• Title/Summary/Keyword: exponential order

Search Result 592, Processing Time 0.029 seconds

Bayesian Analysis for the Difference of Exponential Means

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1067-1078
    • /
    • 2005
  • In this paper, we develop the noninformative priors for the exponential models when the parameter of interest is the difference of two means. We develop the first and second order matching priors. We reveal that the second order matching priors do not exist. It turns out that Jeffreys' prior does not satisfy the first order matching criterion. The Bayesian credible intervals based on the first order matching meet the frequentist target coverage probabilities much better than the frequentist intervals of Jeffreys' prior.

  • PDF

Recurrence Relations Between Product Moments of Order Statistics for Truncated Distributions and Their Applications

  • Saran, Jagdish;Pushkarna, Narinder
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.3
    • /
    • pp.391-403
    • /
    • 2002
  • In this paper, some general results for obtaining recurrence relations between product moments of order statistics for doubly truncated distributions are established. These results are then applied to some specific doubly truncated distributions, viz. doubly truncated Weibull, Exponential, Pareto, power function, Cauchy, Lomax and Rayleigh.

Noninformative Priors for the Stress-Strength Reliability in the Generalized Exponential Distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.4
    • /
    • pp.467-475
    • /
    • 2011
  • This paper develops the noninformative priors for the stress-strength reliability from one parameter generalized exponential distributions. When this reliability is a parameter of interest, we develop the first, second order matching priors, reference priors in its order of importance in parameters and Jeffreys' prior. We reveal that these probability matching priors are not the alternative coverage probability matching prior or a highest posterior density matching prior, a cumulative distribution function matching prior. In addition, we reveal that the one-at-a-time reference prior and Jeffreys' prior are actually a second order matching prior. We show that the proposed reference prior matches the target coverage probabilities in a frequentist sense through a simulation study and a provided example.

Noninformative priors for product of exponential means

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.763-772
    • /
    • 2015
  • In this paper, we develop the noninformative priors for the product of different powers of k means in the exponential distribution. We developed the first and second order matching priors. It turns out that the second order matching prior matches the alternative coverage probabilities, and is the highest posterior density matching prior. Also we revealed that the derived reference prior is the second order matching prior, and Jeffreys' prior and reference prior are the same. We showed that the proposed reference prior matches very well the target coverage probabilities in a frequentist sense through simulation study, and an example based on real data is given.

Noninformative Priors for the Ratio of the Scale Parameters in the Inverted Exponential Distributions

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.5
    • /
    • pp.387-394
    • /
    • 2013
  • In this paper, we develop the noninformative priors for the ratio of the scale parameters in the inverted exponential distributions. The first and second order matching priors, the reference prior and Jeffreys prior are developed. It turns out that the second order matching prior matches the alternative coverage probabilities, is a cumulative distribution function matching prior and is a highest posterior density matching prior. In addition, the reference prior and Jeffreys' prior are the second order matching prior. We show that the proposed reference prior matches the target coverage probabilities in a frequentist sense through a simulation study as well as provide an example based on real data is given.

Modeling of Time Delay Systems using Exponential Analysis Method

  • Iwai, Zenta;Mizumoto, Ikuro;Kumon, Makoto;Torigoe, Ippei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2298-2303
    • /
    • 2003
  • In this paper, very simple methods based on the exponential analysis are presented by which transfer function models for processes can easily be obtained. These methods employ step responses or impulse responses of the processes. These can also give a more precise transfer function model compared to the well-known graphical methods. Transfer functions are determined based on Prony method, which is one of the oldest and the most representative methods in the exponential analysis. Here, the method is reformed and applied to obtain the so-called low-order transfer function with pure time delay from the data of the step response. The effectiveness of the proposed method is examined through several numerical examples and experiments of the 2-tank level control process.

  • PDF

The Proportional Likelihood Ratio Order for Lindley Distribution

  • Jarrahiferiz, J.;Mohtashami Borzadaran, G.R.;Rezaei Roknabadi, A.H.
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.4
    • /
    • pp.485-493
    • /
    • 2011
  • The proportional likelihood ratio order is an extension of the likelihood ratio order for the non-negative absolutely continuous random variables. In addition, the Lindley distribution has been over looked as a mixture of two exponential distributions due to the popularity of the exponential distribution. In this paper, we first recalled the above concepts and then obtained various properties of the Lindley distribution due to the proportional likelihood ratio order. These results are more general than the likelihood ratio ordering aspects related to this distribution. Finally, we discussed the proportional likelihood ratio ordering in view of the weighted version of the Lindley distribution.

Bayesian Prediction Analysis for the Exponential Model Under the Censored Sample with Incomplete Information

  • Kim, Yeung-Hoon;Ko, Jeong-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.1
    • /
    • pp.139-145
    • /
    • 2002
  • This paper deals with the problem of obtaining the Bayesian predictive density function and the prediction intervals for a future observation and the p-th order statistics of n future observations for the exponential model under the censored sampling with incomplete information.

  • PDF

Failure rate of a bivariate exponential distribution

  • Hong, Yeon-Woong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.1
    • /
    • pp.173-177
    • /
    • 2010
  • It is well known that if the parent distribution has a nonnegative support and has increasing failure rate, then all the order statistics have increasing failure rate (IFR). The result is not necessarily true in the case of bivariate distributions with dependent structures. In this paper we consider a symmetric bivariate exponential distribution and show that, two marginal distributions are IFR and the distributions of the minimum and maximum are constant failure rate and IFR, respectively.

A NOTE ON SOME HIGHER ORDER CUMULANTS IN k PARAMETER NATURAL EXPONENTIAL FAMILY

  • KIM, HYUN CHUL
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.157-160
    • /
    • 1999
  • We show the cumulants of a minimal sufficient statistics in k parameter natural exponential family by parameter function and partial parameter function. We nd the cumulants have some merits of central moments and general cumulants both. The first three cumulants are the central moments themselves and the fourth cumulant has the form related with kurtosis.

  • PDF