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ON THE EXTENT OF THE DIVISIBILITY OF FIBONOMIAL
COEFFICIENTS BY A PRIME NUMBER

DAvID TAEHEE LEE, JUHYEP LEE, AND JINSEO PARK"

ABSTRACT. Let (F},),>0 be the Fibonacci sequence and p be a prime number. For
1 < k < m, the Fibonomial coefficient is defined as
|:m:| o FnL—k+1-~-Fm—lFm
k|p F..F,

and [TZ} = 0 when k£ > m. Let a and n be positive integers. In this paper, we find
F

a+n
the conditions of prime number p which divides Fibonomial coefficient [p o } .
F

a+n
Furthermore, we also find the conditions of p when {p I ] is not divisible by p.
F

1. Introduction

Let (F,)n>0 be the Fibonacci sequence given by the recurrence relation F, o =
Foy + F, with Fy = 0 and F; = 1. In 1915, G. Fontené [1] published a note
suggesting a generalization of binomial coefficients, replacing natural numbers into an
arbitary sequence (A,) of real or complex numbers. After that there has been much

interest in Fibonomial coefficients {77];} which is defined for 1 < k < m as

F
|:m:| o mek+1---Fm71Fm
k| Fy.. . F}
and {Tg] = 0 when £ > m. It is shown that Fibonomial coefficient has a integer

value which can be proved by the formula

m m—1 m— 1
= Fi1 } + Fok1 [
|:k‘|F k F k—1
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which is a consequence of the formula
Fp = FyirFoni + FyFo g1
In the recent paper, Diego Marques, James A. Sellers and Pavel Trojovsky [3]
proved that if p is a prime number such that p = 2 or — 2 (mod 5), then p | {p;;l}
F

for all positive integer a and they left a conjecture that if p = 1 or — 1 (mod 5),
a+1

then p { [p e

generalization of the conjecture, that is, we find the conditions of prime number p
a+n

which divides the Fibonomial coefficient [p a } , where n is a positive integer. The

F

} which we shall prove in this paper. Furthermore, we prove the
F

result is given in the following theorem.

THEOREM 1.1. Let a,n be positive integers and p be a prime number. If p = 2 or —2
(mod 5), then

p
pa+n
p)([ a] ifn=0 (mod 2),
F

p
and if p=1or —1 (mod 5), then
a+n
p
g [ P } .
In section 2 and 3, we recall and prove some useful lemmas of the Fibonacci numbers

such as a result concerning the p-adic order of F;, and we shall prove the Theorem 1.1
in section 4.

pa+n
p|{ a] ifn=1 (mod 2),
F

2. Preliminaries

We shall recall some lemmas about the Fibonacci numbers from [3] for the conve-
nience of the readers.

LEMMA 2.1. [3, Lemma 2.1] We have
1. F, | F, if and only if n | m.

2. If m > k > 1 then
AR
k P k—1 »

3. (d’Ocangne’s identity) (—1)"Fp,_, = FnFuv1 — FuFpn.
4. For all primes p, F, sy = 0 (mod p), where (%) denotes the Legendre symbol
of a with respect to a prime q > 2.

Before stating the next lemma, we shall define z(n) as the smallest positive integer
k such that n | F}, for a positive integer n.

LEMMA 2.2. [3, Lemma 2.2] If n | F,,, then z(n) | m.
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Let p # 5 be a prime number. From Lemma 2.1 (4) and Lemma 2.2, we find that
z(p) divides p — (%) and it is well-known that <1§J = =£1 according to the residue of
p modulo 5. This means z(p) divides p+ 1 or p — 1.

LEMMA 2.3. [3, Lemma 2.3] For all primes p # 5, gcd(2(p),p) = 1.

3. The highest power of a prime p

In 1995, Tamés Lengyel [2] has proven the following proposition, but we prove this
proposition using another method in this paper.

ProPOSITION 3.1. For n > 1, we have

0 if n=1,2 (mod 3),

1 if n=3 (mod 6),
va(Fn) = 3 if n=6 (mod 12),

ve(n)+2 if n=0 (mod 12),

vs(F,) = vs(n), and if p is a prime number # 2 or 5, then

vp(n) + vp(Fa) if n=0 (mod z(p)),
(Fn) = { 0 v if n#0 (mod z(g))

We use the following lemma to prove the proposition 3.1.

LEMMA 3.2. For z = a+ by/n, y = a — by/n and a prime p # 2, we have

oY — k) + (B

Vn v

for k is a positive integer and p | x—\;ﬁy

Proof. First, we easily know that % is an integer, since

Ik - yk —_ (SC o y)(xkfl +$k72y—|— . _i_ykfl)

and x — y is divisible by y/n. Let us consider the case of k = p. Then we have

P — P T —
Vp (Ty) =p (Wy) (P P Py ).

Since P14+ 2P 2y +...+yP"1 =0 (mod p) and 2P~ + 2P 2y + ... +9yP"1 £ 0 (mod p?),

we have
P —yP T —y
o (FA) = ()
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Now, let us consider the other case, that is k = p*/8 with ged(5, p) = 1. In this case,
we have

) (‘”kjﬁyk) _ Vp((xp“)ﬁgﬁ@pa)ﬁ) wp((xp)ﬂy—ﬁ@p)ﬁ)

<xpa71>p <ypa71)p a—1 a—1
- P — P

= ]/p \/ﬁ = ]/p \/ﬁ
r—Y r—Y
= yp( NG ) +a=1y, (W) + vp(n).
Therefore, we have the desired result. O

REMARK 3.3. For p = 2, suppose n = 2% with ged(f,2) = 1. Proceeding as
before, we get

l.k _ yk x2aﬁ _ y2aﬂ x2a _ y2a
1% = VUV .., = UV E———
() - () ()
I/ (1'20671 + y2a71> + V <x20‘1 . yQthl
= 2 2\ ——— —
n

I2a72 y2a72
2&71 20471 20472 20472 -

= 1lx + ) =+ v (x + >+V _— .
2 ( ) 2 Yy 2 ( \/ﬁ )
This means

k — k a—1 a—1 a—2 a—2 —
V2<x y>=V2(x2 +9° )-1—1/2(362 +° )+---+V2(x2+y2)+Vz(x+y)+uz(m y>.

vn vn

Now, let us prove the proposition 3.1.

Proof of Proposition 3.1. The following table shows first few elements of the highest
power of prime number 2 of F},, modulo 16.

TABLE 1. The highest power of prime number 2 of F;, modulo 16

n| F, | ve(Fy) || n | Fy|ve(Fy) | n| Byl va(Fy)
0] 0 0 9| 2 1 181 8 3
111 0 10| 7 0 191 5 0
211 0 111 9 0 20| 13 0
3| 2 1 121 0 0 21| 2 1
41 3 0 1319 0 22 | 15 0
515 0 1419 0 23 1 0
6| 8 3 15| 2 1 24| 0 0
7113 0 16 | 11 0 25| 1 0
8| 5 0 171 13 0 20| 1 0

According to table, we easily find that
0 if n=1,2 (mod 3),
w(F,)=<¢ 1 if n=3 (mod6),
3 if n=6 (mod 12).
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Now, let us apply the lemma and remark to generalize the power of a prime p of the
nth Fibonacci number. According to Binet’s formula, the nth Fibonacci number can

(204)"\}(26)”)
5
for positive integer n which is divisible by 12. We have the following equation by

appying lemma with p = 2 and n = 2%y, where 2 1 y.

Vo (M) — ((204)211/ — (25)2%)

be expressed as %, where a = %‘F’, b= %5 Let us compute 14 (

Vb e
= 1 ((2@)21*111 + (2@2%1?/) + s ((Qa) - (25) y)

V5

and continuing this process, we get

12 ((2@)2w—1y + (2/8)2”_111)_1_. RN ((2a)2y + (26)2y>+1j2(2ay+25y)+,/2 <(20‘)y_(25)y> )

V5
This means
, ((2(1)" —(26)"
’ V5

>:y2x+x+2.

Therefore,

s (an\;gﬂn) =1y (%) —n=2%4r+2) -2y =x+2=1y(n) +2.

Next, let us consider the case of p = 5. <5> is defined only for odd primes except

p = 5, since then the Legendre symbol is not valid. This is the reason why v5(F},) is
different from the other odd primes. We easily find that z(5) = 5, and v5(F,,) > 1 if
and only if 2(5) = 5 | n. Therefore, we have

v (O‘n\;gﬁn) _— (O‘\;gﬁ) +us(n) = 0+ vs(n) = vs(n).

Lastly, let us consider the case of p # 2,5. In this case, we also easily know that

vp(F,) > 1if and only if 2(p) | n

in a similar way as when p = 5. Let A = o*®), B = 8*®) n = Nz(p). Then we get

Vp <O‘n;\/gﬁn> = ((az(p))N\;g(ﬁz(p))N> |

Now, we can apply the lemma, since p | a(p);\/égzm = F.(p). Hence, we have

o) — 3z(P)
() = o () ) = () + ()

= p(Fip) +vp(n).

Since z(p) | p—1 or z(p) | p+ 1, we obtain ged(z(p),p) = 1 for p # 2,5. Therefore,
vp(N) = vp(n). O
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4. Proof of Theorem 1.1

In this section, we prove the Theorem 1.1 which is the generalization of the divisi-
bility of certain Fibonomical coefficients.

Proof of Theorem 1.1. First, let us consider the case of p = +2 (mod 5). We can
denote z(p) = 2t for some positive integer k, since z(p) | p + 1. We define two sets

%
G4 and G as
Gi = {i|1<i<p, =z(p)li},
Gy = {j1p™ =p"+1<5<p"™" 2(p) | 5}
To prove the Theorem, we only need to compare ), vp(F;) and >, vp(Fy). The
proof splits in four cases.

Case1l:2fnand2ta
In this case, we have

p+1 2(p+1) p+1
G — a 1 - —
1 { k’ ) k’ ) 7p+ k )
1
G, = {p“*”—p“—ﬂj%,---,p“*"—l}-

Then we obtain

1€Gy 1€Gy i€Gy

and
Z vp(Fy) = Z vp(J) + Z Vp(Fep)
JEG2 JEG2 JEG2

Since |G| = |G| + 1,
S w(Fap) =Y vp(Fg) + 1.
JjEG2 i€Gy

We also observe that G5 and (G; are almost the same group when considering
the remainder of each number divided by p®, where GGy has one more element.

a-+n
Therefore, > e, ¥p(4) > D icq, Vp(@) + 1, and this means p | {pp“ } .
F

Case 2:2fnand2|a
Let us define G; and (5 similarly as above case. In this case, we have

atn p+1
2(p) | (p+ 1= )
Then we obtain

Z Vp(Fep) = Z Vp(Fy(p) + 1 and Z vp(J) > Z Vp(4)-

JjEG2 i€Gq JjEG2 i€eGq

pa-‘rn
Therefore, p | l " } .
P g



Case 3 :

Case 4 :
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2|nand21a
In this case, we have
p+1 2(p+1) p+1
G = a 1—-—="-
1 { l{? ) ]{7 9 y D + k )
+1 +1
Gy = {p“+”—p“+pTw-~,p“+”+1—pT}‘

Then we obtain

Z vp(F) = Z Vp(Fep) + Z vp(1)

i€cGq icGq i€Gq
and
Z vp(Fy) = Z Vp(Fip)) + Z Vp(J)-
JjE€G2 jeGa je€G2
Since |G| = |Gal,
> u(Fap) = > 1p(Fe)
JEG2 i€Gy

Now, GGy and G5 are the same group comparing the remainder of each number
divided by p®. This means

paJrn
Therefore, v, ({ P ] ) = 0.
F

2|nand2|a
Let us define G; and G5 similarly as above case. In this case, we have

z(p) | p* =1, z(p) | p* — 1.

Then we obtain

JjEG2 i€Gy
and
Z vp(J) = Z vp(7)
JEG2 1€Gh

pa+n
Therefore, v, ({ 0 ] ) =
F

According to above four cases, we have the desired result. Next, we prove the case of
p = 1 (mod 5). In this case, we have z(p) | p — 1. This is the difference from the
case of p = £2 (mod 5). Let z(p) = E for some positive integer k. We define Gy
and Gy as

p—12(p-1)
= DEEIY a_l
Gl { k‘ ) l{? ) , P )

—1
Gy = {p"+”—p“+pT,~~ : p“*”—l}.
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We observe that Gy = {i + p®™ — p* | ¢ € G1}. Since v,(i + p*™™ — p*) = v,(i)

a+n
for 1 < i < p*—1 and |Gy| = |Gq|, we have Vp<[ppa } > = 0. This means
F
a+n
p1 [ppa } : O
F
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