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Abstract
It is well known that if the parent distribution has a nonnegative support and has
increasing failure rate, then all the order statistics have increasing failure rate (IFR).
The result is not necessarily true in the case of bivariate distributions with dependent
structures. In this paper we consider a symmetric bivariate exponential distribution and
show that, two marginal distributions are IFR and the distributions of the minimum
and maximum are constant failure rate and IFR, respectively.
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1. Introduction

The distribution of minimum and maximum of two randoms X and Y play an important
role in various statistical applications. For example in reliability studies, min(X,Y) is the
observable time of failure if the components are arranged in the series system and max(X,Y)
is the observable if the components are arranged in the parallel system.

In the case of independent and identically distributed random variables from distribution
F(-), min(X,Y) and max(X,Y) constitute order statistics for a random sample of size 2
from a distribution F(-). In reliability theory literature, it is well known that if the parent
distribution has a nonnegative support and has increasing failure rate (IFR), then all the
order statistics have IFR, see for example Barlow and Porschan (1981), a monograph by
Kamps (1995) and Finkelstein and Esaulova (2005).

Nagaraja and Baggs (1996) have studied the order statistics of bivariate exponential ran-
dom variables and noted that even if the marginal distribution is IFR, min(X,Y) and
max(X,Y) do not necessarily have IFR. For example, for Raftery’s (1984) bivariate ex-
ponential distribution, the marginal distributions are exponential and yet the failure rate of
min(X,Y) is non-monotonic for certain values of parameters.

In this paper we consider a random variable (X, Y) having a Freund’s symmetric bivariate
exponential distribution. We are interested in the failure rates of X, Y, min(X,Y’) and
max(X,Y’). In section 2, we obtain the marginal distributions of X and Y for the bivariate
exponential distribution, and in section 3, we show that 1) the failure rate of X(Y) is
decreasing failure rate (DFR), constant failure rate (CFR), or IFR according to the value
of parameter, 2) the failure rate of min(X,Y’) is CFR, 3) the failure rate of max(X,Y) is
IFR, and 4) the conditional failure rate of max(X,Y") given min(X,Y’) is CFR.
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2. Marginal distribution of X (Y)

Consider a random variable (X,Y") having the Freund’s (1961) bivariate exponential dis-
tribution,

af exp[—fy — (a+ 8- f)a], 0<z<y,
fla,y) = (2.1)
o Bexpl—a'z —(a+B—a)yl, 0<y<uz

where «, o’ ,ﬁ,ﬁ/ > 0. This distribution arises in the following setting: X and Y are
lifetimes of two components assumed to be independent exponentials with parameters «, 3,
respectively; but, a dependence between X and Y is introduced by taking a failure of
either component to change the parameter of the life distribution of the other component;
if component 1 fails, the parameter for Y is changed to ’; and if component 2 fails, the
parameter for X is changed to o/. In this paper, we assume that « = = Aand o/ = ' = 0\
for & > 0 in the model (2.1). Then (2.1) can be simplified as the symmetric bivariate
exponential distribution

f(z,y) = 0X% exp {—2Amin(z,y) — OA |z — y|}, (2.2)

Weier (1981) and Hong et. al. (1995) considered the estimation problems for this model.
The identical marginal densities are given by
1-0 1

and

Fx(t) = fy(t) = % 21 exp(—2)\E) + % (202t exp(—2\t) if6 = 2. (2.4)

The marginal density of X is the same as that of Y, but this does not provide any
information about the independency.

Remark 1. Note that the marginal density of X is not exponential, but a mixture of
two exponential densities when 6 # 2 and a mixture of exponential and gamma densities
when 6 = 2.

Now the expectation of X (Y) is obtained as

0+1
EX)=EY)=——.
(X) = B(Y) =
The correlation coefficient is given by
B 6% -1
P= 1y

We can show that —1/3 < p < 1.
Remark 2. If 6 =1, then p =0 and X and Y are independent random variables having
exponential distributions

Fx(t) = Aexp(=Xt) and fy (t) = Aexp(=At),

respectively.
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3. Failure rates

3.1. Failure rates of X(Y)
From (2.3) and (2.4), the reliability functions are easily found to be

! 6exp(—9)\t) if 0 #2 (3.1)

Rx(t) = Ry (t) = ;:Zexp(—Q)\t) + 5
and
Rx(t) = Ry (t) = (1 + At)exp(—2At) if 0 =2 (3.2)

Now the failure rate function of X (Y) is easily obtained by dividing the marginal density
of X(Y) by the corresponding reliability function. That is,

2(1 — O) A exp(—2At) + O exp(—0At)

i 042,
B (1) = hy (1) = (1-— /9\)2exp(—2)\t) + exp(—0At) (3.3)
A+ m, if 6 =2.

This gives

dhx(t)  dfx(t)/dt- Rx(t) + f%(t)
dt Rx(t)2

<0, ifo<d<1,
(0 — 1)A2exp — (6 + 2)\t '
Rx(1)? =0, ifd=1,
= >0, iff>1andf#2

)\2
(1+Xt)?
Remark 3. Note that if 0 < 8 < 1, hx(t)(hy (t)) is DFR, if § = 1, hx (t)(hy (t)) is CFR,
and if > 1, hx(t)(hy (t)) is IFR.

>0, ifh =2

3.2. Failure rates of min(X,Y) and max(X,Y)
Let U = min(X,Y), V = max(X,Y), then the joint pdf of (U, V) is given by
g(u,v) = 20 * exp {—(2\ — O\)u — O v}, 0 < u < v.
The marginal densitie of U is given by
gu (u) = 2 exp(—2Au).

This gives the failure rate of U as hy(t) = 2\, which is CFR. And the marginal density
of Vis

20
) =4 2-0 [exp (—OAv) —exp (=2 v)], O # 2,

(2))2vexp (—2\v), 0=2.
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This gives the reliability function of V as

Rv(t) = /OO gv(v)dt

0
_ 2_9~exp(70)\t) - 2_9~exp(72)\t), 0 +2,
(14 2Xt) - exp (—2Xt), 6 =2.
Then the failure rate function of V is obtained as
20\ ( L 1 > 0+2
\2—Oexp{-A2—0)t} 2eap{N2-06)t} —6)" ’
B (1) = p{=A2-0)t} p{AM2 = 0)t} (3.4)
ANt b— o
142X T
This gives
20(0 — 2)? X2 exp A(0 — 2)t
if
() | TR depro—zp % T0F
dt AN2 .
m > O, lf 0 = 2

Remark 4. The failure rate function hy (¢) is IFR.
Now we consider the limiting properties of hy (t). Let a(t) = exp {\(6 — 2)¢}, then
{ oo, iff>2,

mal) =10 <2

t—o0
and
y 20\(1 — a(t))
M=o 5 04 (1)
ANt B
142Xt

= X-min(6,2), iff <2,
tli>m hv(t) =
iff =2.

liInt—)oo )

Remark 5. The failure rate function hy (t) converges to A - min(6,2) as t — oo.

3.3. Conditional failure rate of max(X,Y) given min(X,Y)

The conditional density of V' given U = u is obtained as

9(vlu) = g(u,v)/gu (u) (3.5)
=0lexp—0OA(v —u), v>u.

This means that the distribution of the minimum has the exponential distribution with
failure rate #X. Thus the conditional reliability function is

R(v|u) = exp{—0A(v —u)}, v>u. (3.6)
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Therefore the conditional failure rate function is given by, from (3.5) and (3.6),
h(t|U) = 6.

Hence if the component lifelengths are identical, the conditional failure rate of the system
given the first failure is constant. This is not equal to the failure rate of any component of
the system.

References

Barlow, R. E. and Prochan, F. (1974). Statistical theory of reliability and life testing: Probability models,
Holt, Rinehart and Winston, New York.

Cha, Y. J., Hong, Y. W. and Lee, J. M. (1999). Control chart for constant hazard rate. Journal of the
Korean Data € Information Science Society, 10, 437-444.

Cho, G. Y. and Lee, O. H. (2002). Control charts for constant failure rate of system. Journal of the Korean
Data € Information Science Society, 13, 147-156.

Finkelstein, M. and Esaulova, V. (2005). On the weak IFR aging of bivariate lifetime distributions. Applied
Stochastic Models in Business and Industry, 21, 265-272.

Freund, J. E. (1961). A bivariate extension of the exponential distribution. Journal of the American
Statistical Association, 56, 971-977.

Hong, Y. W. and Kwon, Y. M. (2002). Estimation of a bivariate exponential distribution with a location
parameter. Journal of the Korean Data & Information Science Society, 13, 243-250.

Hong, Y. W., Lee, J. M. and Cha, Y. J. (1995). Reliability estimation for a shared-load system based on
Freund model. Journal of the Korean Data & Information Science Society, 6, 1-7.

Kamps, U. (1995). A concept of generalized order statistics, Teubner BG Stuttgart.

Nagaraja, H. N. and Baggs, G. E. (1996). Order statistics of bivariate exponential random variables. In
Statistical Theory and Applications, Springer Verlag, New York.

Raftery, A. E. (1984). A continuous multivariate exponential distribution. Communications in Statistics-
Theory and Methods, 13, 947-965.

Weier, D. R. (1981). Bayes estimation for a bivariate survival model based on exponential distributions.
Communications in Statistics-Theory and Methods, 10, 1415-1427.



