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Abstract
The proportional likelihood ratio order is an extension of the likelihood ratio order for the non-negative abso-

lutely continuous random variables. In addition, the Lindley distribution has been over looked as a mixture of two
exponential distributions due to the popularity of the exponential distribution. In this paper, we first recalled the
above concepts and then obtained various properties of the Lindley distribution due to the proportional likelihood
ratio order. These results are more general than the likelihood ratio ordering aspects related to this distribution.
Finally, we discussed the proportional likelihood ratio ordering in view of the weighted version of the Lindley
distribution.
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1. Introduction

Stochastic models are usually complex in nature. One of the tools for comparing them is the stochastic
ordering of ideas. The start of the idea of stochastic ordering goes back to Lehmann (1955), and after
him a significant number of papers and monographs were published. These publications are most
commonly found in Shaked and Shanthikumar (2007). The likelihood ratio order also has some nice
properties for comparing statistical models. For more details of the history, see the references in page
76 Section 1.C of Shaked and Shanthikumar (2007).

Proportional likelihood ratio order is an extension of the likelihood ratio order that was studied
by Ramos-Romero and Sordo-Diaz (2001). In addition, results via the shifted stochastic orders and
Laplace order introduced in papers such as Lillo et al. (2001), Ahmed and Kayid (2004), Elbatal
(2007), Nanda and Shaked (2008) and extension of the stochastic order for weighted distributions
expressed in Bartoszewicz and Skolimowska (2004, 2006) and Neeraj et al. (2008).

Most of statistical properties of the Lindley distribution as a mixture of two exponential distribu-
tions are unknown. Ghitany et al. (2008) has shown that the Lindley distribution is a period where
model than one based on the exponential distribution and described an application to the waiting time
data at a bank. They found that many of the mathematical properties are more flexible than those
of the exponential distribution. Sankaran (1970) used a mixing model for the Poisson parameter to
generate a mixed Poisson distribution known as the discrete Poisson Lindley distribution. Holgate
(1970) and Grandell (1997) obtained results due to the version of mixture distribution such as mixed
Poisson. In addition, Ghitany et al. (2008) illustrated a real data application to show the superiority of
the Lindley distribution. The ordering aspects previously mentioned are obtained for this distribution.
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In this paper, the results related to the proportional likelihood ratio ordering for the Lindley dis-
tribution and related criteria are obtained. In addition, extended these, to compare the ordering of
various weighted versions of the Lindley distribution are the other ideas of the direction on this work.
In the next section, we recall the Lindley distribution, some of the famous stochastic ordering and
some results about them. Section 3, contains the results of the proportional likelihood ratio ordering
and its shifted version for the Lindley distribution. Proportional likelihood ratio ordering in view of
the weighted version of the Lindley distribution is given in Section 4.

2. Lindley Distribution and Various Ordering

Mixture distributions with the form f (x) = α f1(x)+(1−α) f2(x) such that f1 and f2 are two probability
distributions and 0 ≤ α ≤ 1, have an important role in statistics. Most of phenomena of the nature have
a mixture distribution and the statistical analysis of this type of distributions often leads to complicated
forms. Lindley (1958, 1965) considered types of distribution, and Ghitany et al. (2008) specified
distribution with the density,

f (x) =
θ2

θ + 1
(1 + x)e−θx, x > 0, θ > 0, (2.1)

where is a mixture distribution such that α = θ/(θ + 1), f1(x) = θe−θx and f2(x) = θ2xe−θx for x ≥ 0. It
is called the Lindley distribution as a mixture of exponential type of gamma distributions. Lindley’s
model is obtained as a mixture distribution that α depends on the parameter of the distribution, where
these type of mixtures are discussed in Glaser (1980) and Gupta and Warren (2001). The correspond-
ing cumulative distribution function(cdf) is,

F(x) = 1 − θ + 1 + θx
θ + 1

e−θx, (2.2)

for x > 0 and θ > 0. Many properties such as moments and related measures, failure rate, mean resid-
ual life, mean deviation, Lorenz curve, order statistics, sums, product, and estimation due to Lindley
distribution are obtained in Ghitany et al. (2008) that provides a positive reference for some properties
of this distribution. Note that this is related to some stochastic ordering due to this distribution. Let X
and Y be two independent random variables with cumulative distribution functions F and G, proba-
bility density functions f and g, and hazard rates rF(·) and rG(·), respectively with the support domain
S . For comparing two random variables via various orderings, we need the following definitions in
view of the above arguments. For more details see Shaked and Shanthikumar (2007):

Definition 1.

(i) X is stochastically smaller than Y (denoted by X ≤st Y) if F(x) ≥ G(x) for all x ∈ S .

(ii) X is smaller than Y in hazard rate order (denoted by X ≤hr Y) if rF(x) ≥ rG(x),∀x ∈ S , which is
equivalent to F̄(x)/Ḡ(x) decreases in x ∈ S .

(iii) X is smaller than Y in mean residual life order (denoted by X ≤mrl Y) if mF(x) ≤ mG(x),∀x ∈ S
where mF(x) = E(X − x|X > x).

(iv) The Lorenz order is closely connected to the Lorenz curve, that is defined as follows:
suppose F(x) is the distribution function of a non-negative random variable X with finite mean
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µ. Let F−1 denotes the inverse of F defined by F−1(p) = inf{x : FX(x) ≥ p}, p ∈ [0, 1], then the
Lorenz curve corresponding to X can be defined (Gastwirth, 1971) as,

LX(p) =
1
µ

∫ p

0
F−1(t)dt, 0 ≤ p ≤ 1. (2.3)

We say that X is smaller than Y in the Lorenz order (denote by X ≤L Y) if and only if LX(p) ≥
LY (p) for every 0 ≤ p ≤ 1.

Let X(t) = [t−X|X ≤ t], for fixed t > 0, when X is the past time of device X, can be called inactivity
time (past). Ahmad and Kayid (2005) found the characterizations of the reversed hazard rate, the mean
inactivity time orderings, decreasing reversed hazard rate, and increasing mean inactivity time classes
of the life distributions.

Definition 2. Let X and Y be two non-negative random variables with densities f and g, respectively,
then,

(i) X is smaller than Y in the reversed hazard rate order (denoted by X ≤RHR Y) if X(t) ≥st Y(t) for
all t ≥ 0.

(ii) X is smaller than Y in the mean inactivity time order (denoted by X ≤MIT Y) if and only if
E[X(t)] ≥ E[Y(t)] for all t ≥ 0.

(iii) g(x)/ f (x) increases over the union of the supports of X and Y, (here a/0 is taken to be equal to
∞ whenever a > 0). Then X is said to be smaller than Y in the likelihood ratio order (denoted
by X ≤lr Y).

The following notes are due to Lindley distribution in view of ordering:

Theorem 1. (Ghitany et al.et al.et al. 2008) Let X∼Lindley(θ1) and Y∼Lindley(θ2). If θ1>θ2, then X≤lr Y.

Remark 1. It is known that likelihood ratio ordering implies several stochastic ordering such as

X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤mrl Y.

We have the following theorem in view of the mixtures of distributions:

Theorem 2. Let X ∼ f (x) = α f1(x) + (1 − α) f2(x) and Y ∼ g(x) = βg1(x) + (1 − β)g2(x), where
Ti ∼ fi and S j ∼ g j, i, j = 1, 2 are probability density functions, such that 0 < α, β < 1 and Ti ≤lr S j,
∀ i, j = 1, 2, then X ≤lr Y.

Proof: Navarro (2008), considered for pdf f and g; ηX(t) = − f ′(t)/ f (t), ηY (t) = −g′(t)/g(t) and
proved that X ≤lr Y ⇐⇒ ηX ≥ ηY , ∀ t. Suppose that h(x) = g(x)/ f (x), we must prove that h′(x) ≥ 0,
assuming we have, Ti ≤lr S j, ∀ i, j, so,

ηTi ≥ ηS j =⇒ − f ′i (x)/ fi(x) ≥ −g′j(x)/g j(x), ∀ i, j. Noting that,

g′j(x) fi(x) − f ′i (x)g j(x) ≥ 0,

leads to h(x) is increasing which is equivalent to X ≤lr Y . �
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3. Proportional Likelihood Ratio Order and its Shifted Version for the Lindley
Distribution

The likelihood ratio order is stronger than the other stochastic orders like the hazard rate and reversed
hazard rate orders, as well as the usual stochastic order, introduced by Ross (1983). This order is an
important tool to judge the comparative behavior of the statistical models. Many properties of the like-
lihood ratio order can be seen in Shaked and Shanthikumar (2007). Ramos-Romero and Sordo-Diaz
(2001) introduced an extended version of the likelihood ratio order for non-negative and absolutely
continuous random variables (called the proportional likelihood ratio order) to obtain the properties
and applications of it as well as its relation with distribution theory.

Proportional likelihood ratio order is discussed in this section for the Lindley distribution and
allied aspects. The proportional likelihood ratio order as the extension of this theorem and the shifted
proportional likelihood ratio order in view of this distribution is obtained in this section as a new
result.

Definition 3.

(i) If X and Y have interval supports then we say X is smaller than Y in the up likelihood ratio order
if X − x ≤lr Y (denote by X ≤lr↑ Y). Thus, we observe that X ≤lr↑ Y if and only if,

gY (t)
fX(t + x)

is increasing in t ∈ (lX − x, uX − x) ∪ (lY , uY ),

for each x ≥ 0 where lX and uX are left and right endpoints of the support of X. Similarly define
lY and uY .

(ii) If X and Y have support [0,∞). Suppose that, X ≤lr [Y − x|Y > x] for all x ≥ 0, then X is said
to be smaller than Y in the down shifted likelihood ratio order (denoted as X ≤lr↓ Y).

Definition 4. Let X and Y be non-negative and absolutely continuous random variable with supports
supp(X) and supp(Y), respectively. Denote the density function of X and Y by f and g, respectively.
Suppose that g(λx)/ f (x) increases in x for any positive constant λ < 1 over the union of the supports
of X and Y (here a/0 is taken to be equal to ∞ whenever a > 0). Then we say that X is smaller than
Y in the proportional likelihood ratio order (denoted as X ≤plr Y).

Ramos-Romero and Sordo-Diaz (2001), obtained results such as if X ≤plr Y then, lX ≤ lY and uX ≤ uY

and µX ≤ µY or X ≤plr Y if and only if X ≤lr aY for all a > 1. They also showed that if Y has a
log-concave density function, then, X ≤lr Y =⇒ X ≤plr Y .

Definition 5. Let X be a continuous non-negative random variable with density f . It will be said
X is increasing proportional likelihood ratio(IPLR) if f (λx)/ f (x) is increasing in x for any positive
constant λ < 1.

Next we obtain results for the Lindley distribution in view of the proportional likelihood ratio
order as new achievements.

Theorem 3. Let X ∼ Lindley(θ1) and Y ∼ Lindley(θ2) be two independent random variables. If
θ1 > θ2, then, X ≤plr Y.

Proof: Lindley distribution is log-concave, because ∂2 log f (x)/∂x2 < 0. Via Ramos-Romero and
Sordo-Diaz (2001), we know that let X and Y be non-negative and absolutely continuous random
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variables where Y has a log-concave density, then X ≤lr Y =⇒ X ≤plr Y . Thus, let X ∼ Lindley(θ1)
and Y ∼ Lindley(θ2) and θ1 > θ2, then,

X ≤lr Y ⇐⇒ X ≤plr Y.

�

Remark 2. X ≤lr↑ Y ⇐⇒ X ≤lr Y via log-concavity of X or Y . So under the conditions of the
Theorem 3, X ≤lr↑ Y .

Remark 3. We say that X is an increasing failure rate(IFR) random variable, if F̄ is log-concave
on its support. If X ∼ Lindley(θ), then, ∂ log F̄(x)/∂x = θ/(θ + 1 + θx) − θ and ∂2 log F̄(x)/∂x < 0,
that implies X is IFR. If the random variable log X is IFR, then X(b,∞) ≤L X(a,∞) for all a < b, a, b ∈
supp(X). It is hold for the Lindley distribution. If X ∼ Lindley(θ) then, X ≤lr↑ X.

Remark 4. We know that let Xi,Yi, i = 1, 2, . . . ,m be independent of random variables that, Xi ∼
Lindley(θ1) and Yi ∼ Lindley(θ2), i = 1, 2, . . . ,m, where θ1 > θ2, then,

∑m
i=1 Xi ≤lr

∑m
i=1 Yi. Also, let ψ

be an increasing (decreasing) function, then, ψ(Xi) ≤lr (≥lr)ψ(Yi), i = 1, 2, . . . ,m.

Remark 5. We can have a theorem similar to Theorem 1 in view of the proportional likelihood ratio
order, then its calculations are a little complicated.

In here, we study some properties due to shifted orders for Lindley distributions.

Definition 6. Let X and Y be continuous random variables with densities f and g, respectively, such
that X − x ≤plr Y, ∀x ≥ 0. Then, we say that X is smaller than Y in the up shifted proportional
likelihood ratio and denotes as X ≤plr↑ Y. In fact, X ≤plr↑ Y if and only if g(λ(t + x))/ f (t) is increasing
on t ∈ (lx/λ − x, ux/λ − x) ∪ (ly, uy) for x ≥ 0 and 0 < λ < 1.

Theorem 4. Let X and Y be two non-negative and continuous random variables, respectively, then

a) X ≤plr↑ Y ⇐⇒ X ≤lr↑ aY, ∀ a > 1.

b) If Y have a log-concave density, then, X ≤lr↑ Y =⇒ X ≤plr↑ Y.

Remark 6. Let X ∼ Lindley(θ1) and Y ∼ Lindley(θ2) be two independent random variables. If
θ1 > θ2, then X ≤plr↑ Y.

Definition 7. Let X be continuous random variable with density f , we say that X have up increasing
proportional likelihood ratio(UIPLR) if fX(λ(t + x))/ fX(t) increasing on t where 0 < λ < 1.

Remark 7. If X ∼ Lindley(θ), then X is UIPLR and

X is IPLR ⇐⇒ X ≤lr aX, ∀ a > 1⇐⇒ X ≤plr X.

Remark 8. For a random variable X with distribution function F, the Laplace-Stieltjes transform
of FX is given by L∗X(s) =

∫ ∞
0 e−sudFX(u), s > 0.

Given two random variables X and Y , then X is said to be smaller than Y in the Laplace transform
order (X ≤Lt Y) if L∗X(s) ≥ L∗Y (s) for all s > 0. In addition, let L∗X(s) =

∫ ∞
0 e−suF̄X(u)du =

{1 − L∗X(s)}/s, then X ≤Lt Y ⇐⇒ L∗X(s) ≤ L∗Y (s) for all s > 0 (Shaked and Shanthikumar, 2007).
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Definition 8. Let X and Y be two non-negative random variables. X is said to be smaller than Y in
the Laplace transform order of residual life (X ≤Lt−rl Y) if Xt ≤Lt Yt for all t ∈ (0, lX) ∩ (0, lY ) where
Xt = [X − t|x > t], lX = sup{t, F(t) < 1} and L∗Xt

(s) =
∫ ∞

t {e
−suF̄X(u)du}/{e−stF̄(t)}, s > 0.

Theorem 5. (Belzunce et al.et al.et al., 1999) Let X and Y be two continuous random variables, then X ≤Lt−rl

Y ⇐⇒
∫ ∞

t e−suF̄X(u)du/
∫ ∞

t e−suF̄Y (u)du is decreasing in t ∈ (0, lX) ∩ (0, lY ) for all s > 0.

Remark 9. The following implication of ordering show links between them:

X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤Lt−rl Y =⇒ X ≤mrl Y

⇓
X ≤Lt Y.

Remark 10. On noting the theorem that is mentioned in Ahmad and Kayid (2005), let X and Y be
two continuous nonnegative random variables.

(i) For all t ≥ 0, X ≤RHR Y ⇐⇒ X(t) ≥Lt Y(t).

(ii) If X and Y have differentiable MIT functions µ and β, respectively. Suppose that µ(t)/β(t) is
increasing in t. Then, X ≤MIT Y ⇐⇒ X ≤RHR Y. So,

X ≤plr Y =⇒ X ≤lr Y =⇒ X ≤RHR Y =⇒ X ≤MIT Y

⇕
X(t) ≥Lt Y(t).

Applying to Lindley distributions leads to the following result :

Theorem 6. Let X ∼ Lindley(θ1) and Y ∼ Lindley(θ2) be two random variables, then

θ1 > θ2 ⇐⇒ X ≤Lt Y ⇐⇒ LX(s) ≥ LY (s).

Proof: It is concluded from Remark 9 , that X ≤lr Y =⇒ X ≤Lt Y. �

4. Proportional Likelihood Ratio Order for Weighted Version of Lindley
Distribution

Consider a mechanism generating a non-negative random variable X with density function f (.). Let
w(.) be a non-negative function with finite non zero expectation. Define a random variable X̂w with
density function as X̂w ∼ w(x) f (x)/E(w(X)), where X̂w is called weighted random variable corre-
sponding to f (x) (see Rao 1965). Special cases of it, choosing various values for w lead to various
famous distributions in statistics.

We will concentrate on proportional likelihood ratio order via weighted distribution and specially
weights such as size biased, order statistics, record value, residual life time of a stationary renewal
process, selection samples, hazard rate, reversed hazard rate, proportional hazard model, reversed
proportional hazard model and probability weighted moments are some special cases of weighted
families.

Theorem 7. (Bartoszewicz and Skolimowska, 2006) Let F be an absolutely continuous dis-
tribution. If w is increasing (decreasing), then X ≤lr (≥lr)X̂w.
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Remark 11. On noting that Lindley distribution is IPLR, it is clear that X ≤plr X̂w, where X ∼
Lindley(θ) when w is increasing.

Based on arguments of Theorem 7, the following theorems are clear.

Theorem 8. If X ∼ Lindley(θ) and w(x) be an increasing (decreasing) function of x, then X ≤plr

(≥plr)X̂w where X̂w ∼ g(x) = w(x) f (x)/E(w(X)).

Theorem 9. Let X ∼ Lindley(θ1) and Y ∼ Lindley(θ2) be two independent random variables, such
that θ1 > θ2 then if X̂w ∼ w(x) f (x)/E(w(X)) and Ŷw ∼ w(x)g(x)/E(w(X)) and w(λx)/w(x) is increas-
ing, then X̂w ≤plr Ŷw.

Theorem 10. Let X and Y be two continuous random variables with interval support and weighted
distribution of Lindley(θ) with weights w1 and w2 respectively. If λw′1(λx)/w1(λx) > w′2(x)/w2(x),
then X ≤plr Y.

Proof: Let X ∼ g1(x) = w1(x)/{Ew1(X)}∗ f (x) and Y ∼ g2(x) = w2(x)/{Ew2(X)}∗ f (x) where f (x) =
θ2/(θ + 1)∗ (1 + x)e−θx. f (λx)/ f (x) = (1 + λx)/(1 + x)∗e−θx(λ−1) is increasing in x for any positive
constant λ < 1. So, X ∼ Lindley(θ) is IPLR. It is clear that g1(λx)/g2(x) = Ew2(X)/Ew1(λX) ∗
w1(λx)/w2(x) ∗ f (λx)/ f (x) increasing with respect to x for λ < 1. �

Remark 12. For w1(x) = xi[F(x)] j[F̄(x)]k and w2(x) = xi′ [F(x)] j′[F̄(x)]k′ , we have i/x+ jλ f (λx)/
F(λx) − kλ f (λx)/F̄(λx) > i′/x + j′ f (x)/F(x) − k′ f (x)/F̄(x) leads to X ≤plr Y . Now we consider
some special cases:

(1) i = i′ = 0 implies jλ f (λx)/F(λx)−kλ f (λx)/F̄(λx) > j′ f (x)/F(x)−k′ f (x)/F̄(x) leads to X ≤plr Y .

(2) If i = i′ = 0, k = n − j − 1, k′ = m − j′ − 1 then jλ f (λx)/F(λx) − (n − j − 1)λ f (λx)/F̄(λx) >
j′ f (x)/F(x) − (m − j′ − 1) f (x)/F̄(x) leads to X ≤plr Y .

(3) If i = i′ = j = j′ = 0 so, kλ f (λx)/F̄(λx) < k′ f (x)/F̄(x) results that X ≤plr Y .

(4) i = i′ = k = k′ = 0 implies that jλ f (λx)/F(λx) > j′ f (x)/F(x) is a condition that leads to
X ≤plr Y .

The conclusions that for two weights such as probability weighted moments, order statistics, propor-
tional hazard and reversed proportional hazard are mentioned in this remark.

Remark 13. For w1(x) = [−lnF̄(x)]i[−lnF(x)] j and w2(x) = [−lnF̄(x)]i′[−lnF(x)] j′ we have f (λx)/
F̄(λx)[iλ/{−lnF̄(λx)}] − f (λx)/F(λx)[ jλ/{−lnF(λx)}] > f (x)/F̄(x)[i′/{−lnF̄(x)}] − f (x)/F(x)[ j′/
{−lnF(x)}] leads to X ≤plr Y . Note that,

(1) if i = i′ = 0, then “upper record with weight w1(x)” ≤plr “upper record with weight w2(x)”,

(2) when j = j′ = 0, then, “Lower record with weight w1(x)” ≤plr “Lower record with weight w2(x)”.

Remark 14. Note that (i = i′ = 0, k = n − j − 1, k′ = m − j′ − 1) is equivalent to X j:n ≤plr Y j′:m.
Via Shaked and Shanthikumar (2007), we know that if Xi ∼ Lindley(θi); i = 1, 2, . . . ,m such that
θ1 > θ2 > · · · > θm, then X(k−1:m) ≤lr X(k:m), 2 ≤ k ≤ m and X(k−1:m−1) ≤lr X(k:m), 2 ≤ k ≤ m can be
discussed in view of the proportional likelihood ratio order.
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Theorem 11. Let X be a continuous random variable with interval support and weighted distribu-
tion of Y ∼ Lindley(θ) with weight w. Then, X ≤plr Y.

Proof: Via the arguments of the previous theorem on noting that w(x) = w1(x) and w2(x) = 1, it is
obvious that w′2(x) = 0, and λw′(λx)/w(λx) > 0 implies increasing property of w. �

Remark 15. In previous theorem when w(x) = xi[F(x)] j[F̄(x)]kelx, then, iF(x)F̄(x)+ jx f (x)F̄(x)+
l > kx f (x)F(x),∀x =⇒ X ≤plr Y .

• When w(x) = elx, l > 0 =⇒ X ≤plr Y.

• For order statistics case, w(x) = [F(x)] j[F̄(x)]n− j−1 so, F(x) < j/n, ∀x =⇒ X ≤plr Y.

• w(x) = [F(x)] j without any condition implies X ≤plr Y , but w(x) = [F̄(x)]k does not imply always
X ≤plr Y .

5. Conclusion

We have recalled the Lindley distribution as a mixture of two exponential distributions and some of the
famous stochastic ordering such as likelihood ratio order, hazard rate order, Laplace order and Lorenz
order. Then studied the properties of the proportional likelihood ratio ordering and its shifted version
for this distribution that are held for all weaker ordering (assuming λ = 1 and x = 0). Finally we
considered the weighted version of the Lindley distribution and obtained the results, particularly for
some weights such as upper record, lower record, weighted moment probability, proportional hazard
rate, and proportional reversed hazard rate.
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