and for a fixed $k, 0 \leq k \leq l-1$, suppose that $x = v + x', v \in V$ and $x' \in \bigoplus_{i=1}^{\delta} \varphi^k B_i \oplus_{i=\delta+1}^{d} \varphi^{k+1} B_i$. To complete the induction argument, we shall show that $x' = x_0 + x_1$ for some $x_0 \in V$ and $x_1 \in \bigoplus_{i=1}^{\delta} \varphi^{k+1} B_i \oplus_{i=\delta+1}^{d} \varphi^{k+2} B_i$.

Writing x' as a linear combination of an element of Z_{k+1} and then rewritting each element of F_pG as a sum of an element of F_p and an element of \underline{g} , we have

$$x' = \sum a_{\lambda_1} b_1 (1 - g_1) y_{\lambda_1} + \dots + \sum a_{\lambda_\delta} b_\delta (1 - g_\delta) y_{\lambda_\delta} + \sum a_{\lambda_{\delta+1}} b_{\delta+1} y'_{\lambda_{\delta+1}} + \dots + \sum a_{\lambda_d} b_d y'_{\lambda_d} + x_1,$$

where $a_{\lambda_i} \in F_p$, $y_{\lambda_i} \in Y_k$, $y'_j \in Y_{k+1}$ and $x_1 \in \bigoplus_{i=1}^{\delta} \varphi^{k+1} B_i \bigoplus_{i=\delta+1}^{d} \varphi^{k+2} B_i$. Clearly, $(1 - g_i)y_{\lambda_i} \in Y_{k+1}$, however they need not be distinct if $x_{\lambda} = (1 - g_i)y_{\lambda_i} = (1 - g_j)y_{\lambda_j} = \cdots = (1 - g_r)y_{\lambda_r} = (1 - g_s)y_{\lambda_s} = y'_{\lambda_k} = y'_{\lambda_l} = y'_{\lambda_m} = y'_{\lambda_n}$, where $0 \le i, j, \ldots, r, s \le \delta$ and $\delta + 1 \le k, l, \ldots, m, n \le d$. Let

$$\mu_{\lambda} = a_{\lambda_i}b_i + a_{\lambda_j}b_j + \dots + a_{\lambda_r}b_r + a_{\lambda_s}b_s + a_{\lambda_k}b_k + a_{\lambda_l}b_l + \dots + a_{\lambda_m}b_m + a_{\lambda_n}b_n.$$

Then $x_0 = \sum_{\lambda} \mu_{\lambda} x_{\lambda}$, where x_{λ} are distinct elements of Y_{k+1} . Therefore we have

$$\begin{aligned} x_0\hat{\psi} &= \left[\sum_{\lambda} \{(a_{\lambda_i}b_i + a_{\lambda_j}b_j + \dots + a_{\lambda_r}b_r + a_{\lambda_s}b_s + a_{\lambda_k}b_k + a_{\lambda_l}b_l \\ &+ \dots + a_{\lambda_m}b_m + a_{\lambda_n}b_n)\}x_\lambda\right]\hat{\psi} \\ &= \sum_{\lambda} \{(a_{\lambda_i}b_i + a_{\lambda_j}b_j + \dots + a_{\lambda_r}b_r + a_{\lambda_s}b_s) + a_{\lambda_k}(1 - g_k) + a_{\lambda_l}(1 - g_l) \\ &+ \dots + a_{\lambda_m}(1 - g_m) + a_{\lambda_n}(1 - g_n)\}x_\lambda. \end{aligned}$$

Now for $\delta + 1 \leq k, l, \ldots, m, n \leq d$, we have $(1 - g_k)y'_{\lambda_k} = (1 - g_l)y'_{\lambda_l}$ if and only if $y'_{\lambda_k} = (1 - g_l)y$ and $y'_{\lambda_l} = (1 - g_k)y$ for some $y \in Y_{k+1}$. Let $x_{\lambda'} = (1 - g_k)y'_{\lambda_k} = (1 - g_l)y'_{\lambda_l} = \cdots = (1 - g_m)y'_{\lambda_m} = (1 - g_n)y'_{\lambda_n}$, where the $x_{\lambda'}$ are distinct elements of Y_{k+1} . Then we have

$$\begin{aligned} x_0 \hat{\psi} &= \sum_{\lambda} (a_{\lambda_i} + a_{\lambda_j} + \dots + a_{\lambda_r} + a_{\lambda_s}) x_\lambda \\ &+ \sum_{\lambda'} (a_{\lambda_k} + a_{\lambda_l} + \dots + a_{\lambda_m} + a_{\lambda_n}) x_{\lambda'} \\ &= \sum_{\lambda} \beta_\lambda x_\lambda + \sum_{\lambda'} \beta_{\lambda'} x_{\lambda'}, \end{aligned}$$

where $\beta_{\lambda} = \alpha_{\lambda_i} + \alpha_{\lambda_j} + \dots + \alpha_{\lambda_r} + \alpha_{\lambda_s}$ and $\beta_{\lambda'} = \alpha_{\lambda_k} + \alpha_{\lambda_l} + \dots + \alpha_{\lambda_m} + \alpha_{\lambda_n}$. Clearly, $0 = x\hat{\psi} = v\hat{\psi} + x'\hat{\psi} = x'\hat{\psi} = x_0\hat{\psi} + x_1\hat{\psi}$, where $x_1\hat{\psi} \in \bigoplus_{i=1}^{\delta} \varphi^{k+1}B_i \oplus_{i=\delta+1}^{d} \varphi^{k+2}B_i$.

Now
$$(\bigoplus_{i=1}^{d} \varphi^{k+1} B_i) \hat{\psi} \subseteq \varphi^{k+1} \underline{g}$$
 and $(\bigoplus_{i=1}^{d} \varphi^{k+2} B_i) \hat{\psi} \subseteq \varphi^{k+2} \underline{g}$. Moreover,
 $\varphi^{k+2} \underline{g} \subseteq \varphi^{k+1} \underline{g}$ implies that $(\bigoplus_{i=1}^{\delta} \varphi^{k+1} B_i \oplus_{i=\delta+1}^{d} \varphi^{k+2} B_i) \subseteq \varphi^{k+1} \underline{g}$.

But $\varphi^{k+1}\underline{g} = (x_0\hat{\psi} + x_1\hat{\psi}) + \varphi^{k+1}\underline{g} = x_0\hat{\psi} + \varphi^{k+1}\underline{g} = \sum \beta_\lambda x_\lambda + \sum \beta_{\lambda'} x_{\lambda'} + \varphi^{k+1}\underline{g}$. Since each x_λ and $x_{\lambda'}$ are distinct elements of Y_{k+1} and Y_{k+2} , respectively, therefore, each $\beta_\lambda = \beta_{\lambda'} = 0$. Therefore, $\alpha_{\lambda_s} = -\alpha_{\lambda_i} - \alpha_{\lambda_j} - \cdots - \alpha_{\lambda_r}$ and $\alpha_{\lambda_n} = -\alpha_{\lambda_k} - \alpha_{\lambda_l} - \cdots - \alpha_{\lambda_m}$. Thus

$$\begin{aligned} x_0 &= \sum_{\lambda} \{a_{\lambda_i}b_i + a_{\lambda_j}b_j + \dots + a_{\lambda_r}b_r - (a_{\lambda_i} + a_{\lambda_j} + \dots + a_{\lambda_r})b_s\}x_\lambda \\ &+ \{a_{\lambda_k}b_k + a_{\lambda_l}b_l + \dots + a_{\lambda_m}b_m - (a_{\lambda_k} + a_{\lambda_l} + \dots + a_{\lambda_m})b_n\}x_\lambda \\ &= \sum_{\lambda} \{a_{\lambda_i}(b_i - b_s) + a_{\lambda_j}(b_j - b_s) + \dots + a_{\lambda_r}(b_r - b_s)\}x_\lambda \\ &+ \{a_{\lambda_k}(b_k y'_{\lambda_n} - b_n y'_{\lambda_k}) + a_{\lambda_l}(b_l y'_{\lambda_n} - b_n y'_{\lambda_l}) + \dots \\ &+ a_{\lambda_m}(b_m y'_{\lambda_n} - b_n y'_{\lambda_m})\}, \end{aligned}$$

which is an element of V. Therefore, $\hat{S} \subseteq V$. Since X_1 and X_2 lie in different direct summands of the middle term $\bigoplus_{i=1}^{\delta} \underline{g}_i^G \bigoplus_{i=\delta+1}^d b_i F_p G$ of (1.1), therefore $X_1 \cap X_2 = 0$. Thus in order to show that $X_1 \cup X_2$ is a minimal generating set of \hat{S} , we only need to show that X_1 and X_2 are minimal sets of U and V, respectively. First we shall show that X_1 is a minimal generating set for U. For, since we are dealing with a finite elementary p-group case, it is sufficient to show that no proper subset of X_1 generates U. For, on the contrary suppose that X_1 is not minimal, and let $(b_{\mu} - b_{\nu})(1 - g_{\mu})(1 - g_{\nu}) = \sum_{(\mu,\nu)\neq(i,j),1\leq i< j\leq \delta}(b_i - b_j)(1 - g_i)(1 - g_j)a_{ij} = x$, say, $a_{ij} \in F_p G$. Then $b_{\mu}(1 - g_{\mu})(1 - g_{\nu}) = x + b_{\nu}(1 - g_{\mu})(1 - g_{\nu})$, which is a contradiction because $\bigcup_{i=1}^{\delta} Z_2^i$ is a minimal generating set of $\bigoplus_{i=1}^{\delta} \varphi^i B$. This shows that X_1 is minimal. For proving that X_2 is a minimal generating set, for convenient reference, we shall call the elements $b_i(1 - g_j) - b_j(1 - g_i)$ of type-I and $b_i(1 - g_i)^{n_i-1}$ of type-II. Then it is clear that type-I elements cannot be generated from type-II elements and vice-versa. Suppose on the contrary that the set X_2 is not minimal and let $b_{\mu}(1 - g_{\nu}) - b_{\nu}(1 - g_{\nu}) - b_{\mu}(1 - g_{\mu}) - b_{$

 g_{μ}) = $\sum_{(\mu,\nu)\neq(i,j),\delta+1\leq i< j\leq d} \{b_i(1-g_j)-b_j(1-g_i)\}a_{ij} = y$, say, $a_{ij} \in F_pG$. Then $b_{\mu}(1-g_{\nu}) = y + b_{\nu}(1-g_{\mu})$, which is a contradiction, because an element of Z_1 can not be expressed as a linear combination of the remaining elements of Z_1 .

Proposition 2.3. If U and V are F_pG modules generated by X_1 and X_2 , respectively, then $\hat{S} \cong U \oplus V$.

Proof. By Lemma 2.2, it follows that $\hat{S} = U + V$. Moreover, since X_1 and X_2 lie in different direct summands of (1.1), $U \cap V = \{0\}$, and hence $\hat{S} \cong U \oplus V$. \Box

In view of Proposition 2.3, to complete the proof of Theorem 2.1, we only need to prove that U and V are indecomposable. For, consider a set

$$C = \{c_{ij} : c_{ij} = (b_i - b_j) \prod_{\mu=1}^d (1 - g_\mu)^{n_\mu - 1}, \ 1 \le i < j \le \delta\}.$$

Clearly $|C| = \frac{1}{2}\delta(\delta - 1)$. Let U_1 be a submodule of U such that dim $((U_1 + \varphi U)/\varphi U) = r$, where $0 \le r \le \frac{1}{2}\delta(\delta - 1)$. Now we shall prove that U_1 contains at least r elements of C. For, r = 0, there is nothing to prove. Therefore, suppose that r > 0 and choose $\{u_m : u_m \in U_1, 1 \le m \le r\}$ such that $\{u_m + \varphi U, 1 \le m \le r\}$ is an F_p basis of $(U_1 + \varphi U)/\varphi U$. Then

$$u_m = \sum_{1 \le i < j \le \delta} \alpha_{m_{ij}} (b_i - b_j) (1 - g_i) (1 - g_j) + w,$$

where $\alpha_{m_{ij}} \in F_p$ and $w \in \varphi U$. Clearly, in the expression of u_m , at least one $\alpha_{m_{ij}}$ is non-zero. Let $y = \prod_{\lambda=1}^d (1-g_\lambda)^{\nu_\lambda-1}$, where $\nu_\lambda = \begin{cases} n_\lambda - 2, & \text{if } \lambda = i \text{ or } j; \\ n_\lambda - 1, & \text{otherwise.} \end{cases}$ Then $u_m y = \alpha_{m_{ij}}(b_i - b_j) \prod_{\lambda=1}^d (1-g_\lambda)^{n_\lambda-1}$ (wy = 0). So, we get $u_m y = \alpha_{m_{ij}}c_{ij}$, and so $(\alpha_{m_{ij}})^{-1}u_m y = c_{ij} \in U_1$. Since at least r of the $(b_i - b_j)(1 - g_i)(1 - g_j)$ are distinct, U_1 contains at least r elements c_{ij} of C.

Suppose $U = U_1 \oplus U_2$ and $\dim(U_i/\varphi U_i) = \frac{1}{2}\delta(\delta - 1) = r_1 + r_2$. From above argument, we infer that U_i contains a set C_i of at least r_i elements of C. In fact $C = C_1 \cup C_2$ and $C_1 \cap C_2 = \Phi$.

Clearly, $c_{i\delta} = c_{ik} + c_{k\delta}$ for some $1 \le i \le \delta - 1$ and $1 < k < \delta$. Therefore C is an F_p -linear combination of $\{c_{i\delta} : 1 \le i \le \delta - 1\}$. Then it is easy to check that either $C \subseteq U_1$ or $C \subseteq U_2$, and therefore, U is indecomposable.

Now we prove that V is indecomposable. If $d - \delta = 1$, then X_2 contains only one element and therefore V is indecomposable. Now we suppose that $d - \delta \geq 2$ and consider the set $C' = \{b_i \prod_{\mu=1}^d (1 - g_\mu)^{n_\mu - 1} : 1 + \delta \leq i \leq d\}.$ (Note that $|C'| = d - \delta$.)

Suppose that $V = V_1 + V_2$. As before, we shall identify the elements $b_i(1 - g_j) - b_j(1 - g_i)$ of X_2 as those of type-I and $b_i(1 - g_i)^{n_i - 1}$ of type-II. Then the following possibilities arise:

M. YAMIN AND P. K. SHARMA

- (i) V_1 contains all elements of X_2 of type-I and V_2 contains all elements of X_2 of type-II.
- (ii) V_1 contains r_1 elements of type-I and s_1 elements of type-II, and V_2 contains r_2 elements of type-I and s_2 elements of type-II, where $r_1 + r_2 = \frac{1}{2} (d \delta)(d \delta 1)$ and $s_1 + s_2 = d \delta$
- (iii) V_1 or V_2 contain all elements of X_2 .

We shall establish that only (iii) is true by eliminating the other two possibilities. If (i) was true, then both V_1 and V_2 would contain all elements of C', which would be a contradiction because $V_1 \cap V_2 = \{0\}$. Similarly if (ii) was true, then the number of elements in both V_1 and V_2 would at least be $\frac{1}{2}(d-\delta)(d-\delta-1) > (d-\delta)$, for $(d-\delta) \ge 2$, which would force V_1 and V_2 to contain some common elements of C'.

Thus only (iii) is true which implies that either $V = V_1$ or $V = V_2$, and so V is indecomposable, which completes our proof.

References

- W. Gaschutz, Über modulare Darstellungen endlicher Gruppen, die von freien Gruppen induziert warden, Math. Z. 60 (1954), 274–286.
- [2] K. W. Gruenberg, *Relation modules of finite groups*, Regional Conference Series in Math, Number 25, A.M.S. Providence, R.I., 1976.
- [3] W. Kimmerle, Relative relation modules on generators for integral group rings of finite groups, Math. Z. 172 (1980), 143–156.
- [4] L. G. Kovacs and R. Stohr, Lie powers of relation modules for groups, J. Algebra 326 (2011), no. 1, 192–200.
- [5] J. N. Mittal and I. B. S. Passi, Annihilators of relation modules, J. Austral. Math. Soc. (2) 16 (1973), 228–233.
- [6] D. J. S. Robinson, A Course in the Theory of Groups, Second Edition. Graduate Texts in Mathematics, 80. Springer-Verlag, New York, 1996.
- [7] P. K. Sharma and M. Yamin, Relative Relation Modules of SL(2, p) and PSL(2, p) groups, J. Indian Math Soc. 80 (2013), no. 3-4, 341–348.
- [8] M. Yamin, Relative relation modules of finite groups, Proc. Edinburgh Math. Soc. 34 (1991), no. 3, 433–442.
- [9] _____, Minimal relative relation modules of finite p-groups, Proc. Amer. Math. Soc. 118 (1993), no. 1, 1–3.

Mohammad Yamin King Abdulaziz University Jeddah, Saudi Arabia *E-mail address*: myamin@kau.edu.sa

Poonam Kumar Sharma D.A.V. College Jalandhar (Punjab), India *E-mail address*: pksharma@davjalandhar.com