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SOME CONDITIONS ON THE FORM OF THIRD ELEMENT

FROM DIOPHANTINE PAIRS AND ITS APPLICATION

June Bok Lee and Jinseo Park

Abstract. A set {a1, a2, . . . , am} of positive integers is called a Dio-
phantine m-tuple if aiaj + 1 is a perfect square for all 1 ≤ i < j ≤ m. In

this paper, we show that the form of third element in Diophantine pairs

and develop some results which are needed to prove the extendibility of
the Diophantine pair {a, b} with some conditions. By using this result,

we prove the extendibility of Diophantine pairs {Fk−2Fk+1, Fk−1Fk+2}
and {Fk−2Fk−1, Fk+1Fk+2}, where Fn is the n-th Fibonacci number.

1. Introduction

A Diophantine m-tuple is a set which consists of m distinct positive integers
satisfying the property that the product of any two of them is one less than a
perfect square. If the set which consists of rational numbers satisfy the same
property, then we called rational Diophantine m-tuple. Diophantus found the
first rational Diophantine quadruple {1/16, 33/16, 17/4, 105/16}. However, the
first Diophantine quadruple {1, 3, 8, 120} was found by Fermat. Many famous
mathematicians made lots of results related to the problems of Diophantine
m-tuple, but still there are many open problems. Especially, the most famous
problem is the extendibility of Diophantine m-tuple.

For any Diophantine triple {a, b, c} with a < b < c, the set {a, b, c, d±} is a
Diophantine quadruple, where

d± = a+ b+ c+ 2abc± 2rst

and r, s, t are the positive integers satisfying

ab+ 1 = r2, ac+ 1 = s2, bc+ 1 = t2.

A folklore conjecture is that there does not exist a Diophantine quintuple.
The stronger version of this conjecture states that if {a, b, c, d} is a Diophantine
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quadruple and d > max{a, b, c}, then d = d+. These Diophantine quadruples
are called regular.

The reason why the extendibility is important is related to the elliptic curves.
To extend the Diophantine triple {a, b, c} to Diophantine quadruple, we have
to solve the equations

ax+ 1 = �, bx+ 1 = �, cx+ 1 = �.

Hence, we have the equation

E : y2 = (ax+ 1)(bx+ 1)(cx+ 1),

which is the elliptic curve by the product of three equations. Then we have
always the integer points

(0,±1), (d+,±(at+ rs)(bs+ rt)(cr+ st)), (d−,±((at− rs)(bs− rt)(cr− st))),

and also (−1, 0) if 1 ∈ {a, b, c}. The conjecture means it is possible to prove
that there are no other integer points on E for some family of Diophantine
triples. For example, A. Dujella [5] proved that the elliptic curve

Ek : y2 = ((k − 1)x+ 1)((k + 1)x+ 1)(4kx+ 1)

has four integer points

(0,±1), (16k3 − 4k,±(128k6 − 112k4 − 20k2 − 1))

under assumption that rank(Ek(Q)) = 1. Similar results [7] and [13] were
proved for the equation

y2 = (F2kx+ 1)(F2k+2x+ 1)(F2k+4 + 1)

and

y2 = (F2k+1x+ 1)(F2k+3x+ 1)(F2k+5 + 1),

respectively, where Fn is the n-th Fibonacci number, defined by F0 = 0, F1 = 1
and Fn+2 = Fn+1 + Fn. Therefore, it is important not only how to prove
the extendibility of Diophantine m-tuple but also which case of Diophantine
m-tuple is proved.

In 1969, A. Baker and H. Davenport [1] proved that the Diophantine triple
{1, 3, 8} can not be extended to a Diophantine quintuple, namely, if the set
{1, 3, 8, d} is a Diophantine quadruple, then d = 120. This means the Diophan-
tine triple {1, 3, 8} is regular.

Let us consider the Diophantine pair {1, 3}. If the set {1, 3, c} is a Diophan-
tine triple, then we have the equation

y2 − 3x2 = −2,

since c + 1 = x2, 3c + 1 = y2. We easily find the form of solutions of the
Diophantine equation above is

(y + x
√

3) = (y0 + x0
√

3)(2 +
√

3)k.
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If (y0, x0) belongs to the same class as either of the solutions (±1, 1), then we
have the form of third element

c = ck =
1

6
[(2 +

√
3)(7 + 4

√
3)k + (2−

√
3)(7− 4

√
3)k − 4].

In 1998, Dujella and A. Pethö [9] developed this result, that is, if the set
{1, 3, ck, d} is a Diophantine quadruple, then d = d− = ck−1 or d+ = ck+1.
This result shows how important the form of third element in Diophantine pair
is. Then we have a question such that how can we find the form of third element
in Diophantine pairs. The form of third element ck in the Diophantine pair
{1, 3} is found by using Theorem 8 in [15]. In fact, for a fixed Diophantine pair
{a, b} with a < b, the theorem shows the form of third element, where b < 4a.
This theorem was also used in [3], [4], [12].

The recent research of third element in Diophantine m-tuple is Lemma 4.1
in [10] which shows the form of third element in the Diophantine pair {a, b},
where a < b ≤ 8a. Unfortunately however, the general form of third elements
are unknown until now.

In this paper, we use the following identity

Fk−2Fk−1Fk+1Fk+2 + 1 = F 4
k ,

which was proved by E. Cesàro. We can make many Diophantine pairs by using
above identity. However, we consider only two sets

{Fk−2Fk+1, Fk−1Fk+2} and {Fk−2Fk−1, Fk+1Fk+2},

since the first set satisfy the condition of Lemma 4.1 in [10], namely, Fk−1Fk+2

< 8Fk−2Fk+1, but the second set does not satisfy the condition. Hence, we
need to generalize the Lemma 4.1 for the extendibility of Diophantine pairs
which do not satisfy the condition b ≤ 8a. Also, we develop some results
which need to prove the extendibility of Diophantine pair {a, b} with some
conditions. Through these generalized result, we prove the extendibility of
{Fk−2Fk+1, Fk−1Fk+2} and {Fk−2Fk−1, Fk+1Fk+2}.

2. Preliminaries

2.1. The bounds of each elements of Diophantine triple

We can find the lower bounds of second element of the Diophantine triple
{a, b, c} with a < b using the following lemma.

Lemma 2.1 ([11, Lemma 1.3]). Suppose that {a, b, c, d} is a Diophantine
quadruple with a < b < c < d+ < d.

(1) If b < 2a, then b > 2.1 · 104.
(2) If 2a ≤ b ≤ 8a, then b > 1.3 · 105.
(3) If b > 8a, then b > 2 · 103.
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Let {a, b, c} be a Diophantine triple, and r, s, t be the positive integers sat-
isfying ab+ 1 = r2, ac+ 1 = s2, bc+ 1 = t2. Then we have

at2 − bs2 = a− b.
We easily find the form of solutions of the equation above is

(t
√
a+ s

√
b) = (t0

√
a+ s0

√
b)(r +

√
bc)ν .

If (t0, s0) belongs to the same class as either of the solutions (±1, 1), then s
can be expressed as s = sτν , where τ ∈ {±1} and

s0 = sτ0 = 1, sτ1 = r + τa, sτν+2 = 2rsτν+1 − sτν .
Define cτν = ((sτν)2 − 1)/a. Then, we obtain

c = cτν =
1

4ab
[(a+ b± 2

√
ab)(2ab+ 1 + 2r

√
ab)ν

+ (a+ b∓ 2
√
ab)(2ab+ 1− 2r

√
ab)ν − 2(a+ b)].

First, we have the form of third element c in the Diophantine triple {a, b, c}
by the following theorem.

Theorem 2.2 ([15, Theorem 8]). If a < b < 4a, and b are in Z+, and

ab+ 1 = r2, ac+ 1 = s2, bc+ 1 = t2

holds, then c = c+k = c+k (a, b) for some k or c = c−j = c−j (a, b) for some j. The

set c−j is omitted if b = a+ 2.

However, it is difficult to apply this theorem in many cases, since the upper
bound of b is small. Hence, there were a lot of researches to generalize the
result. The following lemma generalizes of Theorem 2.2.

Lemma 2.3 ([10, Lemma 4.1]). Let {a, b, c} be a Diophantine triple. Assume
that a < b ≤ 8a. Then c = cτν for some ν and τ .

Next, the following theorem gives us the bound of third element c in the
Diophantine triple {a, b, c}.

Theorem 2.4 ([10, Theorem 1.2]). Let {a, b, c} be a Diophantine triple with
a < b. Suppose that {a, b, c, d} is a Diophantine quadruple with d > d+ and
that {a, b, c′, c} is not a Diophantine quadruple for any c′ with 0 < c′ < d−,
where d+ and d− are defined by

d± = a+ b+ c+ 2abc± 2rst,

respectively.

(1) If b < 2a, then c < b6.
(2) If 2a ≤ b ≤ 8a, then c < 9.5b4.
(3) If b > 8a, then c < b5.

If c = cτν , then we can find the upper bound of cmore specific by the following
theorem.
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Theorem 2.5 ([11, Theorem 1.4]). Suppose that {a, b, cτν , d} is a Diophantine
quadruple with d > cτν+1 and that {a, b, c′, cτν} is not a Diophantine quadruple
for any c′ with 0 < c′ < cτν−1.

(1) If b < 2a, then c ≤ c+3 .
(2) If 2a ≤ b ≤ 8a, then c ≤ c+2 .

2.2. The properties of solutions of Pell equation

We have to solve the system

ad+ 1 = x2, bd+ 1 = y2, cd+ 1 = z2

to extend the Diophantine triple {a, b, c} to the Diophantine quadruple {a, b, c,
d}. One can eliminate d to obtain the following system of Pell equations:

ay2 − bx2 = a− b,(1)

az2 − cx2 = a− c,(2)

bz2 − cy2 = b− c.(3)

Lemma 2.6 ([6, Lemma 1]). There exist positive integers i0, j0 and integers

z
(i)
0 , x

(i)
0 , z

(j)
1 , y

(j)
1 , i = 1, . . . , i0, j = 1, . . . , j0, with the following properties:

(1) (z
(i)
0 , x

(i)
0 ) and (z

(j)
1 , y

(j)
1 ) are solutions of (2) and (3), respectively.

(2) z
(i)
0 , x

(i)
0 , z

(j)
1 , y

(j)
1 satisfy the following inequalities

0 < x
(i)
0 ≤

√
a(c− a)

2(s− 1)
<

√
s+ 1

2
< 4
√
ac,

0 ≤ |z(i)0 | ≤
√

(s− 1)(c− a)

2a
<

√
c
√
c

2
√
a
<
c

2
,

0 < y
(j)
1 ≤

√
b(c− b)
2(t− 1)

<

√
t+ 1

2
<

4
√
bc,

0 ≤ |z(j)1 | ≤
√

(t− 1)(c− b)
2b

<

√
c
√
c

2
√
b
<
c

3
.

(3) If (z, x) and (z, y) are positive integers of (2) and (3), respectively, then
there exist i ∈ {1, . . . , i0}, j ∈ {1, . . . , j0} and integers m,n ≥ 0 such
that

z
√
a+ x

√
c = (z

(i)
0

√
a+ x

(i)
0

√
c)(s+

√
ac)m,(4)

z
√
b+ y

√
c = (z

(j)
1

√
b+ y

(j)
1

√
c)(t+

√
bc)n.(5)

From now on, we omit the superscripts (i) and (j). By (4), we may write
z = vm, where

(6) v0 = z0, v1 = sz0 + cx0, vm+2 = 2svm+1 − vm,



430 J. B. LEE AND J. PARK

and by (5), we may write z = wn, where

(7) w0 = z1, w1 = tz1 + cy1, wn+2 = 2twn+1 − wn.
Lemma 2.7 ([8, Lemma 3]). If vm = wn, then n− 1 ≤ m ≤ 2n+ 1.

2.3. Congruence relation between solutions of Pell equations

In this section, we give the congruence relations between vm and wn, and
properties of initial terms of (6) and (7).

Lemma 2.8 ([6, Lemma 4]). We have the following properties of vm and wn.

v2m ≡ z0 + 2c[az0m
2 + sx0m] (mod 8c2),

v2m+1 ≡ sz0 + c[2asz0m(m+ 1) + x0(2m+ 1)] (mod 4c2),

w2n ≡ z1 + 2c[bz1n
2 + ty1n] (mod 8c2),

w2n+1 ≡ tz1 + c[2btz1n(n+ 1) + y1(2n+ 1)] (mod 4c2).

We have a question such that when does vm = wn have a solution and if
there exists a solution of vm = wn, then what are the values possible for the
solution. The following lemma gives us the answer.

Lemma 2.9 ([8, Lemma 8]). We have the following results.

(1) If the equation v2m = w2n has a solution, then z0 = z1. Furthermore,
|z0|= 1 or |z0|= cr−st or |z0| < min{0.869a−5/14c9/14, 0.972b−0.3c0.7}.

(2) If the equation v2m+1 = w2n has a solution, then |z0| = t, |z1| = cr− st
and z0z1 < 0.

(3) If the equation v2m = w2n+1 has a solution, then |z0| = cr−st, |z1| = s
and z0z1 < 0.

(4) If the equation v2m+1 = w2n+1 has a solution, then |z0| = t, |z1| = s
and z0z1 > 0.

Furthermore, the solution of vm = wn is more specific when c = cτν ≤ c+3 by
the following lemma.

Lemma 2.10 ([11, Lemma 3.1]). Assume that a < b ≤ 8a.
(i) Assume that b < 3a. In the case of c = c−1 , we have v2m+1 6= w2n,

v2m 6= w2n+1 and v2m+1 6= w2n+1. Moreover, if v2m = w2n, then z0 = z1 = 1.
(ii) In the case of c = c+1 , we have v2m+1 6= w2n, v2m 6= w2n+1 and v2m+1 6=

w2n+1. Moreover, if v2m = w2n, then z0 = z1 and |z0| = 1.
(iii) In the case of c = c−2 , we have v2m+1 6= w2n and v2m+1 6= w2n+1.

Moreover, we have the following:

(1) If v2m = w2n, then z0 = z1 and |z0| = 1 or cr − st.
(2) If v2m = w2n+1, then |z0| = cr − st and |z1| = s with z0z1 < 0.

Furthermore, (2) occurs if and only if (1) with |z0| = cr − st occurs.
(iv) In the case of c ∈ {c+2 , c

−
3 , c

+
3 }, we have v2m+1 6= w2n and v2m 6= w2n+1.

Moreover, we get the following:

(1) If v2m = w2n, then z0 = z1 and |z0| = 1.
(2) If v2m+1 = w2n+1, then |z0| = t and |z1| = s with z0z1 > 0.
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2.4. Some theorems for applying the reduction method

From (4), (5) and sum of their conjugate, respectively, we get

vm =
1

2
√
a

[(z0
√
a+ x0

√
c)(s+

√
ac)m + (z0

√
a− x0

√
c)(s−

√
ac)m],

wn =
1

2
√
b
[(z1
√
b+ y1

√
c)(t+

√
bc)n + (z1

√
b− y1

√
c)(t−

√
bc)n].

Hence, we transform the equation vm = wn into the following inequality.

Lemma 2.11 ([6, Lemma 5]). Assume that c > 4b. If vm = wn and m,n 6= 0,
then

0 < m log(s+
√
ac)−n log(t+

√
bc)+log

√
b(x0
√
c+ z0

√
a)

√
a(y1
√
c+ z1

√
b)
<

8

3
ac(s+

√
ac)−2m.

We use the following theorem and lemma to obtain the upper bound for m.

Theorem 2.12 ([2, p. 20]). For a linear form

Λ = β1 logα1 + · · ·+ βl logαl 6= 0

in logarithms of l algebraic numbers α1, α2, . . . , αl with rational coefficients
β1, β2, . . . , βl, we have

log |Λ| ≥ −18(l + 1)!ll+1(32d)l+2h′(α1) · · ·h′(αl) log(2ld) log β,

where β := max{|β1|, . . . , |βl|}, d := [Q(α1, . . . , αl) : Q] and

h′(α) =
1

d
max{h(α), | logα|, 1}

with the standard logarithmic Weil height h(α) of α.

Lemma 2.13 ([9, Lemma 5]). Suppose that M is a positive integer. Let p/q
be the convergent of the continued fraction expansion of κ such that q > 6M
and let ε = ‖µq‖ −M · ‖κq‖, where ‖ · ‖ denotes the distance from the nearest
integer.

(1) If ε > 0, then there is no solution of the inequality

(8) 0 < mκ− n+ µ < AB−m

in integers m and n with

log(Aq/ε)

logB
≤ m ≤M.

(2) Let r = bµq+ 1
2c. If p−q+r = 0, then there is no solution of inequality

(8) in integers m and n with

max

{
log(3Aq)

logB
, 1

}
< m ≤M.
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3. The generalized bound for the second element

We can easily know that the form of third elements of Diophantine triple
{Fk−2Fk+1, Fk−1Fk+2, c} by using Lemma 2.3. However, we can’t apply the
Lemma 2.3 in the case of {Fk−2Fk−1, Fk+1Fk+2, c}, since

8Fk−2Fk−1 < Fk+1Fk+2 < 21Fk−2Fk−1.

Hence, we need to generalize Lemma 2.3 to find the form of third elements of
Diophantine triple {a, b, c} when b > 8a.

Lemma 3.1. Let {a, b, c} be a Diophantine triple and a < b ≤ 24a. Suppose
that {1, 3, a, b} is not a Diophantine quadruple. Then c = cτν for some n and
τ .

Proof. The proof is same as the proof of Lemma 4.1 in [10], except the case of
c′ < b. If c′ = 0, then s′ = rs−at = 1, and c = c−1 or c+1 . Let r′ = s′r−at′ and
b′ = ((r′)2 − 1)/a. Then, b′ = a+ b+ c′ + 2abc′ − 2rs′t′, and thus, [15, Lemma
4] and b ≤ 24a together imply that

b′ <
b

4ac′
≤ 24a

4ac′
=

6

c′
.

First, we consider the case of c′ = 1. Since b′ and c′ satisfy the condition
b′c′+1 = b′+1 = �, we have b′ = 0. For the other cases, we have the following
results.

b′ =

 0 if c′ ≥ 6,
0, 1 if c′ = 3, 4, 5,
0, 1, 2 if c′ = 2.

We need to check only the case (b′, c′) = (1, 3) except b′ = 0 using the condi-
tion b′c′ + 1 = �. However, this means the set {1, 3, a, b} satisfies Diophantine
quadruple, which is a contradiction by assumption. In all cases, we obtain
b′ = 0 which yields c′ = a + b − 2r = c−1 and c = c−2 . Hence, we proved the
lemma. �

Assume that a < b ≤ 24a and {1, 3, a, b} is not a Diophantine quadruple.
Then, Lemma 3.1 implies that the positive solutions of the Diophantine equa-
tion

ay2 − bx2 = a− b
are given by

y
√
a+ x

√
b = (±

√
a+
√
b)(r +

√
ab)l

with some non-negative integer l. Thus, we may write x = pl, y = Vl, where

p0 = 1, p1 = r ± a, pl+2 = 2rpl+1 − pl,(9)

V0 = ±1, V1 = b± r, Vl+2 = 2rVl+1 − Vl.(10)

From equations (4) and (5), we may also write x = qm, y = Wn, where

q0 = x0, q1 = sx0 + az0, qm+2 = 2sqm+1 − qm,(11)

W0 = y1, W1 = ty1 + bz1, Wn+2 = 2tWn+1 −Wn.(12)
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The result of next lemma is similar to Lemma 2.10, but the bound of b is
further extended.

Lemma 3.2. Assume that a < b ≤ 24a and {1, 3, a, b} is not a Diophantine
quadruple.

(i) In the case of c+1 , we have v2m+1 6= w2n, v2m 6= w2n+1 and v2m+1 6=
w2n+1. Moreover, if v2m = w2n, then z0 = z1 and |z0| = 1.

(ii) In the case of c = c−2 , we have v2m+1 6= w2n and v2m+1 6= w2n+1.
Moreover, we have the following:

(1) If v2m = w2n, then z0 = z1 and |z0| = 1 or cr − st.
(2) If v2m = w2n+1, then |z0| = cr − st and |z1| = s with z0z1 < 0.

Furthermore, (2) occurs if and only if (1) with |z0| = cr − st occurs.
(iii) In the case of c ∈ {c+2 , c

−
3 , c

+
3 }, then we have v2m+1 6= w2n and v2m 6=

w2n+1. Moreover, we get the following:

• If v2m = w2n, then z0 = z1 and |z0| = 1.
• If v2m+1 = w2n+1, then |z0| = t and |z1| = s with z0z1 > 0.

Proof. The proof proceeds along the same lines as that of [11, Lemma 3.1].
(i) From (10) and (12), we have y21 ≡ 1 (mod b) either n is even or odd in

Wn. Since a < b− 2 and r < b− 1, so c = c+1 = a+ b+ 2r ≤ 4b− 7. Hence

0 < y21 ≤
t+ 1

2
≤
√
b(4b− 7) + 1

2
< b.

This means y21 = 1, that is, y1 = 1 and z1 = ±1. Hence, the case v2m = w2n

only occur and z0 = z1 from Lemma 2.9.
(ii) Suppose that |z0| = t. Then we have c > 4ab2 by upper bound of y.

However, this is a contradiction, since

c = c−2 = 4ab

{
b−

(
2r − a− 1

a

)
− r − a

ab

}
< 4ab2.

Therefore, we have |z0| 6= t and this means v2m+1 6= w2n and v2m+1 6= w2n+1

by Lemma 2.9. Also, the last case of |z0| in v2m = w2n occurs when the
Diophantine quadruple {a, b, c, d} is only irregular. Hence, it suffices to show
that any Diophantine quadruple {a, b, c, d0} with d0 < c is regular when the
cases of c ≤ c+3 . Assume that the set {a, b, c, d0} with d0 < d− is a Diophantine

quadruple. First, since r =
√
ab+ 1 ≤

√
24a2 + 1 < 5a and together with

Lemma 2.1, we have following inequality

c ≤ c+3 < a2.5b3.5
(

176

b
+

16

b0.5
+

184

b2.5
+

24

b1.5
+

39

b3.5
+

9

b2.5

)
< a2.5b3.5.

However, we have c > 16a2.5b3.5 by Lemma 15 of [14]. Hence, Diophantine
quadruple {a, b, c, d0} with d0 < c can not be irregular. It is easy to see that
v2m and w2n+1 in (2) are equal to v2m and w2n in (1) with |z0| = cr − st.
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(iii) Since we show that if c ≤ c+3 , then any Diophantine quadruple {a, b, c,
d0} with d0 < c is regular in (ii), it suffices to show that max{|z0|, |z1|} < cr−st
when c ≥ c+2 . Since c ≥ c+2 > 4ab2 ≥ 32ab, we have

cr − st =
c2 − (a+ b)c− 1

cr + st
>

(1− a/c− b/c− 1/c2)c

2
√
ab
√

1 + 1/(ab)
>

c

2.1
√
ab
.

If max{|z0|, |z1|} ≥ cr − st, then the bounds of |z0| and |z1| show that

c <

(
2.1√

2

)4

ab2 < 5ab2.

However, we have the following inequalities

c ≥ c+2 > 4ab(a+ b+ 2r) > 4ab2
(

1

24
+ 1 +

1√
6

)
> 5.79ab2,

since b ≤ 24a implies that r =
√
ab+ 1 > b/(2

√
6). Hence, this is a contradic-

tion. �

4. The extendibility of {Fk−2Fk+1, Fk−1Fk+2}

In this section, we prove the extendibility of the Diophantine pair {Fk−2Fk+1,
Fk−1Fk+2}. From Theorem 2.5, we only need to check the cases of c ≤ c+2 .

Lemma 4.1. Suppose that m,n ≥ 2.

(1) If v2m = w2n, then

m ≥

 (
√

2Fk + 1− 1)/2, if c+1 or c−2 with |z0| = cr − st,

4
√
Fk/2, if c−2 with |z0| = 1 or c+2 .

(2) If v2m = w2n+1 with c−2 or v2m+1 = w2n+1 with c+2 , then

m ≥
√

2Fk + 1− 1

2
.

Proof. Since c±i is divisible by Fk for all i = 1, 2 and

• In the case of c+1 ,
s+1 ≡ Fk−2Fk+1 = a (mod Fk) and
t+1 ≡ −Fk−2Fk+1 = −a (mod Fk).
• In the case of c−2 ,
s−2 = 2F 2

k−1F
2
k − 1 ≡ −1 (mod Fk) and

t−2 = 2F 2
k (Fk−1Fk ± 1) + 1 ≡ 1 (mod Fk).

• In the case of c+2 ,
s+2 = 2Fk−2F

3
k+1 + 1 ≡ −1 (mod Fk) and

t+2 = 2F 2
kF

2
k+1 − 1 ≡ −1 (mod Fk).

Hence, we have the following lower bounds from Lemma 2.8.
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(1) The case of v2m = w2n:
We easily find the relation between v2m and w2n such that

±am2 + sm ≡ ±bn2 + tn (mod c).

• First, we consider the case of c+1 .
Since Fk−1Fk+2 ≡ −Fk−2Fk+1 (mod Fk) and gcd(Fk−2Fk+1, Fk)
= 1, so we have

±(m2 + n2 ±m± n) ≡ 0 (mod Fk).

This means 2(m2 +m) ≥ m2 +n2±m±n ≥ m2 +n2−m−n > 0.
Hence 2(m2 +m) ≥ Fk.

• In the case of c−2 with |z0| = cr − st, we get the equation

±am2 + am ≡ ±bn2 + bn (mod Fk),

since st ≡ −1 (mod Fk) and r ≡ 0 (mod Fk). Hence, similar to
above, we have the result.

• Let us consider the other case of c−2 , that is, c−2 with |z0| = 1. We
have the equation

±a(m2 + n2) ≡ m+ n (mod Fk),

and squaring both sides, then a2(m2 +n2)2 ≡ (m+n)2 (mod Fk).
Since a2 ≡ 1 (mod Fk), we have

(m2 + n2)2 − (m+ n)2 ≥ 0.

This means 4m4 ≥ Fk, so we have the desired result.
• Lastly, in the case of c+2 with |z0| = 1, we have

±a(m2 + n2) ≡ m− n (mod Fk).

Similar to above, squaring both sides and we have

(m2 + n2)− (m− n)2 ≡ 0 (mod Fk).

Hence, 4m4 ≥ Fk, and the result is deduced.
(2) The cases of v2m = w2n+1 with c−2 and v2m+1 = w2n+1 with c+2 :

From Lemma 2.8, we have

±a(−st)m2 − astm ≡ ∓2bstn(n+ 1) (mod Fk)

and
±2atsm(m+ 1) ≡ ±2btsn(n+ 1) (mod Fk),

respectively. So, they become

a(m2 + n2 + n±m) ≡ 0 (mod Fk)

and
±a(m2 + n2 +m+ n) ≡ 0 (mod Fk),

respectively, and we have the desired result. �

Let us find the logarithmic inequality for c = c+1 .
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Lemma 4.2. If v2m = w2n with c+1 and m,n 6= 0, then

0 < 2m log(s+
√
ac)− 2n log(t+

√
bc) + log

√
b(x0
√
c+ z0

√
a)

√
a(y1
√
c+ z1

√
b)

< 3.018(s+
√
ac)−4m.

Proof. Put

P =
1√
a

(x0
√
c+ z0

√
a)(s+

√
ac)m, Q =

1√
b
(y1
√
c+ z1

√
b)(t+

√
bc)n.

Then

P−1 =

√
a(x0
√
c− z0

√
a)

c− a
(s−

√
ac)m, Q−1 =

√
b(y1
√
c− z1

√
b)

c− b
(t−
√
bc)n.

Therefore, the relation vm = wn becomes

P − c− a
a

P−1 = Q− c− b
b

Q−1.

Since P > 0, Q > 0 and

P −Q >
c− a
a

(Q− P )P−1Q−1,

it follows that P > Q. Furthermore, we have

P −Q
P

<
c− a
a

P−2 <
1

a(c− a)
≤ 1

170
,

since the case of {3, 5} is proved by Filipin, Fujita and Togbé [11]. Hence,

0 < log
P

Q
= − log(1− P −Q

P
) <

171

170
(
c− a
a

)P−2

<
171

170

c− a
(
√
c−
√
a)2

(s+
√
ac)−2m.

Since
√
c+
√
a√

c−
√
a
< 3, we obtain the result. �

4.1. The theorem of Baker and Wüstholz

Now we apply theorem of Baker and Wüstholz.
(i) First, we consider the equation v2m = w2n. We may assume that k > 2.

Using Lemma 2.11 and Lemma 4.2, and apply Theorem 2.12, then we have
l = 3, d = 4, β = 2m,

α1 = s+
√
ac, α2 = t+

√
bc, α3 =

(
√
c±
√
a)
√
b

(
√
c±
√
b)
√
a
.

Let α′3 and α′′3 be the conjugates of α3 whose absolute values are greater than
one. Then

h′(α1) =
1

2
log(α1) <

1

2
log(2s), h′(α2) =

1

2
log(α2) <

1

2
log(2t),
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h′(α3) ≤ 1

4
{log(a2(c− b)2) + log(α3α

′
3α
′′
3)}

=
1

4
{log(b

√
ab(
√
c+
√
a)(
√
c+
√
b)(c− a))} < log(1.42c),

and

log |Λ| ≥ −18 · 4!34(32 · 4)5
1

2
log(2s)

1

2
log(2t) log(1.42c) · log(24) · log(2m).

Since

log(
8

3
ac(s+

√
ac)−4m) < (−2m+ 1) log(4ac)

and

log(3.018(s+
√
ac)−4m) < (−2m+ 1) log(4ac),

we have

(13)
2m− 1

log(2m)
< 9.556 · 1014 log(2c) log(1.42c).

Let x = Fk.

• If c = c+1 , then
√

2x+ 1− 2 < 4.778 · 1014 log(3.17x)2 · log(2.67x)2 · log(2x+ 1).

Hence, x < 1.64 · 1042 and c+1 < 1.35 · 1085.
• If c = c−2 with |z0| = cr − st, then
√

2x+ 1− 2 < 4.778 · 1014 log(2x)6 · log(1.89x)6 · log(2x+ 1).

Hence, x < 1.72 · 1044 and c−2 < 6.22 · 10266.
• If c = c−2 with |z0| = ±1, then

4
√
x− 1 < 2.389 · 1014 log(2x)6 · log(1.89x)6 · log x.

Hence, x < 4.38 · 1091 and c−2 < 1.68 · 10551.
• If c = c+2 , then

4
√
x− 1 < 2.389 · 1014 log(2.55x)6 · log(2.41x)6 · log x.

Hence, x < 4.42 · 1091 and c+2 < 8.83 · 10551.

Since Fk = (αk − ᾱk)/
√

5, where α = (1 +
√

5)/2 > 1.618, we have the
following inequality from Fibonacci numbers

(14) (1.618)k < (α)k = ᾱk +
√

5 · Fk.

We can find the upper bounds of k and m by using inequalities (13) and
(14), respectively.

• If the case of c+1 , then k ≤ 203 and m ≤ 9.04 · 1020.
• If the case of c−2 , then k ≤ 440 and m ≤ 4.07 · 1022.
• If the case of c+2 , then k ≤ 440 and m ≤ 4.08 · 1022.
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(ii) Let v2m = w2n+1 with n 6= 0. We have l = 3, d = 4, β = 2m+ 1,

α1 = s+
√
ac, α2 = t+

√
bc, α4 =

((sr − ta)
√
c± (cr − st)

√
a)
√
b

(r
√
c∓ s

√
b)
√
a

.

Let α′4 and α′′4 be the conjugates of α4 whose absolute values are greater than
one. Then

h′(α1) =
1

2
log(α1) <

1

2
log(2s), h′(α2) =

1

2
log(α2) <

1

2
log(2t),

h′(α4) ≤ 1

4
{log(a2(c− b)2) + log(α4α

′
4α
′′
4)}

=
1

4
{log(b

√
ab((sr − ta)

√
c+ (cr − st)

√
a)(r
√
c+ s

√
b)(c− a))}

< log(1.42
√
rc),

since (sr − ta)
√
c > (cr − st)

√
a and sr − ta < r. Hence, we have

(15)
2m− 1

log(2m+ 1)
< 9.556 · 1014 log(2c) log(1.42

√
rc).

If c = c−2 , then
√
x+ 1− 2 < 4.778 · 1014 log(1.97x)6 · log(1.7x)7 · log(x+ 1),

where x = Fk. Hence, we have x < 4.9 · 1044 and c−2 < 3.98 · 10269. Again,
by using the inequality from (14) and (15), we get the bound of k ≤ 215 and
m ≤ 1.11 · 1022.

(iii) Let v2m+1 = w2n+1 with n 6= 0. We have l = 3, d = 4, β = 2m+ 1,

α1 = s+
√
ac, α2 = t+

√
bc, α5 =

(r
√
c± t

√
a)
√
b

(r
√
c± s

√
b)
√
a
.

Let α′5 and α′′5 be the conjugates of α5 whose absolute values are greater than
one. Then

h′(α1) =
1

2
log(α1) <

1

2
log(2s), h′(α2) =

1

2
log(α2) <

1

2
log(2t),

h′(α5) ≤ 1

4
{log(a2(c− b)2) + log(α5α

′
5α
′′
5)}

=
1

4
{log(b

√
ab(r
√
c+ t

√
a)(r
√
c+ s

√
b)(c− a))}

< log(1.42
√
rc).

Hence, we have

(16)
2m

log(2m+ 1)
< 9.556 · 1014 log(2c) log(1.42

√
rc).

If c = c+2 , then
√
x+ 1− 1 < 4.778 · 1014 log(2.53x)6 · log(2.11x)7 · log(x+ 1),
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where x = F2k+2. Hence, we get x < 4.95 · 1044 and c+2 < 1.91 · 10270. This
means k ≤ 215 and m ≤ 1.12 · 1022.

4.2. The reduction method

Now dividing logarithmic inequalities from Lemma 2.11 and Lemma 4.2 by
logα2, respectively leads us to the inequalities

0 < m1κ− n1 + µ1 < A1B
m1 ,

0 < m1κ− n1 + µ1 < A2B
m1 ,

0 < m1κ− n2 + µ2 < A1B
m1 ,

0 < m2κ− n2 + µ3 < A1B
m2 ,

where m1 := 2m, m2 := 2m+ 1, n1 := 2n, n2 := 2n+ 1 and

κ =
logα1

logα2
, µ1 =

logα3

logα2
, µ2 =

logα4

logα2
, µ3 =

logα5

logα2
,

A1 =
(8/3)ac

logα2
, A2 =

3.018

logα2
, B = α2

1.

We apply Lemma 2.13 to the logarithmic inequalities with M1 := 2m ≤
8.16 ·1022 and M2 := 2m+1 ≤ 2.24 ·1022. We have to examine 2 ·203+2 ·440+
2·440+2·215+2·215 = 3026 cases. The program was developed in PARI/GP
running with 400 digits. For the computations, if the first convergent such that
q > 6Mi with i = 1, 2 does not satisfy the condition ε > 0, then we use the
next convergent until we find the one that satisfies the conditions. Then we
have the results as the following Table 1.

Table 1. Results from PARI/GP running

Case of c Initial values Use the next convergent

z0 = z1 = 1 0 case
c+1 z0 = z1 = −1 99 cases

z0 = z1 = 1 330 cases
c−2 z0 = z1 = −1 352 cases (k = 89, . . . , 440)

z0 = cr − st, z1 = −s 0 case
c−2 z0 = st− cr, z1 = s 0 case

z0 = z1 = 1 353 cases (k = 88, . . . , 440)
c+2 z0 = z1 = −1 353 cases (k = 88, . . . , 440)

z0 = t, z1 = s 0 case
c+2 z0 = −t, z1 = −s 172 cases (k = 44, . . . , 215)

We have the upper bounds 13, 12 and 8 of m in the case of c+1 , c−2 with
|z0| = 1, and c+2 with |z0| = 1, respectively. If we take M = 2m and continue
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the program again, then we have m ≤ 1. Other cases, that is, c−2 with |z0| =
cr−st, |z1| = s, and c+2 with |z0| = t, |z1| = s have the upper bounds 7 and 8 of
m, respectively. Hence, we take M = 2m or 2m+ 1, and continue the program
again, we also get m ≤ 1. Therefore, we get the following theorem.

Theorem 4.3. Let k ≥ 3 be an integer and the set {Fk−2Fk+1, Fk−1Fk+2, c, d}
be a Diophantine quadruple with c < d, then d = d+.

Corollary 4.4. The set {Fk−2Fk+1, Fk−1Fk+2, c} can be extended only to reg-
ular.

5. The extendibility of {Fk−2Fk−1, Fk+1Fk+2}

In this section, we show that the set {Fk−2Fk−1, Fk+1Fk+2, c} can be ex-
tended to only regular, where c > max{Fk−2Fk−1, Fk+1Fk+2}. We can eas-
ily show that the Fibonacci numbers Fk−2Fk−1 and Fk+1Fk+2 do not satisfy
the Diophantine quadruple with {1, 3}, by considering the period of Fibonacci
numbers in modulo 4. Hence, we can find the form of third element in the
Diophantine triple {Fk−2Fk−1, Fk+1Fk+2, c} by Lemma 3.1.

Lemma 5.1. Let {Fk−2Fk−1, Fk+1Fk+2, c} be a Diophantine triple. Then c =
cτν for some ν and τ .

The small values of cτν are listed below.

c+1 = 4FkFk+1,

c−2 = 4F 2
k (4F 3

kFk−1 + 1),

c+2 = 4F 2
k (4F 3

kFk+1 − 1),

c−3 = Fk[64F 2
k−2F

3
k−1F

2
k+1F

2
k+2 + 16Fk−2Fk−1FkFk+1Fk+2

+ 96Fk−2F
2
k−1Fk+1Fk+2 + 12Fk + 36Fk−1],

c+3 = Fk[64F 2
k−2F

2
k−1F

3
k+1F

2
k+2 + 96Fk−2Fk−1FkF

2
k+1Fk+2

− 16Fk−2F
2
k−1Fk+1Fk+2 + 24Fk + 36Fk−1].

By Theorem 2.4 and Lemma 3.1, we have the upper bound of third elements
c in the Diophantine triple {a, b, c} with a < b ≤ 21a.

Lemma 5.2. Let {a, b} be a Diophantine pair with a < b ≤ 21a. Suppose that
{a, b, c, d} is a Diophantine quadruple with d > cτn+1 and that {a, b, c′, c} is not

a Diophantine quadruple for any c′ with 0 < c′ < cτn−1. Then c ≤ c+3 .

Proof. Since c−4 = 64a3b3(a+ b− 2r) + 64a2b2(2a+ 2b− 3r) + 80ab(a+ b− r) +
8(2a+ 2b− r), it suffices to show that 64a3b3(a+ b−2r) > b5, by Theorem 2.4.
We have

c−4
b5

>
64a3(a+ b− 2r)

b2
>

64a3(a+ b− 2r)

(21a)2
> 1.16 > 1.

Hence, this completes the proof of lemma. �
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Lemma 5.3. Suppose that m,n ≥ 2.

(1) If v2m = w2n, then

m ≥

 ( 4
√
Fk/2, if c−2 with |z0| = 1 or c+2 ,

√
2Fk + 1− 1)/2, if the other cases.

(2) If v2m = w2n+1 with c−2 or v2m+1 = w2n+1 with c+2 , c
−
3 and c+3 , then

m ≥
√

2Fk + 1− 1

2
.

Proof. We have the following relation between cτν and Fk.

• In the case of c+1 : s+1 ≡ a (mod Fk), t+1 ≡ b ≡ −a (mod Fk).
• In the case of c−2 : s−2 ≡ −1 (mod Fk), t−2 ≡ 1 (mod Fk).
• In the case of c+2 : s+2 ≡ −1 (mod Fk), t+2 ≡ 1 (mod Fk).
• In the case of c−3 : s−3 ≡ a (mod Fk), t−3 ≡ −b ≡ a (mod Fk).
• In the case of c+3 : s+3 ≡ −a (mod Fk), t+1 ≡ −b ≡ a (mod Fk).

We can also easily find the relation between vm and wn.

(1) The case of v2m = w2n:

±am2 + sm ≡ ±bn2 + tn (mod Fk).

(2) The case of v2m = w2n+1:

±a(−st)m2 − astm ≡ ∓2bstn(n+ 1) (mod Fk).

(3) The case of v2m+1 = w2n+1:

±2atsm(m+ 1) ≡ ±2btsn(n+ 1) (mod Fk).

Since Fk+1Fk+2 ≡ −Fk−2Fk−1 (mod Fk) and gcd(Fk−2Fk−1, Fk) = 1, we can
prove the lemma by the same procedure as in the proof of Lemma 4.1. �

Lemma 5.4. If v2m = w2n with c+1 and m,n 6= 0, then

0 < 2m log(s+
√
ac)− 2n log(t+

√
bc) + log

√
b(x0
√
c+ z0

√
a)

√
a(y1
√
c+ z1

√
b)

< 2.09(s+
√
ac)−4m.

Proof. The proof follows along the same line as that of Lemma 4.2. In this
case, we have

P −Q
P

<
c− a
a

P−2 <
1

a(c− a)
≤ 1

23
.

Hence,

0 < log
P

Q
= − log(1−P −Q

P
) <

24

23
(
c− a
a

)P−2 <
24

23

c− a
(
√
c−
√
a)2

(s+
√
ac)−2m.

Since
√
c+
√
a√

c−
√
a
< 2, we obtain the result. �
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5.1. The theorem of Baker and Wüstholz

By the theorem of Baker and Wüstholz again, we have the equations (13),
(15) and (16) for v2m = w2n, v2m = w2n+1 and v2m+1 = w2n+1, respectively,
since 2.09(s+

√
ac)−4m < (−2m+ 1) log(4ac).

Let x = Fk. First, let us consider the cases of the equation v2m = w2n. We
have the following inequalities for each cτi , i = 1, 2, 3.

• If c = c+1 , then
√

2x+ 1− 2 < 4.778 · 1014 log(4x)2 · log(3.38x)2 · log(2x+ 1).

Hence, x < 1.65 · 1042 and c+1 < 2.18 · 1085.
• If c = c−2 , then

4
√
x− 1 < 2.389 · 1014 log(1.85x)6 · log(1.75x)6 · log x.

Hence, x < 4.36 · 1091 and c−2 < 1.1 · 10551.
• If c = c+2 , then

4
√
x− 1 < 2.389 · 1014 log(2.04x)6 · log(1.93x)6 · log x.

Hence, x < 4.38 · 1091 and c+2 < 2.26 · 10551.
• If c = c−3 , then
√

2x+ 1− 2 < 4.778 · 1014 log(2.39x)10 · log(2.31x)10 · log(2x+ 1).

Hence, x < 1.52 · 1045 and c−3 < 2 · 10455.
• If c = c+3 , then
√

2x+ 1− 2 < 4.778 · 1014 log(2.56x)10 · log(2.47x)10 · log(2x+ 1).

Hence, x < 1.52 · 1045 and c+3 < 3.84 · 10455.

From (14), we get the upper bound of k for each c. Also from (13) and the
upper bound of c, we get the upper bound of m.

• If c = c+1 , then k ≤ 203 and m ≤ 9.08 · 1020.
• If c = c−2 , then k ≤ 440 and m ≤ 4.07 · 1022.
• If c = c+2 , then k ≤ 440 and m ≤ 4.07 · 1022.
• If c = c−3 , then k ≤ 217 and m ≤ 2.76 · 1022.
• If c = c+3 , then k ≤ 217 and m ≤ 2.76 · 1022.

Next, we consider the case of v2m = w2n+1 with c+2 with |z0| = cr − st and
|z1| = s. Then we have the inequality from (15).

√
2x+ 1− 2 < 4.778 · 1014 log(1.85x)6 · log(1.62x)7 · log(x+ 1).

Hence, x < 2.34 · 1044 and c−2 < 3.29 · 10267. This means k ≤ 213 and m ≤
1.09 · 1022.

Lastly, consider the case of v2m+1 = w2n+1. There are three cases c+2 , c
−
3

and c+3 . We have the following inequalities from (16).
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• In the case of c = c+2 , then
√
x+ 1− 1 < 4.778 · 1014 log(2.04x)6 · log(1.76x)7 · log(x+ 1).

Hence, x < 4.91 · 1044 and c+2 < 5.05 · 10269.
• In the case of c = c−3 , then
√
x+ 1− 1 < 4.778 · 1014 log(2.39x)10 · log(2.14x)11 · log(x+ 1).

Hence, x < 3.81 · 1045 and c−3 < 1.95 · 10459.
• In the case of c = c+3 , then
√
x+ 1− 1 < 4.778 · 1014 log(2.56x)10 · log(2.28x)11 · log(x+ 1).

Hence, x < 3.82 · 1045 and c+3 < 3.86 · 10459.

Also, using the inequality (14) and upper bounds of c, we have the following
upper bound of k and m for each cases.

• In the case of c = c+2 , then k ≤ 215 and m ≤ 1.11 · 1022.
• In the case of c = c−3 , then k ≤ 219 and m ≤ 3.09 · 1022.
• In the case of c = c+3 , then k ≤ 219 and m ≤ 3.09 · 1022.

5.2. The reduction method

We again apply Lemma 2.13 about diving logarithmic inequalities from
Lemma 2.11 and Lemma 5.4 by logα2, that is,

0 < m1κ− n1 + µ1 < A1B
m1 ,

0 < m1κ− n1 + µ1 < A2B
m1 ,

0 < m1κ− n2 + µ2 < A1B
m1 ,

0 < m2κ− n2 + µ3 < A1B
m2 ,

where m1 := 2m, m2 := 2m+ 1, n1 := 2n, n2 := 2n+ 1 and

κ =
logα1

logα2
, µ1 =

logα3

logα2
, µ2 =

logα4

logα2
, µ3 =

logα5

logα2
,

A1 =
(8/3)ac

logα2
, A2 =

2.09

logα2
, B = α2

1.

Let M1 := 2m ≤ 5.52 · 1022 and M2 := 2m + 1 ≤ 6.18 · 1022. We have to
examine 2·203+2·440+2·440+2·217+2·217+2·213+2·215+2·219+2·219 = 4766
cases. Similar to Section 4.2.2, we have the result as the following Table 2 by
using the program PARI/GP running with 400 digit. We have the following
upper bounds of m in Table 2 for each cases. Use these upper bounds and
continue the program again, then we have m ≤ 1. Hence, we get the following
theorem.

Theorem 5.5. Let k ≥ 3 be the integer and the set {Fk−2Fk−1, Fk+1Fk+2, c, d}
be a Diophantine quadruple with c < d. Then d = d+.

Corollary 5.6. The set {Fk−2Fk−1, Fk+1Fk+2, c} can be extended only to reg-
ular.
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Table 2. Results from PARI/GP running

Case of c Initial values Use the next convergent Upper bound of m

z0 = z1 = 1 0 case 15
c+1 z0 = z1 = −1 0 case 14

z0 = z1 = 1 353 cases (k = 88, . . . , 440) 10
c−2 z0 = z1 = −1 353 cases (k = 88, . . . , 440) 10

z0 = cr − st, z1 = −s 169 cases (k = 45, . . . , 213) 10
c−2 z0 = st− cr, z1 = s 0 case 10

z0 = z1 = 1 354 cases (k = 86, 88, . . . , 440) 9
c+2 z0 = z1 = −1 0 case 8

z0 = t, z1 = s 200 cases (k = 16, . . . , 215) 8
c+2 z0 = −t, z1 = −s 171 cases (k = 45, . . . , 215) 8

z0 = z1 = 1 0 case 6
c−3 z0 = z1 = −1 0 case 6

z0 = t, z1 = s 204 cases (k = 12, . . . , 215) 6
c−3 z0 = −t, z1 = −s 0 case 7

z0 = z1 = 1 174 cases (k = 44, . . . , 217) 6
c+3 z0 = z1 = −1 0 case 6

z0 = t, z1 = s 0 case 6
c+3 z0 = −t, z1 = −s 197 cases (k = 23, . . . , 219) 6
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