• 제목/요약/키워드: f(k)

검색결과 24,449건 처리시간 0.043초

SOME CONDITIONS ON THE FORM OF THIRD ELEMENT FROM DIOPHANTINE PAIRS AND ITS APPLICATION

  • Lee, June Bok;Park, Jinseo
    • 대한수학회지
    • /
    • 제55권2호
    • /
    • pp.425-445
    • /
    • 2018
  • A set {$a_1,\;a_2,{\ldots},\;a_m$} of positive integers is called a Diophantine m-tuple if $a_ia_j+1$ is a perfect square for all $1{\leq}i$ < $j{\leq}m$. In this paper, we show that the form of third element in Diophantine pairs and develop some results which are needed to prove the extendibility of the Diophantine pair {a, b} with some conditions. By using this result, we prove the extendibility of Diophantine pairs {$F_{k-2}F_{k+1},\;F_{k-1}F_{k+2}$} and {$F_{k-2}F_{k-1},\;F_{k+1}F_{k+2}$}, where $F_n$ is the n-th Fibonacci number.

On a Question of Closed Maps of S. Lin

  • Chen, Huaipeng
    • Kyungpook Mathematical Journal
    • /
    • 제50권4호
    • /
    • pp.537-543
    • /
    • 2010
  • Let X be a regular $T_1$-space such that each single point set is a $G_{\delta}$ set. Denot 'hereditarily closure-preserving' by 'HCP'. To consider a question of closed maps of S. Lin in [6], we improve some results of Foged in [1], and prove the following propositions. Proposition 1. $D\;=\;\{x{\in}X\;:\;\mid\{F{\in}\cal{F}:x{\in}F\}\mid{\geq}{\aleph}_0\}$ is discrete and closed if $\cal{F}$ is a collection of HCP. Proposition 2. $\cal{H}\;=\;\{{\cup}\cal{F}'\;:\;F'$ is an fininte subcolletion of $\cal{F}_n\}$ is HCP if $\cal{F}$ is a collection of HCP. Proposition 3. Let (X,$\tau$) have a $\sigma$-HCP k-network. Then (X,$\tau$) has a $\sigma$-HCP k-network F = ${\cup}_n\cal{F}_n$ such that such tat: (i) $\cal{F}_n\;\subset\;\cal{F}_{n+1}$, (ii) $D_n\;=\;\{x{\in}X\;:\;\mid\{F{\in}\cal{F}_n\;:\;x{\in}F\}\mid\;{\geq}\;{\aleph}_0\}$ is a discrete closed set and (iii) each $\cal{F}_n$ is closed to finite intersections.

k-PRIME CORDIAL GRAPHS

  • PONRAJ, R.;SINGH, RAJPAL;KALA, R.;NARAYANAN, S. SATHISH
    • Journal of applied mathematics & informatics
    • /
    • 제34권3_4호
    • /
    • pp.227-237
    • /
    • 2016
  • In this paper we introduce a new graph labeling called k-prime cordial labeling. Let G be a (p, q) graph and 2 ≤ p ≤ k. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called a k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1. A graph with a k-prime cordial labeling is called a k-prime cordial graph. In this paper we investigate the k-prime cordial labeling behavior of a star and we have proved that every graph is a subgraph of a k-prime cordial graph. Also we investigate the 3-prime cordial labeling behavior of path, cycle, complete graph, wheel, comb and some more standard graphs.

ON THE EXTENT OF THE DIVISIBILITY OF FIBONOMIAL COEFFICIENTS BY A PRIME NUMBER

  • Lee, David Taehee;Lee, Juhyep;Park, Jinseo
    • Korean Journal of Mathematics
    • /
    • 제29권4호
    • /
    • pp.733-740
    • /
    • 2021
  • Let (Fn)n≥0 be the Fibonacci sequence and p be a prime number. For 1≤k≤m, the Fibonomial coefficient is defined as $$\[\array{m\\k}\]_F=\frac{F_{m-k+1}{\ldots}{F_{m-1}F_m}}{{F_1}{\ldots}{F_k}}$$ and $\[\array{m\\k}\]_F=0$ whan k>m. Let a and n be positive integers. In this paper, we find the conditions of prime number p which divides Fibonomial coefficient $\[\array{P^{a+n}\\{p^a}}\]_F$. Furthermore, we also find the conditions of p when $\[\array{P^{a+n}\\{p^a}}\]_F$ is not divisible by p.

A RESULT ON AN OPEN PROBLEM OF LÜ, LI AND YANG

  • Majumder, Sujoy;Saha, Somnath
    • 대한수학회보
    • /
    • 제58권4호
    • /
    • pp.915-937
    • /
    • 2021
  • In this paper we deal with the open problem posed by Lü, Li and Yang [10]. In fact, we prove the following result: Let f(z) be a transcendental meromorphic function of finite order having finitely many poles, c1, c2, …, cn ∈ ℂ\{0} and k, n ∈ ℕ. Suppose fn(z), f(z+c1)f(z+c2) ⋯ f(z+cn) share 0 CM and fn(z)-Q1(z), (f(z+c1)f(z+c2) ⋯ f(z+cn))(k) - Q2(z) share (0, 1), where Q1(z) and Q2(z) are non-zero polynomials. If n ≥ k+1, then $(f(z+c_1)f(z+c_2)\;{\cdots}\;f(z+c_n))^{(k)}\;{\equiv}\;{\frac{Q_2(z)}{Q_1(z)}}f^n(z)$. Furthermore, if Q1(z) ≡ Q2(z), then $f(z)=c\;e^{\frac{\lambda}{n}z}$, where c, λ ∈ ℂ \ {0} such that eλ(c1+c2+⋯+cn) = 1 and λk = 1. Also we exhibit some examples to show that the conditions of our result are the best possible.

RADIO AND RADIO ANTIPODAL LABELINGS FOR CIRCULANT GRAPHS G(4k + 2; {1, 2})

  • Nazeer, Saima;Kousar, Imrana;Nazeer, Waqas
    • Journal of applied mathematics & informatics
    • /
    • 제33권1_2호
    • /
    • pp.173-183
    • /
    • 2015
  • A radio k-labeling f of a graph G is a function f from V (G) to $Z^+{\cup}\{0\}$ such that $d(x,y)+{\mid}f(x)-f(y){\mid}{\geq}k+1$ for every two distinct vertices x and y of G, where d(x, y) is the distance between any two vertices $x,y{\in}G$. The span of a radio k-labeling f is denoted by sp(f) and defined as max$\{{\mid}f(x)-f(y){\mid}:x,y{\in}V(G)\}$. The radio k-labeling is a radio labeling when k = diam(G). In other words, a radio labeling is an injective function $f:V(G){\rightarrow}Z^+{\cup}\{0\}$ such that $${\mid}f(x)=f(y){\mid}{\geq}diam(G)+1-d(x,y)$$ for any pair of vertices $x,y{\in}G$. The radio number of G denoted by rn(G), is the lowest span taken over all radio labelings of the graph. When k = diam(G) - 1, a radio k-labeling is called a radio antipodal labeling. An antipodal labeling for a graph G is a function $f:V(G){\rightarrow}\{0,1,2,{\ldots}\}$ such that $d(x,y)+{\mid}f(x)-f(y){\mid}{\geq}diam(G)$ holds for all $x,y{\in}G$. The radio antipodal number for G denoted by an(G), is the minimum span of an antipodal labeling admitted by G. In this paper, we investigate the exact value of the radio number and radio antipodal number for the circulant graphs G(4k + 2; {1, 2}).

QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN NORMED SPACES

  • Cui, Yinhua;Hyun, Yuntak;Yun, Sungsik
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제24권2호
    • /
    • pp.109-127
    • /
    • 2017
  • In this paper, we solve the following quadratic ${\rho}-functional$ inequalities ${\parallel}f({\frac{x+y+z}{2}})+f({\frac{x-y-z}{2}})+f({\frac{y-x-z}{2}})+f({\frac{z-x-y}{2}})-f(x)-f(y)f(z){\parallel}$ (0.1) ${\leq}{\parallel}{\rho}(f(x+y+z)+f(x-y-z)+f(y-x-z)+f(z-x-y)-4f(x)-4f(y)-4f(z)){\parallel}$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < ${\frac{1}{{\mid}4{\mid}}}$, and ${\parallel}f(x+y+z)+f(x-y-z)+f(y-x-z)+f(z-x-y)-4f(x)-4f(y)-4f(z){\parallel}$ (0.2) ${\leq}{\parallel}{\rho}(f({\frac{x+y+z}{2}})+f({\frac{x-y-z}{2}})+f({\frac{y-x-z}{2}})+f({\frac{z-x-y}{2}})-f(x)-f(y)f(z)){\parallel}$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < ${\mid}8{\mid}$. Using the direct method, we prove the Hyers-Ulam stability of the quadratic ${\rho}-functional$ inequalities (0.1) and (0.2) in non-Archimedean Banach spaces and prove the Hyers-Ulam stability of quadratic ${\rho}-functional$ equations associated with the quadratic ${\rho}-functional$ inequalities (0.1) and (0.2) in non-Archimedean Banach spaces.

Identification of Antihypertensive Peptides Derived from Low Molecular Weight Casein Hydrolysates Generated during Fermentation by Bifidobacterium longum KACC 91563

  • Ha, Go Eun;Chang, Oun Ki;Jo, Su-Mi;Han, Gi-Sung;Park, Beom-Young;Ham, Jun-Sang;Jeong, Seok-Geun
    • 한국축산식품학회지
    • /
    • 제35권6호
    • /
    • pp.738-747
    • /
    • 2015
  • Angiotensin-converting enzyme (ACE) inhibitory activity was evaluated for the low-molecular-weight fraction (<3 kDa) obtained from milk fermentation by Bifidobacterium longum KACC91563. The ACE inhibitory activity in this fraction was 62.3%. The peptides generated from the <3 kDa fraction were identified by liquid chromatography-electrospray ionization quantitative time-of-flight mass spectrometry analysis. Of the 28 peptides identified, 11 and 16 were identified as β-casein (CN) and αs1-CN, respectively. One peptide was identified as κ-CN. Three peptides, YQEPVLGPVRGPFPIIV, QEPVLGPVRGPFPIIV, and GPVRGPFPIIV, from β-CN corresponded to known antihypertensive peptides. We also found 15 peptides that were identified as potential antihypertensive peptides because they included a known antihypertensive peptide fragment. These peptides were as follows: RELEELNVPGEIVE (f1-14), YQEPVLGPVRGPFP (f193-206), EPVLGPVRGPFPIIV (f195-206), PVLGPVRGPFPIIV (f196-206), VLGPVRGPFPIIV (f197-206), and LGPVRGPFPIIV (f198-206) for β-CN; and APSFSDIPNPIGSENSEKTTMPLW (f176-199), SFSDIPNPIGSENSEKT- TMPLW (f178-199), FSDIPNPIGSENSEKTTMPLW (f179-199), SDIPNPIGSENSEKTTMPLW (f180-199), DIPNPIGSENSEKTTMPLW (f181-199), IPNPIGSENSEKTTMPLW (f182-199), PIGSENSEKTTMPLW (f185-199), IGSENSEKTTMPLW (f186-199), and SENSEKTTMPLW (f188-199) for αs1-CN. From these results, B. longum could be used as a starter culture in combination with other lactic acid bacteria in the dairy industry, and/or these peptides could be used in functional food manufacturing as additives for the development of a product with beneficial effects for human health.