Browse > Article
http://dx.doi.org/10.4134/JKMS.j170289

SOME CONDITIONS ON THE FORM OF THIRD ELEMENT FROM DIOPHANTINE PAIRS AND ITS APPLICATION  

Lee, June Bok (Department of Mathematical Sciences Yonsei University)
Park, Jinseo (Department of Mathematics Education Catholic Kwandong University)
Publication Information
Journal of the Korean Mathematical Society / v.55, no.2, 2018 , pp. 425-445 More about this Journal
Abstract
A set {$a_1,\;a_2,{\ldots},\;a_m$} of positive integers is called a Diophantine m-tuple if $a_ia_j+1$ is a perfect square for all $1{\leq}i$ < $j{\leq}m$. In this paper, we show that the form of third element in Diophantine pairs and develop some results which are needed to prove the extendibility of the Diophantine pair {a, b} with some conditions. By using this result, we prove the extendibility of Diophantine pairs {$F_{k-2}F_{k+1},\;F_{k-1}F_{k+2}$} and {$F_{k-2}F_{k-1},\;F_{k+1}F_{k+2}$}, where $F_n$ is the n-th Fibonacci number.
Keywords
Diophantine m-tuple; Fibonacci numbers; Pell equation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Baker and H. Davenport, The equations $3^x-2=y^2$ and $8^x-7=z^2$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.   DOI
2 A. Baker and G. Wustholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.
3 Y. Bugeaud, A. Dujella, and M. Migonotte, On the family of Diophantine triples {k-1+1, $16k^3$-4k}, Glasg. Math. J. 49 (2007), no. 2, 333-344.   DOI
4 A. Dujella, The problem of the extension of a parametric family of Diophantine triples, Publ. Math. Debrecen 51, (1997), no. 3-4, 311-322.
5 A. Dujella, A parametric family of elliptic curves, Acta Arith. 94, (2000), no. 1, 87-101.   DOI
6 A. Dujella, An absolute bound for the size of Diophantine m-tuple, J. Number theory 89 (2001), no. 1, 126-150.   DOI
7 A. Filipin, Y. Fujita, and A. Togbe, The extendibility of Diophantine pairs I: The general case, Glas. Mat. Ser. III 49(69) (2014), no. 1, 25-36.   DOI
8 A. Dujella, Diophantine m-tuples and elliptic curves, 21st Journees Arithmetiques (Rome, 2001), J. Theor. Nombres Bordeaux 13, (2001), no. 1, 111-124.   DOI
9 A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183-214.
10 A. Dujella and A. Petho, Generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 195, 291-306.   DOI
11 A. Filipin, Y. Fujita, and A. Togbe, The extendibility of Diophantine pairs II: Examples, J. Number Theory 145 (2014), 604-631.   DOI
12 Y. Fujita, The extensibility of Diophantine pair {k-1, k + 1}, J. Number Theory 128(2008), no. 2, 323-353.
13 Y. Fujita, The Hoggatt-Bergum conjecture on D(-1)-triples ${F_{2k+1},F_{2k+3},F_{2k+5}}$ and integer points on the attached elliptic curves, Rocky Mountain J. Math. 39 (2009), no.6, 1907-1932   DOI
14 Y. Fujita, Any Diophantine quintuple contains a regular Diophantine quadruple, J. Number Theory 129 (2009), no. 7, 1678-1697.   DOI
15 B. W. Jones, A second variation on a problem of Diophantus and Davenport, Fibonacci Quart. 16 (1978), no. 2, 155-165.